Artificial Intelligence in Relation to Accurate Information and Tasks in Gynecologic Oncology and Clinical Medicine—Dunning–Kruger Effects and Ultracrepidarianism
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Evaluations
3.2. Gynecologic Oncology
3.3. Clinical Medicine in General
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brandl, R.; Ellis, C. ChatGPT Statistics 2024: All the Latest Statistics About OpenAI’s Chatbot; Tooltester: Barcelona, Spain, 2024; Available online: https://www.tooltester.com/en/blog/chatgpt-statistics/ (accessed on 9 March 2025).
- Google. Gemini [Large Language Model]. 2024. Available online: https://en.Wikipedia.org/wiki/Gemini_(languagemodel) (accessed on 9 March 2025).
- Vogel, M. A Curated List of Resources on Generative AI. Updated 17 January 2025. Available online: https://medium.com/@maximilian.vogel/5000x-generative-ai-intro-overview-models-prompts-technology-tools-comparisons-the-best-a4af95874e94#id_token=eyJhbGciOiJSUzI1NiIsImtpZCI6IjFkYzBmMTcyZThkNmVmMzgyZDZkM2EyMzFmNmMxOTdkZDY4Y2U1ZWYiLCJ0eXAiOiJKV1QifQ (accessed on 27 January 2025).
- Yang, J.; Jin, H.; Tang, J.; Han, X.; Feng, Q.; Jiang, H.; Yin, B.; Hu, X. The Practical Guides for Large Language Models. Available online: https://github.com/Mooler0410/LLMsPracticalGuide (accessed on 9 March 2025).
- Kurzweil, R. The Singularity Is Nearer: When We Merge with AI; Penguin Books: London, UK, 2024; ISBN 9780399562761. [Google Scholar]
- Ortiz, S. What Is Google Bard? Here’s Everything You Need to Know. ZDNET. 7 February 2024. Available online: https://www.zdnet.com/article/what-is-google-bard-heres-everything-you-need-to-know/ (accessed on 13 February 2024).
- Microsoft Copilot. Wikipedia. Available online: https://en.wikipedia.org/wiki/Microsoft_Copilot (accessed on 13 February 2024).
- Haug, C.J.; Drazen, J.M. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023. N. Engl. J. Med. 2023, 388, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.; Ashley, E.A. Artificial Intelligence in Molecular Medicine. N. Engl. J. Med. 2023, 388, 2456–2465. [Google Scholar] [CrossRef] [PubMed]
- Impact Factor. Available online: https://en.wikipedia.org/wiki/Impact_factor (accessed on 9 March 2025).
- International Gynecologic Cancer Society. Available online: https://igcs.org/ (accessed on 9 March 2025).
- Pavlik, E. In the Know. Available online: https://edu360.igcs.org/Public/Catalog/Home.aspx?Option=513 (accessed on 9 March 2025).
- Colasacco, C.J.; Born, H.L. A Case of Artificial Intelligence Chatbot Hallucination. JAMA Otolaryngol. Head Neck Surg. 2024, 150, 457–458. [Google Scholar] [CrossRef] [PubMed]
- Kacena, M.A.; Plotkin, L.I.; Fehrenbacher, J.C. The Use of Artificial Intelligence in Writing Scientific Review Articles. Curr. Osteoporos. Rep. 2024, 22, 115–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Omiye, J.A.; Gui, H.; Rezaei, S.J.; Zou, J.; Daneshjou, R. Large Language Models in Medicine: The Potentials and Pitfalls: A Narrative Review. Ann. Intern. Med. 2024, 177, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Kanjee, Z.; Crowe, B.; Rodman, A. Accuracy of a Generative Artificial Intelligence Model in a Complex Diagnostic Challenge. JAMA 2023, 330, 78–80. [Google Scholar] [CrossRef]
