Cytochromes P450 and P-Glycoprotein Phenotypic Assessment to Optimize Psychotropic Pharmacotherapy: A Retrospective Analysis of Four Years of Practice in Psychiatry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Phenotyping Decision
2.2. Ethics
2.3. Cytochrome and P-Glycoprotein Phenotyping
2.4. Clinical Application
2.5. Retrospectively Analyzed Data
- Patient characteristics: age, gender, alcohol, tobacco and grapefruit consumption, and kidney and hepatic function.
- Clinical context and therapeutic problem: adverse drug reaction with one or multiple drugs at usual doses (ADR), no therapeutic response to one or multiple drugs (NR), or adverse drug reaction for some drugs and non-response for others (ADR+NR).
- Involved drugs: past and current drugs for which the physician questioned the implication of the metabolic profile in the therapeutic problem encountered, and the CYP/P-gp of which they were major or minor substrates [30].
- Current treatment: drugs prescribed to the patient at the moment of phenotyping, their dosage, their possible inhibiting or inducing properties on CYP/P-gp, and their potency of action (weak or potent) [30].
- CYP/P-gp activity: increased/UM, EM, normal/IM or decreased/PM.
- Answer to the therapeutic problem: the metabolic profile was (Y) or was not (N) the cause of the therapeutic problem; could explain partially the therapeutic problem for some drugs only (P); or was not interpretable (NI) due to CYP/P-gp inducers or inhibitors or because too many metabolic pathways were involved in the metabolism of the drugs implicated.
- Follow-up: therapeutic adaptations made by the physician and their clinical consequences.
3. Results
3.1. Population
3.2. Drugs Involved
3.3. Response to the Therapeutic Problems
3.4. Individual CYP/P-gp Activities
3.5. Follow-Up
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gartlehner, G.; Hansen, R.; Morgan, L.; Thaler, K.; Lux, L. Second-Generation Antidepressants in the Pharmacologic Treatment of Adult Depression: An Update of the 2007 Comparative Effectiveness Review No. 46; US Department of Health and Human Services: Washington, DC, USA; US Agency for Healthcare Research and Quality: Rockville, MD, USA, 2011.
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef] [PubMed]
- Berlim, M.T.; Fleck, M.P.; Turecki, G. Current trends in the assessment and somatic treatment of resistant/refractory major depression: An overview. Ann. Med. 2009, 40, 149–159. [Google Scholar]
- Hiemke, C.; Bergemann, N.; Clement, H.W.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; Egberts, K.; Gerlach, M.; Greiner, C.; et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018, 51, 9–62. [Google Scholar] [PubMed] [Green Version]
- De Kesel, P.M.M.; Lambert, W.E.; Stove, C.P. Alternative Sampling Strategies for Cytochrome P450 Phenotyping. Clin. Pharm. 2016, 55, 169–184. [Google Scholar]
- Guengerich, F.P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 2001, 14, 611–650. [Google Scholar]
- Amin, M.L. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights 2013, 7, 27–34. [Google Scholar] [CrossRef]
- Ou-Yang, D.S.; Huang, S.L.; Wang, W.; Xie, H.G.; Xu, Z.H.; Shu, Y.; Zhou, H.H. Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br. J. Clin. Pharmacol. 2000, 49, 145–151. [Google Scholar]
- Rebsamen, M.C.; Desmeules, J.; Daali, Y.; Chiappe, A.; Diemand, A.; Rey, C.; Chabert, J.; Dayer, P.; Hochstrasser, D.; Rossier, M.F.; et al. The AmpliChip CYP450 test: Cytochrome P450 2D6 genotype assessment and phenotype prediction. Pharm. J. 2009, 9, 34–41. [Google Scholar] [CrossRef]
