Survival Impact of Current-Smoking-Related COPD or COPD with Acute Exacerbation on Bladder Preservation through Concurrent Chemoradiotherapy for Muscle-Invasive Bladder Urothelial Carcinoma
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Inclusion and Exclusion Criteria
2.3. PSM and Covariates
2.4. Statistics
3. Results
3.1. PSM and Study Cohort
3.2. All-Cause Mortality, COPD Death, and Bladder Cancer Death
3.3. Kaplan–Meier OS among Non-COPD, COPD, and Hospitalization for COPDAE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. Ca Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; The Global Cancer Observatory. International Agency for Research on Cancer Globocan. Available online: https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf (accessed on 3 December 2020).
- Taiwan Cancer Registry Annual Report. 2018. Available online: http://tcr.cph.ntu.edu.tw/main.php?Page=N2 (accessed on 29 December 2020).
- Donat, S.M.; Shabsigh, A.; Savage, C.; Cronin, A.M.; Bochner, B.; Dalbagni, G.; Herr, H.W.; Milowsky, M.I. Potential Impact of Postoperative Early Complications on the Timing of Adjuvant Chemotherapy in Patients Undergoing Radical Cystectomy: A High-Volume Tertiary Cancer Center Experience. Eur. Urol. 2009, 55, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Bochner, B.H.; Chou, R.; Dreicer, R.; Kamat, A.M.; Lerner, S.P.; Lotan, Y.; Meeks, J.J.; Michalski, J.M.; Morgan, T.M.; et al. Treatment of Non-Metastatic Muscle-Invasive Bladder Cancer: AUA/ASCO/ASTRO/SUO Guideline. J. Urol. 2017, 198, 552–559. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 21 April 2021).
- Giacalone, N.J.; Shipley, W.U.; Clayman, R.H.; Niemierko, A.; Drumm, M.; Heney, N.M.; Michaelson, M.D.; Lee, R.J.; Saylor, P.J.; Wszolek, M.F.; et al. Long-term Outcomes After Bladder-preserving Tri-modality Therapy for Patients with Muscle-invasive Bladder Cancer: An Updated Analysis of the Massachusetts General Hospital Experience. Eur. Urol. 2017, 71, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Efstathiou, J.A.; Spiegel, D.Y.; Shipley, W.U.; Heney, N.M.; Kaufman, D.S.; Niemierko, A.; Coen, J.J.; Skowronski, R.Y.; Paly, J.J.; McGovern, F.J.; et al. Long-Term Outcomes of Selective Bladder Preservation by Combined-Modality Therapy for Invasive Bladder Cancer: The MGH Experience. Eur. Urol. 2012, 61, 705–711. [Google Scholar] [CrossRef]
- Cacciamani, G.E.; Ghodoussipour, S.; Mari, A.; Gill, K.S.; Desai, M.; Artibani, W.; Gill, P.S.; Shariat, S.F.; Gill, I.S.; Djaladat, H. Association between Smoking Exposure, Neoadjuvant Chemotherapy Response and Survival Outcomes following Radical Cystectomy: Systematic Review and Meta-Analysis. J. Urol. 2020, 204, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Boeri, L.; Soligo, M.; Frank, I.; Boorjian, S.A.; Thompson, R.H.; Tollefson, M.; Quevedo, F.J.; Cheville, J.C.; Karnes, R.J. Cigarette smoking is associated with adverse pathological response and increased disease recurrence amongst patients with muscle-invasive bladder cancer treated with cisplatin-based neoadjuvant chemotherapy and radical cystectomy: A single-centre experien. BJU Int. 2019, 123, 1011–1019. [Google Scholar] [CrossRef]