- Rengers, T.A.; Thiels, C.A.; Salehinejad, H. Academic Surgery in the Era of Large Language Models: A Review. JAMA Surg. 2024, 159, 445–450. [Google Scholar] [CrossRef]
- Shah, N.H.; Halamka, J.D.; Saria, S.; Pencina, M.; Tazbas, T.; Tripathi, M.; Callahan, A.; Hildahal, H.; Anderson, B.L. A Nationwide Network of Health AI Assurance Laboratories. JAMA 2024, 331, 245–249. [Google Scholar] [CrossRef]
- Li, S.W.; Kemp, M.W.; Logan, S.J.S.; Dimr, P.S.; Singh, N.; Mattar, C.N.Z.; Dashraath, P.; Ramlal, H.; Mahyuddin, A.P.; Kanayan, S.; et al. ChatGPT outscored human candidates in a virtual objective structured clinical examination in obstetrics and gynecology. Am. J. Obstet. Gynecol. 2023, 229, e1–e172. [Google Scholar] [CrossRef]
- Anastasio, M.K.; Peters, P.; Foote, J.; Melamed, A.; Modesitt, S.C.; Musa, F.; Rossi, E.; Albright, B.B.; Havrilesky, L.J.; Moss, H.A. The doc versus the bot: A pilot study to assess the quality and accuracy of physician and chatbot responses to clinical questions in gynecologic oncology. Gynecol. Oncol. Rep. 2024, 55, 101477. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fanizzi, A.; Arezzo, F.; Cormio, G.; Comes, M.C.; Cazzato, G.; Boldrini, L.; Bove, S.; Bollino, M.; Kardhashi, A.; Silvestris, E.; et al. An explainable machine learning model to solid adnexal masses diagnosis based on clinical data and qualitative ultrasound indicators. Cancer Med. 2024, 13, e7425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, T.; Miao, K.; Tan, G.; Bu, H.; Shao, X.; Wang, S.; Dong, X. A study on automatic O-RADS classification of sonograms of ovarian adnexal lesions based on deep convolutional neural networks. Ultrasound Med. Biol. 2025, 51, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Moro, F.; Ciancia, M.; Zace, D.; Vagni, M.; Tran, H.E.; Giudice, M.T.; Zoccoli, S.G.; Mascilini, F.; Ciccarone, F.; Boldrini, L.; et al. Role of artificial intelligence applied to ultrasound in gynecology oncology: A systematic review. Int. J. Cancer 2024, 155, 1832–1845. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.; Nikolopoulos, M.; El-Zarka, A.; Al-Karawi, D.; Al-Zaidi, S.; Ghai, A.; Gaughran, J.E.; Sayasneh, A. Artificial intelligence in ultrasound diagnoses of ovarian cancer: A systematic review and meta-analysis. Cancers 2024, 16, 422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, Y. An integrated machine learning-based model for joint diagnosis of ovarian cancer with multiple test indicators. J. Ovarian Res. 2024, 17, 45. [Google Scholar] [CrossRef]
- Bogaerts, J.M.; Steenbeek, M.P.; Bokhorst, J.M.; van Bommel, M.H.; Abete, L.; Addante, F.; Brinkhuis, M.; Chrzan, A.; Cordier, F.; Devouassoux-Shisheboran, M.; et al. Assessing the impact of deep-learning assistance on the histopathological diagnosis of serous tubal intraepithelial carcinoma (STIC) in fallopian tubes. J. Pathol. Clin. Res. 2024, 10, e70006. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bergstrom, E.N.; Abbasi, A.; Díaz-Gay, M.; Galland, L.; Ladoire, S.; Lippman, S.M.; Alexandrov, L.B. Deep learning artificial intelligence predicts homologous recombination deficiency and platinum response from histologic slides. J. Clin. Oncol. 2024, 42, 3550–3560. [Google Scholar] [CrossRef]