- Molden, E.; Jukić, M.M. CYP2D6 Reduced Function Variants and Genotype/Phenotype Translations of CYP2D6 Intermediate Metabolizers: Implications for Personalized Drug Dosing in Psychiatry. Front. Pharmacol. 2021, 12, 650750. [Google Scholar] [CrossRef]
- Maike Scherf-Clavel, A.; Weber, H.; Wurst, C.; Stonawski, S.; Hommers, L.; Unterecker, S.; Wolf, C.; Domschke, K.; Rost, N.; Brückl, T.; et al. Effects of Pharmacokinetic Gene Variation on Therapeutic Drug Levels and Antidepressant Treatment Response. Pharmacopsychiatry 2022, 55, 246–254. [Google Scholar] [CrossRef]
- Frederiksen, T.; Smith, R.L.; Wollmann, B.M.; Areberg, J.; Molden, E. Validation of a Population Pharmacokinetic Model of Vortioxetine Using Therapeutic Drug Monitoring Data. Clin. Pharm. 2021, 60, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
- Gloor, Y.; Lloret-Linares, C.; Bosilkovska, M.; Perroud, N.; Richard-Lepouriel, H.; Aubry, J.M.; Daali, Y.; Desmeules, J.A.; Besson, M. Drug metabolic enzyme genotype-phenotype discrepancy: High phenoconversion rate in patients treated with antidepressants. Biomed. Pharm. 2022, 152, 113202. [Google Scholar] [CrossRef]
- Ing Lorenzini, K.; Desmeules, J.; Rollason, V.; Bertin, S.; Besson, M.; Daali, Y.; Samer, C.F. CYP450 Genotype—Phenotype Concordance Using the Geneva Micrococktail in a Clinical Setting. Front. Pharm. 2021, 12, 730637. [Google Scholar] [CrossRef] [PubMed]
- De Andrés, F.; Terán, S.; Hernández, F.; Terán, E.; Llerena, A. To Genotype or Phenotype for Personalized Medicine? CYP450 Drug Metabolizing Enzyme Genotype-Phenotype Concordance and Discordance in the Ecuadorian Population. Omi. J. Integr. Biol. 2016, 20, 699–710. [Google Scholar]
- Lloret-Linares, C.; Rollason, V.; Lorenzini, K.I.; Samer, C.; Daali, Y.; Gex-Fabry, M.; Aubry, J.-M.; Desmeules, J.; Besson, M. Screening for genotypic and phenotypic variations in CYP450 activity in patients with therapeutic problems in a psychiatric setting, a retrospective study. Pharm. Res. 2017, 118, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Rollason, V.; Lloret-Linares, C.; Lorenzini, K.I.; Daali, Y.; Gex-Fabry, M.; Piguet, V.; Besson, M.; Samer, C.; Desmeules, J. Evaluation of phenotypic and genotypic variations of drug metabolising enzymes and transporters in chronic pain patients facing adverse drug reactions or non-response to analgesics: A retrospective study. J. Pers. Med. 2020, 10, 198. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, C.; Rollason, V.; Desmeules, J.A.; Samer, C.F. Influence of Inflammation on Cytochromes P450 Activity in Adults: A Systematic Review of the Literature. Front. Pharmacol. 2021, 12, 733935. [Google Scholar] [CrossRef]
- Eap, C.B.; Gründer, G.; Baumann, P.; Ansermot, N.; Conca, A.; Corruble, E.; Crettol, S.; Dahl, M.L.; de Leon, J.; Greiner, C.; et al. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): Focus on antidepressants. World J. Biol. Psychiatry 2021, 22, 561–628. [Google Scholar]
- Andrés, F.; LLerena, A. Simultaneous Determination of Cytochrome P450 Oxidation Capacity in Humans: A Review on the Phenotyping Cocktail Approach. Curr. Pharm. Biotechnol. 2016, 17, 1159–1180. [Google Scholar] [CrossRef]