- Burney, P.; Patel, J.; Minelli, C.; Gnatiuc, L.; Amaral, A.F.S.; Kocabaş, A.; Cherkaski, H.H.; Gulsvik, A.; Nielsen, R.; Bateman, E.; et al. Prevalence and Population-Attributable Risk for Chronic Airflow Obstruction in a Large Multinational Study. Am. J. Respir. Crit. Care Med. 2021, 203, 1353–1365. [Google Scholar] [CrossRef]
- Tager, I.B.; Speizer, F.E. Risk estimates for chronic bronchitis in smokers: A study of male-female differences. Am. Rev. Respir. Dis. 1976, 113, 619–625. [Google Scholar] [CrossRef]
- Xu, X.; Weiss, S.T.; Rijcken, B.; Schouten, J.P. Smoking, changes in smoking habits, and rate of decline in FEV1: New insight into gender differences. Eur. Respir. J. 1994, 7, 1056–1061. [Google Scholar]
- Doll, R.; Peto, R. Mortality in relation to smoking: 20 years’ observations on male British doctors. Br. Med. J. 1976, 2, 1525–1536. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xu, J.; Yang, L.; Xu, Y.; Zhang, X.; Bai, C.; Kang, J.; Ran, P.; Shen, H.; Wen, F.; et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): A national cross-sectional study. Lancet 2018, 391, 1706–1717. [Google Scholar] [CrossRef]
- Collaborators, T.U.B.O.D.; Mokdad, A.H.; Ballestros, K.; Echko, M.; Glenn, S.; Olsen, H.E.; Mullany, E.; Lee, A.; Khan, A.R.; Ahmadi, A.; et al. The State of US Health, 1990–2016: Burden of Diseases, Injuries, and Risk Factors among US States. JAMA 2018, 319, 1444–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riesco-Miranda, J.A.; Alcazar-Navarrete, B.; Carrero, J.A.T.; Campuzano, A.; Gutierrez, M.J.P.; Ferrer, J.L.L. Active smoking and COPD phenotype: Distribution and impact on prognostic factors. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 1989–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Lu, C.-Y.; Chen, H.-M.; Wu, S.-Y. Neoadjuvant Chemotherapy or Endocrine Therapy for Invasive Ductal Carcinoma of the Breast with High Hormone Receptor Positivity and Human Epidermal Growth Factor Receptor 2 Negativity. JAMA Netw. Open 2021, 4, e211785. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-C.; Hsu, C.-H.; Lin, Y.-C.; Wu, S.-Y. Effects of 1-Year Hospital Volume on Surgical Margin and Biochemical-Failure-Free Survival in Patients Undergoing Robotic versus Nonrobotic Radical Prostatectomy: A Nationwide Cohort Study from the National Taiwan Cancer Database. Cancers 2021, 13, 488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lu, C.-Y.; Qin, L.; Chen, H.-M.; Wu, S.-Y. Breast-conserving surgery with or without irradiation in women with invasive ductal carcinoma of the breast receiving preoperative systemic therapy: A cohort study. Breast 2020, 54, 139–147. [Google Scholar] [CrossRef]
- Liu, W.-C.; Liu, H.-E.; Kao, Y.-W.; Qin, L.; Lin, K.-C.; Fang, C.-Y.; Tsai, L.-L.; Shia, B.-C.; Wu, S.-Y. Definitive radiotherapy or surgery for early oral squamous cell carcinoma in old and very old patients: A propensity-score-matched, nationwide, population-based cohort study. Radiother. Oncol. 2020, 151, 214–221. [Google Scholar] [CrossRef]
- Lin, K.-C.; Chen, T.-M.; Yuan, K.S.-P.; Wu, A.T.H.; Wu, S.-Y. Assessment of Predictive Scoring System for 90-Day Mortality Among Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma Who Have Completed Concurrent Chemoradiotherapy. JAMA Netw. Open 2020, 3, e1920671. [Google Scholar] [CrossRef] [Green Version]