- Capasso, I.; Cucinella, G.; Wright, D.E.; Takahashi, H.; De Vitis, L.A.; Gregory, A.V.; Kim, B.; Reynolds, E.; Fumagalli, D.; Occhiali, T.; et al. Artificial intelligence model for enhancing the accuracy of transvaginal ultrasound in detecting endometrial cancer and endometrial atypical hyperplasia. Int. J. Gynecol. Cancer 2024, 34, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Bell, D.; Antani, A.; Xue, Z.; Yu, Y.; Horning, M.P.; Gachuhi, N.; Wilson, B.; Jaiswal, M.S.; Befano, B.; et al. An observational study of deep learning and automated evaluation of cervical images for cancer screening. JNCI J. Natl. Cancer Inst. 2019, 111, 923–932. [Google Scholar] [CrossRef]
- Xue, Z.; Novetsky, A.P.; Einstein, M.H.; Marcus, J.Z.; Befano, B.; Guo, P.; Demarco, M.; Wentzensen, N.; Long, L.R.; Schiffman, M.; et al. A demonstration of automated visual evaluation of cervical images taken with a smartphone camera. Int. J. Cancer 2020, 147, 2416–2423. [Google Scholar] [CrossRef]
- Desai, K.T.; Befano, B.; Xue, Z.; Kelly, H.; Campos, N.G.; Egemen, D.; Gage, J.C.; Rodriguez, A.C.; Sahasrabuddhe, V.; Levitz, D.; et al. The development of “automated visual evaluation” for cervical cancer screening: The promise challenges in adapting deep-learning for clinical testing. Int. J. Cancer 2022, 150, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Parham, G.P.; Egemen, D.; Befano, B.; Mwanahamuntu, M.H.; Rodriguez, A.C.; Antani, S.; Chisele, S.; Munalula, M.K.; Kaunga, F.; Musonda, F.; et al. Validation in Zambia of a cervical screening strategy including HPV genotyping and artificial intelligence (AI)-based automated visual evaluation. Infect. Agents Cancer 2023, 18, 61. [Google Scholar] [CrossRef] [PubMed]
- Egemen, D.; Perkins, R.B.; Cheung, L.C.; Befano, B.; Rodriguez, A.C.; Desai, K.; Lemay, A.; Ahmed, S.R.; Antani, S.; Jeronimo, J.; et al. Artificial intelligence–based image analysis in clinical testing: Lessons from cervical cancer screening. JNCI J. Natl. Cancer Inst. 2024, 116, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Rios-Doria, E.; Wang, J.; Rodriguez, I.; Oluloro, A.; Maya Gross, M.; Swisher, E.; Norquist, B.; Urban, R.; Simons, E.; Kathryn Pennington, K.; et al. Artificial intelligence powered insights: Assessment of ChatGPT’s treatment recommendations in gynecologic oncology. Gynecol. Oncol. 2024, 190 (Suppl. S1), S45. [Google Scholar] [CrossRef]
- Rao, A.; Pang, M.; Kim, J.; Kamineni, M.; Lie, W.; Prasad, A.K.; Landman, A.; Dreyer, K.; Succi, M.D. Assessing the utility of ChatGPT throughout the entire clinical workflow: Development and usability study. J. Med. Internet Res. 2023, 25, e48659. [Google Scholar] [CrossRef]
- Cabral, S.; Restrepo, D.; Kanjee, Z.; Wilson, P.; Crowe, B.; Abdulnour, R.-E.; Adam Rodman, A. Clinical reasoning of a generative artificial intelligence model compared with physicians. JAMA Intern. Med. 2024, 184, 581–583. [Google Scholar] [CrossRef]
- Chen, S.; Kann, B.H.; Foote, M.B.; Aerts, H.J.W.L.; Savova, G.K.; Mak, R.H.; Bitterman, D.S. Use of Artificial Intelligence Chatbots for Cancer Treatment Information. JAMA Oncol. 2023, 9, 1459–1462. [Google Scholar] [CrossRef]
- Pan, A.; Musheyev, D.; Bockelman, D.; Loeb, S.; Kabarriti, A.E. Assessment of Artificial Intelligence Chatbot Responses to Top Searched Queries About Cancer. JAMA Oncol. 2023, 9, 1437–1440. [Google Scholar] [CrossRef]