- Tracy, T.S.; Chaudhry, A.S.; Prasad, B.; Thummel, K.E.; Schuetz, E.G.; Zhong, X.B.; Tien, Y.C.; Jeong, H.; Pan, X.; Shireman, L.M.; et al. Interindividual Variability in Cytochrome P450-Mediated Drug Metabolism. Drug Metab. Dispos. 2016, 44, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Magliocco, G.; Thomas, A.; Desmeules, J.; Daali, Y. Phenotyping of Human CYP450 Enzymes by Endobiotics: Current Knowledge and Methodological Approaches. Clin. Pharmacokinet. 2019, 58, 1373–1391. [Google Scholar] [PubMed]
- Varshney, E.; Tandon, M.; Saha, N.; Ali, S. In Vivo phenotyping of cytochrome 450 isoforms involved in the metabolism of anti-HIV and anti-tubercular drugs in human using cocktail approach: An LC–MS/MS analysis. J. Pharm. Biomed. Anal. 2019, 164, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, C.; Terrier, J.; Gloor, Y.; Gosselin, P.; Daali, Y.; Combescure, C.; Desmeules, J.A.; Samer, C.S.; Reny, J.-L.; Rollason, V. Impact of the Genotype and Phenotype of CYP3A and P-gp on the Apixaban and Rivaroxaban Exposure in a Real-World Setting. J. Pers. Med. 2022, 12, 526. [Google Scholar] [CrossRef]
- Mathijssen, R.H.J.; Van Schaik, R.H.N. Genotyping and phenotyping cytochrome P450: Perspectives for cancer treatment. Eur. J. Cancer 2006, 42, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Hiemke, C.; Shams, M. Phenotyping and Genotyping of Drug Metabolism to Guide Pharmacotherapy in Psychiatry. Curr. Drug Deliv. 2013, 10, 46–53. [Google Scholar] [CrossRef]
- Bosilkovska, M.; Samer, C.F.; Déglon, J.; Rebsamen, M.; Staub, C.; Dayer, P.; Walder, B.; Desmeules, J.A.; Daali, Y. Geneva Cocktail for Cytochrome P450 and P-Glycoprotein Activity Assessment Using Dried Blood Spots. Clin. Pharm. Ther. 2014, 96, 349–359. [Google Scholar]
- Bosilkovska, M.; Samer, C.; Déglon, J.; Thomas, A.; Walder, B.; Desmeules, J.; Daali, Y. Evaluation of Mutual Drug-Drug Interaction within Geneva Cocktail for Cytochrome P450 Phenotyping using Innovative Dried Blood Sampling Method. Basic Clin. Pharm. Toxicol. 2016, 119, 284–290. [Google Scholar] [CrossRef]
- Bosilkovska, M.; Déglon, J.; Samer, C.; Walder, B.; Desmeules, J.; Staub, C.; Daali, Y. Simultaneous LC-MS/MS quantification of P-glycoprotein and cytochrome P450 probe substrates and their metabolites in DBS and plasma. Bioanalysis 2014, 6, 151–164. [Google Scholar]
- Samer, C.F.; Lorenzini, K.I.; Rollason, V.; Daali, Y.; Desmeules, J.A. Applications of CYP450 testing in the clinical setting. Mol. Diagn. Ther. 2013, 17, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Hicks, J.K.; Sangkuhl, K.; Swen, J.J.; Ellingrod, V.L.; Müller, D.J.; Shimoda, K.; Bishop, J.R.; Kharasch, E.D.; Skaar, T.C.; Gaedigk, A.; et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin. Pharmacol. Ther. 2017, 102, 37–44. [Google Scholar]
- International Society for Psychiatric Genetics (ISPG). Genetic Testing Statement: A Statement from the International Society of Psychiatric Genetics; International Society for Psychiatric Genetics (ISPG): Brentwood, TN, USA.
- Drozda, K.; Müller, D.J.; Bishop, J.R. Pharmacogenomic Testing for Neuropsychiatric Drugs: Current Status of Drug Labeling, Guidelines for Using Genetic Information, and Test Options. Pharm. J. Hum. Pharm. Drug Ther. 2014, 34, 166–184. [Google Scholar]
- Van Schaik, R.H.N.; Müller, D.J.; Serretti, A.; Ingelman-Sundberg, M. Pharmacogenetics in Psychiatry: An Update on Clinical Usability. Front. Pharm. 2020, 11, 1443. [Google Scholar]
- Lingam, R.; Scott, J. Treatment non-adherence in affective disorders. Acta Psychiatr. Scand. 2002, 105, 164–172. [Google Scholar]