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef]
- Chen, J.-H.; Yen, Y.-C.; Yang, H.-C.; Liu, S.-H.; Yuan, S.-P.; Wu, L.-L.; Lee, F.-P.; Lin, K.-C.; Lai, M.-T.; Wu, C.-C.; et al. Curative-Intent Aggressive Treatment Improves Survival in Elderly Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma and High Comorbidity Index. Medicine 2016, 95, e3268. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C. The performance of different propensity score methods for estimating marginal hazard ratios. Stat. Med. 2012, 32, 2837–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.-L.; Collins, G.S.; Spence, J.; Daurès, J.-P.; Devereaux, P.J.; Landais, P.; Le Manach, Y. Double-adjustment in propensity score matching analysis: Choosing a threshold for considering residual imbalance. BMC Med Res. Methodol. 2017, 17, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Kim, H.J.; Lonjon, G.; Zhu, Y.; written on behalf of AME Big-Data Clinical Trial Collaborative Group. Balance diagnostics after propensity score matching. Ann. Transl. Med. 2019, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C. The use of propensity score methods with survival or time-to-event outcomes: Reporting measures of effect similar to those used in randomized experiments. Stat. Med. 2013, 33, 1242–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, N.D.; Silverman, D.T.; Hollenbeck, A.R.; Schatzkin, A.; Abnet, C.C. Association Between Smoking and Risk of Bladder Cancer Among Men and Women. JAMA 2011, 306, 737–745. [Google Scholar] [CrossRef]
- Cumberbatch, M.G.; Rota, M.; Catto, J.W.; La Vecchia, C. The Role of Tobacco Smoke in Bladder and Kidney Carcinogenesis: A Comparison of Exposures and Meta-analysis of Incidence and Mortality Risks. Eur. Urol. 2016, 70, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease (2018 Report); Global Initiative for Chronic Obstructive Lung Disease: Madison, WI, USA, 2018. [Google Scholar]
- Mak, R.H.; Hunt, D.; Shipley, W.U.; Efstathiou, J.A.; Tester, W.J.; Hagan, M.P.; Kaufman, D.S.; Heney, N.M.; Zietman, A.L. Long-Term Outcomes in Patients with Muscle-Invasive Bladder Cancer After Selective Bladder-Preserving Combined-Modality Therapy: A Pooled Analysis of Radiation Therapy Oncology Group Protocols 8802, 8903, 9506, 9706, 9906, and 0233. J. Clin. Oncol. 2014, 32, 3801–3809. [Google Scholar] [CrossRef]
- James, N.D.; Hussain, S.; Hall, E.; Jenkins, P.; Tremlett, J.; Rawlings, C.; Crundwell, M.; Sizer, B.; Sreenivasan, T.; Hendron, C.; et al. Radiotherapy with or without Chemotherapy in Muscle-Invasive Bladder Cancer. N. Engl. J. Med. 2012, 366, 1477–1488. [Google Scholar] [CrossRef] [Green Version]
- Rödel, C.; Grabenbauer, G.G.; Kühn, R.; Papadopoulos, T.; Dunst, J.; Meyer, M.; Schrott, K.M.; Sauer, R. Combined-Modality Treatment and Selective Organ Preservation in Invasive Bladder Cancer: Long-Term Results. J. Clin. Oncol. 2002, 20, 3061–3071. [Google Scholar] [CrossRef]
- Ploussard, G.; Daneshmand, S.; Efstathiou, J.A.; Herr, H.W.; James, N.D.; Rödel, C.M.; Shariat, S.F.; Shipley, W.U.; Sternberg, C.N.; Thalmann, G.N.; et al. Critical Analysis of Bladder Sparing with Trimodal Therapy in Muscle-invasive Bladder Cancer: A Systematic Review. Eur. Urol. 2014, 66, 120–137. [Google Scholar] [CrossRef]