- Janopaul-Naylor, J.R.; Koo, A.; Qian, D.C.; McCall, N.S.; Liu, Y.; Patel, S.A. Physician assessment of ChatGPT and Bing answers to American Cancer Society’s questions to ask about your cancer. Am. J. Clin. Oncol. 2024, 47, 17–21. [Google Scholar] [CrossRef]
- Shea, Y.F.; Lee, C.M.Y.; Ip, W.C.T.; Luk, D.W.A.; Wong, S.S.W. Use of GPT-4 to analyze medical records of patients with extensive investigations and delayed diagnosis. JAMA Netw. Open 2023, 6, e2325000. [Google Scholar] [CrossRef]
- Schubert, M.C.; Wick, W.; Venkataramani, V. Performance of large language models on a neurology board-style examination. JAMA Netw. Open 2023, 6, e2346721. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Koo, M.; Blum, L.; Black, A.; Kao, L.; Fei, Z.; Scalzo, F.; Kurtz, I. Benchmarking open-source large language models, GPT-4 and Claude 2 on multiple-choice questions in nephrology. NEJM AI 2024, 1, AIdbp2300092. [Google Scholar] [CrossRef]
- Katz, U.; Cohen, E.; Shachar, E.; Somer, J.; Fink, A.; Morse, M.; Shreiber, B.; Wolf, I. GPT versus resident physicians—A benchmark based on official board scores. NEJM AI 2024, 1, AIdbp2300192. [Google Scholar] [CrossRef]
- Jabbour, S.; Fouhey, D.; Shepard, S.; Valley, T.S.; Kazerooni, E.A.; Banovic, N.B.; Wiens, J.; Sjoding, M.W. Measuring the Impact of AI in the Diagnosis of Hospitalized Patients: A Randomized Clinical Vignette Survey Study. JAMA 2023, 330, 2275–2284. [Google Scholar] [CrossRef]
- Han, T.; Adams, L.C.; Bressem, K.K.; Busch, F.; Nebelung, S.; Truhn, D. Comparative analysis of multimodal large language model performance on clinical vignette questions. JAMA 2024, 331, 1320–1321. [Google Scholar] [CrossRef]
- Rydzewski, N.R.; Dinakaran, D.; Zhao, S.G.; Ruppin, E.; Turkbey, B.; Citrin, D.E.; Patel, K.R. Comparative evaluation of LLMs in clinical oncology. NEJM AI 2024, 1, AIoa2300151. [Google Scholar] [CrossRef]
- Longwell, J.B.; Hirsch, I.; Binder, F.; Gonzalez Conchas, G.A.; Mau, D.; Jang, R.; Krishnan, R.G.; Grant, R.C. Performance of large language models on medical oncology examination questions. JAMA Netw. Open 2024, 7, e2417641. [Google Scholar] [CrossRef]
- Chen, D.; Huang, R.S.; Jomy, J.; Wong, P.; Yan, M.; Croke, J.; Tong, D.; Hope, A.; Eng, L.; Raman, S. Performance of multimodal artificial intelligence chatbots evaluated on clinical oncology cases. JAMA Netw. Open 2024, 7, e2437711. [Google Scholar] [CrossRef]
- Thirunavukarasu, A.J.; Mahmood, S.; Malem, A.; Foster, W.P.; Sanghera, R.; Hassan, R.; Zhou, S.; Wong, S.W.; Wong, Y.L.; Chong, Y.J.; et al. Large language models approach expert-level clinical knowledge and reasoning in ophthalmology: A head-to-head cross-sectional study. PLoS Digit. Health 2024, 3, e0000341. [Google Scholar] [CrossRef]
- Liu, T.-L.; Hetherington, T.C.; Stephens, C.; McWilliams, A.; Dharod, A.; Carroll, T.; Cleveland, J.A. Does AI-powered clinical documentation enhance clinician efficiency? A longitudinal study. NEJM AI 2024, 1, AIoa2400659. [Google Scholar] [CrossRef]