- Rollason, V.; Mouterde, M.; Daali, Y.; Čížková, M.; Priehodová, E.; Kulichová, I.; Posová, H.; Petanová, J.; Mulugeta, A.; Makonnen, E.; et al. Safety of the Geneva Cocktail, a Cytochrome P450 and P-Glycoprotein Phenotyping Cocktail, in Healthy Volunteers from Three Different Geographic Origins. Drug Saf. 2020, 43, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Ingelman-Sundberg, M.; Sim, S.C.; Gomez, A.; Rodriguez-Antona, C. Influence of cytochrome P450 polymorphisms on drug therapies: Pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol. Ther. 2007, 116, 496–526. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.F.; Liu, J.P.; Chowbay, B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug. Metab. Rev. 2009, 41, 89–295. [Google Scholar]
- McGraw, J.; Waller, D. Cytochrome P450 variations in different ethnic populations. Expert Opin. Drug Metab. Toxicol. 2012, 8, 371–382. [Google Scholar]
- Lloret-Linares, C.; Bosilkovska, M.; Daali, Y.; Gex-Fabry, M.; Heron, K.; Bancila, V.; Michalopoulos, G.; Perroud, N.; Richard-Lepouriel, H.; Aubry, J.-M.; et al. Phenotypic Assessment of Drug Metabolic Pathways and P-Glycoprotein in Patients Treated With Antidepressants in an Ambulatory Setting. J. Clin. Psychiatry 2018, 79, 14196. [Google Scholar]
- Liko, I.; Lai, E.; Griffin, R.J.; Aquilante, C.L.; Lee, Y.M. Patients’ Perspectives on Psychiatric Pharmacogenetic Testing. Pharmacopsychiatry 2020, 53, 256–261. [Google Scholar] [CrossRef]
- Magliocco, G.; Desmeules, J.; Bosilkovska, M.; Thomas, A.; Daali, Y. The 1β-Hydroxy-Deoxycholic Acid to Deoxycholic Acid Urinary Metabolic Ratio: Toward a Phenotyping of CYP3A Using an Endogenous Marker? J. Pers. Med. 2021, 11, 150. [Google Scholar] [CrossRef]
- Magliocco, G.; Desmeules, J.; Matthey, A.; Quirós-Guerrero, L.M.; Bararpour, N.; Joye, T.; Marcourt, L.; Queiroz, E.F.; Wolfender, J.; Gloor, Y.; et al. Metabolomics reveals biomarkers in human urine and plasma to predict cytochrome P450 2D6 (CYP2D6) activity. Br. J. Pharm. 2021, 178, 4708–4725. [Google Scholar]
Age (year) (mean ± SD) | 47.1 ± 14.5 | |
Number of female patients (n, % of the 31 patients) | 22 (71%) | |
Tobacco consumption (n, % of the 31 patients) | 9 (29%) | |
Alcohol consumption >2 glass/day (n, % of the 31 patients) | 4 (13%) | |
Grapefruit consumption (n, % of the 31 patients) | 0 (0%) | |
Hypericum consumption (n, % of the 31 patients) | 0 (0%) | |
Type of patient care at the assessment (n, % of the 32 phenotypings) | ||
Inpatients | 13 (41%) | |
Outpatients | 19 (59%) | |
Clinical context (n, % of the 32 phenotypings) | ||
Depressive disorder | 15 (47%) | |
Bipolar disorder | 12 (38%) | |
Anxiety–depressive syndrome | 3 (9%) | |
Schizoaffective disorder | 1 (3%) | |
Neuropathic pain | 1 (3%) | |
Number of drugs implicated (mean ± SD) | 7 ± 4.8 | |
Therapeutic problem (n, % of the 32 phenotypings) | ||
ADR | 10 (31%) | |
NR | 6 (19%) | |
ADR+NR | 16 (50%) |
Drug | Number of Phenotypings | Implication of the Drug in Therapeutic Problems | |
---|---|---|---|
Non-Response | Adverse Drug Reaction | ||
Venlafaxine | 17 | 6 | 11 |
Fluoxetine | 15 | 6 | 9 |
Paroxetine | 10 | 2 | 8 |
Mirtazapine | 10 | 6 | 4 |
Clomipramine | 10 | 4 | 6 |
Quetiapine | 10 | 1 | 9 |
Lithium | 10 | 3 | 7 |
Lamotrigine | 9 | 4 | 5 |
Aripiprazole | 9 | 3 | 6 |
Olanzapine | 7 | 4 | 3 |
Sertraline | 6 | 0 | 6 |
Escitalopram | 6 | 2 | 4 |
Risperidone | 6 | 2 | 4 |
Duloxetine | 5 | 1 | 4 |
Amitriptyline | 5 | 3 | 2 |
Vortioxetine | 4 | 3 | 1 |
Chlorpromazine | 4 | 3 | 1 |
Number of Phenotypings (n) | Involvement of Metabolic Profile in the Therapeutic Problem (n–% of Responses in the Corresponding Therapeutic Problem) | |||||||