- Nishioka, T.; Luo, L.-Y.; Shen, L.; He, H.; Mariyannis, A.; Dai, W.; Chen, C. Nicotine increases the resistance of lung cancer cells to cisplatin through enhancing Bcl-2 stability. Br. J. Cancer 2014, 110, 1785–1792. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Ravi, R.; Pham, V.; Bedi, A.; Chatterjee, A.; Sidransky, D. Adenylate Kinase 3 Sensitizes Cells to Cigarette Smoke Condensate Vapor Induced Cisplatin Resistance. PLoS ONE 2011, 6, e20806. [Google Scholar] [CrossRef] [PubMed]
- Simon, F.; Schwenk-Zieger, S.; Becker, S.; Unger, K.; Gires, O.; Baumeister, P. Cigarette Smoke Reduces the Efficacy of Cisplatin in Head and Neck Cancer Cells–Role of ABCG2. Anticancer. Res. 2020, 40, 1277–1284. [Google Scholar] [CrossRef]
- Bachir, B.G.; Kassouf, W. Cause–effect? Understanding the risk factors associated with bladder cancer. Expert Rev. Anticancer Ther. 2012, 12, 1499–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalkowski, M.A.; Goltz, H.H.; Petersen, N.J.; Amiel, G.E.; Lerner, S.P.; Latini, D.M. Educational opportunities in bladder cancer: Increasing cystoscopic adherence and the availability of smoking-cessation programs. J. Cancer Educ. 2014, 29, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Kartalou, M.; Essigmann, J.M. Mechanisms of resistance to cisplatin. Mutat. Res. Mol. Mech. Mutagen. 2001, 478, 23–43. [Google Scholar] [CrossRef]
- Kim, P.H.; Kent, M.; Zhao, P.; Sfakianos, J.P.; Bajorin, D.F.; Bochner, B.H.; Dalbagni, G. The impact of smoking on pathologic response to neoadjuvant cisplatin-based chemotherapy in patients with muscle-invasive bladder cancer. World J. Urol. 2013, 32, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Guan, W.; Liu, Q.; Wang, H.; Zhu, Y.; Chen, R.; Zhang, G. Impact of COPD and emphysema on survival of patients with lung cancer: A meta-analysis of observational studies. Respirology 2015, 21, 269–279. [Google Scholar] [CrossRef]
- Saji, H.; Miyazawa, T.; Sakai, H.; Kimura, Y.; Tsuda, M.; Wakiyama, Y.; Marushima, H.; Kojima, K.; Nakamura, H. Survival significance of coexisting chronic obstructive pulmonary disease in patients with early lung cancer after curative surgery. Thorac. Cancer 2017, 9, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Chiu, K.-C.; Lin, W.-C.; Chang, C.-L.; Wu, S.-Y. Impact of Chronic Obstruction Pulmonary Disease on Survival in Patients with Advanced Stage Lung Squamous Cell Carcinoma Undergoing Concurrent Chemoradiotherapy. Cancers 2021, 13, 3231. [Google Scholar] [CrossRef] [PubMed]
- Van Gestel, Y.R.B.M.; E Hoeks, S.; Sin, D.D.; Huzeir, V.; Stam, H.; Mertens, F.W.; Van Domburg, R.T.; Bax, J.J.; Poldermans, D. COPD and cancer mortality: The influence of statins. Thorax 2009, 64, 963–967. [Google Scholar] [CrossRef] [Green Version]
- Man, S.F.P.; Connett, J.E.; Anthonisen, N.R.; Wise, R.A.; Tashkin, D.F.; Sin, D.D. C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease. Thorax 2006, 61, 849–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danesh, J.; Lewington, S.; Thompson, S.G.; Lowe, G.D.; Kosatis, J.B.; Wilson, A.C.; Folsom, A.R.; Wu, K.; Collins, R. Plasma Fibrinogen Level and the Risk of Major Cardiovascular Diseases and Nonvascular Mortality. JAMA Fibrinogen Studies Collaboration. 2005, 294, 1799–1809. [Google Scholar] [CrossRef] [PubMed]