- Tai-Seale, M.; Baxter, S.L.; Vaida, F.; Walker, A.; Sitapati, A.M.; Osborne, C.; Diaz, J.; Desai, N.; Webb, S.; Polston, G.; et al. AI-Generated Draft Replies Integrated into Health Records and Physicians’ Electronic Communication. JAMA Netw. Open 2024, 7, e246565. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.L.; Hetherington, T.C.; Stephens, C.; McWilliams, A.; Dharod, A.; Carroll, T.; Cleveland, J.A. AI-Powered Clinical Documentation and Clinicians’ Electronic Health Record Experience: A Nonrandomized Clinical Trial. JAMA Netw. Open 2024, 7, e2432460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Small, W.R.; Wiesenfeld, B.; Brandfield-Harvey, B.; Jonassen, Z.; Mandal, S.; Stevens, E.R.; Major, V.J.; Lostraglio, E.; Szerencsy, A.; Jones, S.; et al. Large language model–based responses to patients’ in-basket messages. JAMA Netw. Open 2024, 7, e2422399. [Google Scholar] [CrossRef]
- Ayers, J.W.; Poliak, A.; Dredze, M.; Leas, E.C.; Zhu, Z.; Kelley, J.B.; Faix, D.J.; Goodman, A.M.; Longhurst, C.A.; Hogarth, M.; et al. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern. Med. 2023, 183, 589–596. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hartman, V.; Zhang, X.; Poddar, R.; McCarty, M.; Fortenko, A.; Sholle, E.; Sharma, R.; Campion, T., Jr.; Steel, P.A.D. Developing and evaluating large language model-generated emergency medicine handoff notes. JAMA Netw. Open 2024, 7, e2448723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burford, K.G.; Itzkowitz, N.G.; Ortega, A.G.; Teitler, J.O.; Rundle, A.G. Use of Generative AI to Identify Helmet Status Among Patients with Micromobility-Related Injuries from Unstructured Clinical Notes. JAMA Netw. Open 2024, 7, e2425981. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, S.V. Accuracy, Consistency, and Hallucination of Large Language Models When Analyzing Unstructured Clinical Notes in Electronic Medical Records. JAMA Netw. Open 2024, 7, e2425953. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.; Ma, S.P.; Shah, S.; Smith, M.; Jeong, Y.; Devon-Sand, A.; Tai-Seale, M.; Takazawa, K.; Clutter, D.; Vogt, K.; et al. Artificial Intelligence–Generated Draft Replies to Patient Inbox Messages. JAMA Netw. Open 2024, 7, e243201. [Google Scholar] [CrossRef]
- Chen, D.; Parsa, R.; Hope, A.; Hannon, B.; Mak, E.; Eng, L.; Liu, F.F.; Fallah-Rad, N.; Heesters, A.M.; Raman, S. Physician and artificial intelligence chatbot responses to cancer questions from social media. JAMA Oncol. 2024, 10, 956–960. [Google Scholar] [CrossRef]
- Yalamanchili, A.; Sengupta, B.; Song, J.; Lim, S.; Thomas, T.O.; Mittal, B.B.; Abazeed, M.E.; Teo, P.T. Quality of large language model responses to radiation oncology patient care questions. JAMA Netw. Open 2024, 7, e244630. [Google Scholar] [CrossRef]
- Yu, F.; Moehring, A.; Banerjee, O.; Salz, T.; Agarwal, N.; Rajpurkar, P. Heterogeneity and predictors of the effects of AI assistance on radiologists. Nat. Med. 2024, 30, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.; Azizi, S.; Driess, D.; Schaekermann, M.; Amin, M.; Chang, P.-C.; Carroll, A.; Natarajan, V. Towards generalist biomedical AI. NEJM AI 2024, 1, AIoa2300138. [Google Scholar] [CrossRef]
- Goh, E.; Gallo, R.; Hom, J.; Strong, E.; Weng, Y.; Kerman, H.; Cool, J.A.; Kanjee, Z.; Parsons, A.S.; Ahuja, N.; et al. Large language model influence on diagnostic reasoning: A randomized clinical trial. JAMA Netw. Open 2024, 7, e2440969. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; López-Espina, C.; Schmalz, L.; Khan, S.; Watson, G.L.; Urdiales, D.; Updike, L.; Shapiro, N.I. FDA-authorized AI/ML tool for sepsis prediction: Development and validation. NEJM AI 2024, 1, AIoa2400867. [Google Scholar] [CrossRef]