---|---|---|---|---|---|---|---|---|
Y | N | Y+N | P | NI | P+NI | |||
Therapeutic problem | ADR | 10 | 4 (40%) | 4 (40%) | 8 (80%) | 2 (20%) | 0 (0%) | 2 (20%) |
NR | 6 | 4 (67%) | 1 (17%) | 5 (83%) | 0 (0%) | 1 (17%) | 1 (17%) | |
ADR+NR | 16 | 3 (19%) | 5 (31%) | 8 (50%) | 5 (31%) | 3 (19%) | 8 (50%) | |
Total | 32 | 11 (34%) | 10 (31%) | 21 (66%) | 7 (22%) | 4 (13%) | 11 (34%) | |
Number of drugs involved (mean ± SD) | 7.0 ± 4.8 | 4.5 ± 2.9 | 8.7 ± 4.5 | 6.5 ± 4.2 | 8.0 ± 7.1 | 8.0 ± 3.4 | 8.0 ± 5.8 |
Number of Phenotypic Assessments (n) | CYP/P-gp Measured Activity (% of the Phenotypic Assessments) | ||||||
---|---|---|---|---|---|---|---|
Decreased/PM | Normal/IM | Increased/EM | UM | ||||
CYP1A2 | 30 | 23% | 43% | 33% | |||
In the presence of an inhibitor | 8 | 38% | 50% | 13% | |||
Weak | 8 | 38% | 50% | 13% | |||
Potent | |||||||
CYP2B6 | 30 | 0% | 40% | 60% | |||
In the presence of an inhibitor | 1 | 100% | |||||
Weak | 1 | 100% | |||||
Potent | |||||||
CYP2C9 | 30 | 33% | 23% | 43% | |||
In the presence of an inhibitor | 8 | 25% | 75% | ||||
Weak | 4 | 25% | |||||
Potent | 4 | 25% | |||||
CYP2C19 | 32 | 38% | 53% | 9% | |||
In the presence of an inhibitor | 9 | 89% | 11% | ||||
Weak | 6 | 83% | 17% | ||||
Potent | 3 | 100% | |||||
CYP2D6 | 32 | 22% | 56% | 16% | 6% | ||
In the presence of an inhibitor | 29 | 21% | 62% | 17% | |||
Weak | 17 | 6% | 65% | 29% | |||
Potent | 12 | 42% | 58% | ||||
CYP3A4 | 30 | 33% | 43% | 23% | |||
In the presence of an inhibitor | 8 | 13% | 75% | 13% | |||
Weak | 8 | 13% | 75% | 13% | |||
Potent | |||||||
P-gp | 30 | 57% | 40% | 3% | |||
In the presence of an inhibitor | 11 | 73% | 27% | ||||
Weak | 4 | 75% | 25% | ||||
Potent | 7 | 71% | 29% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delage, C.; Darnaud, L.; Etain, B.; Vignes, M.; Ly, T.-K.; Frapsauce, A.; Veyrier, M.; Delavest, M.; Marlinge, E.; Hennion, V.; et al. Cytochromes P450 and P-Glycoprotein Phenotypic Assessment to Optimize Psychotropic Pharmacotherapy: A Retrospective Analysis of Four Years of Practice in Psychiatry. J. Pers. Med. 2022, 12, 1869. https://doi.org/10.3390/jpm12111869
Delage C, Darnaud L, Etain B, Vignes M, Ly T-K, Frapsauce A, Veyrier M, Delavest M, Marlinge E, Hennion V, et al. Cytochromes P450 and P-Glycoprotein Phenotypic Assessment to Optimize Psychotropic Pharmacotherapy: A Retrospective Analysis of Four Years of Practice in Psychiatry. Journal of Personalized Medicine. 2022; 12(11):1869. https://doi.org/10.3390/jpm12111869
Chicago/Turabian StyleDelage, Clément, Léa Darnaud, Bruno Etain, Marina Vignes, Tu-Ky Ly, Alexia Frapsauce, Marc Veyrier, Marine Delavest, Emeline Marlinge, Vincent Hennion, and et al. 2022. "Cytochromes P450 and P-Glycoprotein Phenotypic Assessment to Optimize Psychotropic Pharmacotherapy: A Retrospective Analysis of Four Years of Practice in Psychiatry" Journal of Personalized Medicine 12, no. 11: 1869. https://doi.org/10.3390/jpm12111869
APA StyleDelage, C., Darnaud, L., Etain, B., Vignes, M., Ly, T.-K., Frapsauce, A., Veyrier, M., Delavest, M., Marlinge, E., Hennion, V., Meyrel, M., Jacob, A., Chouchana, M., Smati, J., Pataud, G., Khoudour, N., Fontan, J.-E., Labat, L., Bellivier, F., ... Bloch, V. (2022). Cytochromes P450 and P-Glycoprotein Phenotypic Assessment to Optimize Psychotropic Pharmacotherapy: A Retrospective Analysis of Four Years of Practice in Psychiatry. Journal of Personalized Medicine, 12(11), 1869. https://doi.org/10.3390/jpm12111869