- Postma, D.S.; Bush, A.; Berge, M.V.D. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet 2014, 385, 899–909. [Google Scholar] [CrossRef]
- Tan, W.C.; Sin, D.D.; Bourbeau, J.; Hernandez, P.; Chapman, K.R.; Cowie, R.; FitzGerald, J.M.; Marciniuk, D.D.; Maltais, F.; Buist, A.S.; et al. Characteristics of COPD in never-smokers and ever-smokers in the general population: Results from the CanCOLD study. Thorax 2015, 70, 822–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannino, D.M.; Buist, A.S.; Petty, T.L.; Enright, P.L.; Redd, S.C. Lung function and mortality in the United States: Data from the First National Health and Nutrition Examination Survey follow up study. Thorax 2003, 58, 388–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divo, M.; Cote, C.; de Torres, J.P.; Casanova, C.; Marin, J.M.; Pinto-Plata, V.; Zulueta, J.J.; Cabrera, C.; Zagaceta, J.; Hunninghake, G.; et al. Comorbidities and Risk of Mortality in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2012, 186, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nussbaumer-Ochsner, Y.; Rabe, K.F. Systemic Manifestations of COPD. Chest 2011, 139, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Huber, M.B.; Wacker, M.E.; Vogelmeier, C.F.; Leidl, R. Comorbid Influences on Generic Health-Related Quality of Life in COPD: A Systematic Review. PLoS ONE 2015, 10, e0132670. [Google Scholar] [CrossRef]
- Thieblemont, C.; Fendler, J.P.; Trillet-Lenoir, V.; Petris, C.; Chauvin, F.; Brunat-Mentigny, M.; Devaux, Y.; Devonec, M.; Gérard, J.P.; Perrin, P. Prognostic factors of survival in infiltrating urothelial bladder carcinoma. A retrospective study of 158 patients treated by radical cystectomy. Bull Cancer 1996, 83, 139–146. [Google Scholar] [PubMed]
- Pollack, A.; Zagars, G.K.; Swanson, D.A. Muscle-invasive bladder cancer treated with external beam radiotherapy: Prognostic factors. Int. J. Radiat. Oncol. 1994, 30, 267–277. [Google Scholar] [CrossRef]
- Fung, C.Y.; Shipley, W.U.; Young, R.H.; Griffin, P.P.; Convery, K.M.; Kaufman, D.S.; Althausen, A.F.; Heney, N.M.; Prout, G.R. Prognostic factors in invasive bladder carcinoma in a prospective trial of preoperative adjuvant chemotherapy and radiotherapy. J. Clin. Oncol. 1991, 9, 1533–1542. [Google Scholar] [CrossRef]
- Chiang, Y.; Cheng, J.C.-H.; Huang, C.-Y.; Tsai, Y.-C.; Lin, C.-C.; Hsu, C.-H.; Cheng, A.-L.; Pu, Y.-S. A role of multimodality bladder-preserving therapy in patients with muscle-invasive bladder cancer plus hydronephrosis with or without pelvic nodal involvement. J. Formos. Med Assoc. 2016, 116, 689–696. [Google Scholar] [CrossRef]
- Shipley, W.U.; A Winter, K.; Kaufman, D.S.; Lee, W.R.; Heney, N.M.; Tester, W.R.; Donnelly, B.J.; Venner, P.M.; A Perez, C.; Murray, K.J.; et al. Phase III trial of neoadjuvant chemotherapy in patients with invasive bladder cancer treated with selective bladder preservation by combined radiation therapy and chemotherapy: Initial results of Radiation Therapy Oncology Group 89-03. J. Clin. Oncol. 1998, 16, 3576–3583. [Google Scholar] [CrossRef]