- Hoang, Y.N.; Chen, Y.L.; Ho, D.K.; Chiu, W.C.; Cheah, K.J.; Mayasari, N.R.; Chang, J.S. Consistency and accuracy of artificial intelligence for providing nutritional information. JAMA Netw. Open 2023, 6, e2350367. [Google Scholar] [CrossRef]
- Carnevali, D.; Zhong, L.; González-Almela, E.; Viana, C.; Rotkevich, M.; Wang, A.; Franco-Barranco, D.; Gonzalez-Marfil, A.; Neguembor, M.V.; Castells-Garcia, A.; et al. A deep learning method that identifies cellular heterogeneity using nanoscale nuclear features. Nat. Mach. Intell. 2024, 6, 1021–1033. [Google Scholar] [CrossRef]
- van der Laak, J.; Litjens, G.; Ciompi, F. Deep learning in histopathology: The path to the clinic. Nat. Med. 2021, 27, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Shmatko, A.; Ghaffari Laleh, N.; Gerstung, M.; Kather, J.N. Artificial intelligence in histopathology: Enhancing cancer research and clinical oncology. Nat. Cancer 2022, 3, 1026–1038. [Google Scholar] [CrossRef] [PubMed]
- Reis-Filho, J.S.; Kather, J.N. Overcoming the challenges to implementation of artificial intelligence in pathology. JNCI J. Natl. Cancer Inst. 2023, 115, 608–612. [Google Scholar] [CrossRef]
- Steimetz, E.; Minkowitz, J.; Gabutan, E.C.; Ngichabe, J.; Attia, H.; Hershkop, M.; Ozay, F.; Hanna, M.G.; Gupta, R. Use of artificial intelligence chatbots in interpretation of pathology reports. JAMA Netw. Open 2024, 7, e2412767. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Marostica, E.; Yuan, W.; Jin, J.; Zhang, J.; Li, R.; Tang, H.; Wang, K.; Li, Y.; et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature 2024, 634, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Gjesvik, J.; Moshina, N.; Lee, C.I.; Miglioretti, D.L.; Hofvind, S. Artificial Intelligence Algorithm for Subclinical Breast Cancer Detection. JAMA Netw. Open 2024, 7, e2437402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, J.J.; Zepeda, A.; Arbour, G.; Isaac, K.V.; Ng, R.T.; Nichol, A.M. Automated identification of breast cancer relapse in computed tomography reports using natural language processing. JCO Clin. Cancer Inform. 2024, 8, e2400107. [Google Scholar] [CrossRef]
- Mihalache, A.; Huang, R.S.; Popovic, M.M.; Patil, N.S.; Pandya, B.U.; Shor, R.; Pereira, A.; Kwok, J.M.; Yan, P.; Wong, D.T.; et al. Accuracy of an Artificial Intelligence Chatbot’s Interpretation of Clinical Ophthalmic Images. JAMA Ophthalmol. 2024, 142, 321–326. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, P.; Fong, C.T.; Walters, A.M.; Aghaeepour, N.; Yetisgen, M.; O’Reilly-Shah, V.N. Large language model capabilities in perioperative risk prediction and prognostication. JAMA Surg. 2024, 159, 928–937. [Google Scholar] [CrossRef]
- Xiao, M.; Molina, K.C.; Aggarwal, N.R.; Beaty, L.E.; Bennett, T.D.; Carlson, N.E.; Fish, L.E.; Hamer, M.K.; Kwan, B.M.; Mayer, D.A.; et al. A Machine Learning Method for Allocating Scarce COVID-19 Monoclonal Antibodies. JAMA Health Forum. 2024, 5, e242884. [Google Scholar] [CrossRef]
- Sunami, K.; Naito, Y.; Saigusa, Y.; Amano, T.; Ennishi, D.; Imai, M.; Kage, H.; Kanai, M.; Kenmotsu, H.; Komine, K.; et al. A Learning Program for Treatment Recommendations by Molecular Tumor Boards and Artificial Intelligence. JAMA Oncol. 2024, 10, 95–102. [Google Scholar] [CrossRef]