- Byun, S.; Kim, J.H.; Oh, Y.K.; Kim, B.H. Concurrent chemoradiotherapy improves survival outcome in muscle-invasive bladder cancer. Radiat. Oncol. J. 2015, 33, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Browman, G.P.; Wong, G.; Hodson, I.; Sathya, J.; Russell, R.; McAlpine, L.; Skingley, P.; Levine, M.N. Influence of Cigarette Smoking on the Efficacy of Radiation Therapy in Head and Neck Cancer. N. Engl. J. Med. 1993, 328, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Tammemagi, C.M.; Neslund-Dudas, C.; Simoff, M.; Kvale, P. Smoking and Lung Cancer Survival: The role of comorbidity and treatment. Chest 2004, 125, 27–37. [Google Scholar] [CrossRef] [PubMed]
Never Smokers without COPD | Current Smokers with COPD | p | |||
---|---|---|---|---|---|
N = 472 | (100%) | N = 236 | (100%) | ||
Age (mean ± SD) | (76.14 ± 8.22) | (76.22 ± 9.63) | 0.844 | ||
Age (years) | 1.000 | ||||
≤65 | 58 | 12.29% | 29 | 12.29% | |
66–74 | 146 | 30.93% | 73 | 30.93% | |
75–85 | 178 | 37.71% | 89 | 37.71% | |
>85 | 90 | 19.07% | 45 | 19.07% | |
Sex | 1.000 | ||||
Female | 116 | 24.58% | 58 | 24.58% | |
Male | 356 | 75.42% | 178 | 75.42% | |
Diabetes | 0.515 | ||||
No | 321 | 68.01% | 154 | 65.25% | |
Yes | 151 | 31.99% | 82 | 34.75% | |
Hyperlipidemia | 0.796 | ||||
No | 324 | 68.64% | 165 | 69.92% | |
Yes | 148 | 31.36% | 71 | 30.08% | |
Hypertension | 0.795 | ||||
No | 330 | 69.92% | 162 | 68.64% | |
Yes | 142 | 30.08% | 74 | 31.36% | |
AMI | 1.000 | ||||
No | 446 | 94.49% | 223 | 94.49% | |
Yes | 26 | 5.51% | 13 | 5.51% | |
Cardiovascular diseases | 0.453 | ||||
No | 398 | 84.32% | 193 | 81.78% | |
Yes | 74 | 15.68% | 43 | 18.22% | |
Ischemic stroke | 0.363 | ||||
No | 415 | 87.92% | 201 | 85.17% | |
Yes | 57 | 12.08% | 35 | 14.83% | |
Kidney or bladder stones | 0.202 | ||||
No | 349 | 73.94% | 163 | 69.07% | |
Yes | 123 | 26.06% | 73 | 30.93% | |
CCI score | 0.952 | ||||
0 | 228 | 48.31% | 116 | 49.15% | |
≥1 | 244 | 51.69% | 120 | 50.85% | |
AJCC clinical tumor stage | 1.000 | ||||
cT2a | 114 | 24.15% | 57 | 24.15% | |
cT2b | 118 | 25.00% | 59 | 25.00% | |
cT3 | 166 | 35.17% | 83 | 35.17% | |
cT4 | 74 | 15.68% | 37 | 15.68% | |
AJCC clinical nodal stage | 1.000 | ||||
cN0 | 292 | 61.86% | 146 | 61.86% | |
cN1 | 136 | 28.81% | 68 | 28.81% | |
cN2 | 44 | 9.32% | 22 | 9.32% | |
Surgical consolidation after CCRT | 1.000 | ||||
No | 354 | 75.00% | 177 | 75.00% | |
Yes | 118 | 25.00% | 59 | 25.00% | |
Bladder preservation rate | 1.000 | ||||
No | 164 | 34.75% | 82 | 34.75% | |
Yes | 308 | 65.25% | 154 | 65.25% | |
Cisplatin-based regimen (cumulative total dose of cisplatin, mg/m2) | 0.631 | ||||
Median (Q1, Q3) | 211.23 | (206.43–276.21) | 213.54 | (210.12–281.52) | |
Radiotherapy (total dose, Gy) | 1.000 | ||||
Median (Q1, Q3) | 63.00 | (61.20–64.80) | 63.00 | (61.20–64.80) | |
Hospitalization frequency for COPDAE (within 1 year before CCRT) | <0.001 | ||||
0 | 472 | 100.00% | 142 | 60.17% | |
1 | 0 | 0.00% | 48 | 20.34% | |
≥2 | 0 | 0.00% | 46 | 19.49% | |
Follow-up time Years (mean ± SD) | (5.71 ± 2.27) | (4.36 ± 2.19) | <0.001 | ||
COPD death | <0.001 | ||||
Yes | 0 | 0% | 7 | 2.97% | |
Bladder cancer death | <0.001 | ||||
Yes | 207 | 43.86% | 133 | 56.36% | |
All-cause death | <0.001 | ||||
Yes | 269 | 56.99% | 177 | 75.00% |
Crude HR (95% CI) | Adjusted HR * (95% CI) | p | |||
---|---|---|---|---|---|
COPD status (ref. non-COPD) | |||||