- Williams, C.Y.K.; Zack, T.; Miao, B.Y.; Sushil, M.; Wang, M.; Kornblith, A.E.; Butte, A.J. Use of a large language model to assess clinical acuity of adults in the emergency department. JAMA Netw. Open 2024, 7, e248895. [Google Scholar] [CrossRef]
- Andriola, C.; Ellis, R.P.; Siracuse, J.J.; Hoagland, A.; Kuo, T.C.; Hsu, H.E.; Walkey, A.; Lasser, K.E.; Ash, A.S. A Novel Machine Learning Algorithm for Creating Risk-Adjusted Payment Formulas. JAMA Health Forum. 2024, 5, e240625. [Google Scholar] [CrossRef]
- Soroush, A.; Glicksberg, B.S.; Zimlichman, E.; Barash, Y.; Freeman, R.; Charney, A.W.; Nadkarni, G.N.; Klang, E. Large language models are poor medical coders—Benchmarking of medical code querying. NEJM AI 2024, 1, AIdbp2300040. [Google Scholar] [CrossRef]
- Hantel, A.; Walsh, T.P.; Marron, J.M.; Kehl, K.L.; Sharp, R.; Van Allen, E.; Abel, G.A. Perspectives of oncologists on the ethical implications of using artificial intelligence for cancer care. JAMA Netw. Open 2024, 7, e244077. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Platt, J.; Nong, P.; Carmona, G.; Kardia, S. Attitudes toward notification of use of artificial intelligence in health care. JAMA Netw. Open 2024, 7, e2450102. [Google Scholar] [CrossRef] [PubMed]
- Centripetal: Evolving Trust But Verify. Available online: https://www.centripetal.ai/blog/trust-but-verify-threat-intelligence/ (accessed on 9 March 2025).
- User Clip: Trust But Verify. 8 December 1987. Available online: https://www.c-span.org/clip/white-house-event/user-clip-trust-but-verify/4757483 (accessed on 27 January 2025).
- Menz, B.D.; Modi, N.D.; Sorich, M.J.; Hopkins, A.M. Health disinformation use case highlighting the urgent need for artificial intelligence vigilance: Weapons of mass disinformation. JAMA Intern. Med. 2024, 184, 92–96. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlik, E.J.; Land Woodward, J.; Lawton, F.; Swiecki-Sikora, A.L.; Ramaiah, D.D.; Rives, T.A. Artificial Intelligence in Relation to Accurate Information and Tasks in Gynecologic Oncology and Clinical Medicine—Dunning–Kruger Effects and Ultracrepidarianism. Diagnostics 2025, 15, 735. https://doi.org/10.3390/diagnostics15060735
Pavlik EJ, Land Woodward J, Lawton F, Swiecki-Sikora AL, Ramaiah DD, Rives TA. Artificial Intelligence in Relation to Accurate Information and Tasks in Gynecologic Oncology and Clinical Medicine—Dunning–Kruger Effects and Ultracrepidarianism. Diagnostics. 2025; 15(6):735. https://doi.org/10.3390/diagnostics15060735
Chicago/Turabian StylePavlik, Edward J., Jamie Land Woodward, Frank Lawton, Allison L. Swiecki-Sikora, Dharani D. Ramaiah, and Taylor A. Rives. 2025. "Artificial Intelligence in Relation to Accurate Information and Tasks in Gynecologic Oncology and Clinical Medicine—Dunning–Kruger Effects and Ultracrepidarianism" Diagnostics 15, no. 6: 735. https://doi.org/10.3390/diagnostics15060735
APA StylePavlik, E. J., Land Woodward, J., Lawton, F., Swiecki-Sikora, A. L., Ramaiah, D. D., & Rives, T. A. (2025). Artificial Intelligence in Relation to Accurate Information and Tasks in Gynecologic Oncology and Clinical Medicine—Dunning–Kruger Effects and Ultracrepidarianism. Diagnostics, 15(6), 735. https://doi.org/10.3390/diagnostics15060735