COPD | 2.18 | (1.30–3.64) | 1.89 | (1.12–3.18) | 0.017 |
Hospitalization frequency for COPDAE before CCRT (ref. = 0) | |||||
1 | 3.64 | (2.20–6.03) | 3.26 | (1.95–5.46) | <0.001 |
≥2 | 7.93 | (4.55–13.79) | 6.33 | (3.55–11.28) | <0.001 |
Sex (ref. Female) | |||||
Male | 0.85 | (0.67–1.09) | 1.02 | (0.78–1.34) | 0.865 |
Age (years; ref. ≤65 years) | |||||
66–74 | 1.24 | (0.97–1.57) | 1.02 | (0.77–1.33) | 0.910 |
75–85 | 2.45 | (0.76–3.59) | 1.26 | (0.80–1.98) | 0.313 |
>85 | 2.70 | (0.70–4.28) | 1.28 | (0.76–2.15) | 0.355 |
CCI score (ref. = 0) | |||||
≥1 | 1.58 | (0.86–3.23) | 1.26 | (0.87–2.62) | 0.821 |
Diabetes (ref.: No) | |||||
Yes | 1.25 | (0.90–1.73) | 1.19 | (0.87–1.61) | 0.317 |
Hyperlipidemia (ref.: No) | |||||
Yes | 1.19 | (0.93–1.54) | 1.07 | (0.81–1.42) | 0.630 |
Hypertension (ref.: No) | |||||
Yes | 1.06 | (0.83–1.36) | 1.09 | (0.84–1.43) | 0.520 |
AMI (ref.: No) | |||||
Yes | 1.28 | (0.96–1.73) | 1.18 | (0.92–1.44) | 0.740 |
Cardiovascular diseases (ref.: No) | |||||
Yes | 1.06 | (0.79–1.42) | 0.96 | (0.85–1.28) | 0.441 |
Ischemic stroke (ref.: No) | |||||
Yes | 1.26 | (0.81–1.96) | 1.21 | (0.88–1.33) | 0.463 |
Kidney or bladder stones (ref.: No) | |||||
Yes | 1.11 | (0.86–1.43) | 0.94 | (0.72–1.22) | 0.643 |
AJCC clinical tumor stages (ref. cT2a) | |||||
cT2b | 1.92 | (0.72–5.16) | 1.31 | (0.47–3.63) | 0.602 |
cT3 | 1.96 | (0.92–4.17) | 1.39 | (0.64–3.05) | 0.405 |
cT4 | 2.12 | (0.98–4.59) | 1.13 | (0.50–2.53) | 0.767 |
AJCC clinical nodal stages (ref. cN0) | |||||
cN1 | 1.11 | (0.86–1.43) | 0.93 | (0.72–1.21) | 0.597 |
cN2 | 1.06 | (0.83–1.36) | 1.08 | (0.83–1.41) | 0.568 |
Surgical consolidation after CCRT (ref.: No) | |||||
Yes | 1.06 | (0.64–1.14) | 1.07 | (0.60–1.11) | 0.191 |
Bladder preservation (ref.: No) | |||||
Yes | 0.86 | (0.68–1.09) | 0.92 | (0.79–1.03) | 0.255 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chang, S.-C.; Chiang, M.-F.; Chiu, K.-C.; Wu, S.-Y. Survival Impact of Current-Smoking-Related COPD or COPD with Acute Exacerbation on Bladder Preservation through Concurrent Chemoradiotherapy for Muscle-Invasive Bladder Urothelial Carcinoma. J. Pers. Med. 2021, 11, 958. https://doi.org/10.3390/jpm11100958
Zhang J, Chang S-C, Chiang M-F, Chiu K-C, Wu S-Y. Survival Impact of Current-Smoking-Related COPD or COPD with Acute Exacerbation on Bladder Preservation through Concurrent Chemoradiotherapy for Muscle-Invasive Bladder Urothelial Carcinoma. Journal of Personalized Medicine. 2021; 11(10):958. https://doi.org/10.3390/jpm11100958
Chicago/Turabian StyleZhang, Jiaqiang, Shyh-Chyi Chang, Ming-Feng Chiang, Kuo-Chin Chiu, and Szu-Yuan Wu. 2021. "Survival Impact of Current-Smoking-Related COPD or COPD with Acute Exacerbation on Bladder Preservation through Concurrent Chemoradiotherapy for Muscle-Invasive Bladder Urothelial Carcinoma" Journal of Personalized Medicine 11, no. 10: 958. https://doi.org/10.3390/jpm11100958
APA StyleZhang, J., Chang, S.-C., Chiang, M.-F., Chiu, K.-C., & Wu, S.-Y. (2021). Survival Impact of Current-Smoking-Related COPD or COPD with Acute Exacerbation on Bladder Preservation through Concurrent Chemoradiotherapy for Muscle-Invasive Bladder Urothelial Carcinoma. Journal of Personalized Medicine, 11(10), 958. https://doi.org/10.3390/jpm11100958