Validation of Digital Slide Scanning and a Convolutional Neural Network for the Detection of Intestinal Parasites in Human Stool Samples
Abstract
1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Study Design and Sample Collection
2.3. Sample Preparation
2.4. Slide Preparation
2.5. Light Microscopy
2.6. Scanning/Digital Microscopy
2.7. Software/Classification Algorithm
2.8. Software Adjustments
2.9. Assay Accuracy
2.10. Precision
2.11. Limit of Detection
2.12. Statistical Analyses
3. Results
3.1. Comparison of Filtration Units
3.2. Accuracy
3.3. Precision
3.4. Limit of Detection
3.5. Prospective Testing
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | artificial intelligence |
| LM | light microscopy |
| CNN | convolutional neural network |
| DM | digital microscopy |
| HFW | human fecal wet mount |
| LOD | limit of detection |
| ML | machine learning |
| SAF | sodium acetate formalin |
References
- Ahmed, M. Intestinal Parasitic Infections in 2023. Gastroenterol. Res. 2023, 16, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Koontz, F.; Weinstock, J.V. The approach to stool examination for parasites. Gastroenterol. Clin. N. Am. 1996, 25, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.S.; Arrowood, M.; Kokoskin, E.; Paltridge, G.P.; Pillai, D.R.; Procop, G.W.; Ryan, N.; Shimizu, R.Y.; Visvesvara, G. Practical Guidance for Clinical Microbiology Laboratories: Laboratory Diagnosis of Parasites from the Gastrointestinal Tract. Clin. Microbiol. Rev. 2018, 31, e00025-17. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Burns, B.L.; Rhoads, D.D.; Misra, A. The Use of Machine Learning for Image Analysis Artificial Intelligence in Clinical Microbiology. J. Clin. Microbiol. 2023, 61, e0233621. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.P.; Kirby, J.E. Image analysis and artificial intelligence in infectious disease diagnostics. Clin. Microbiol. Infect. 2020, 26, 1318–1323. [Google Scholar] [CrossRef] [PubMed]
- Fader, R.C.; Weaver, E.; Fossett, R.; Toyras, M.; Vanderlaan, J.; Gibbs, D.; Wang, A.; Thierjung, N. Multilaboratory study of the Biomic automated well-reading instrument versus MicroScan WalkAway for reading MicroScan antimicrobial susceptibility and identification panels. J. Clin. Microbiol. 2013, 51, 1548–1554. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.P.; Kang, A.D.; Kirby, J.E. Automated Interpretation of Blood Culture Gram Stains by Use of a Deep Convolutional Neural Network. J. Clin. Microbiol. 2018, 56, e01521-17. [Google Scholar] [CrossRef] [PubMed]
- Faron, M.L.; Buchan, B.W.; Vismara, C.; Lacchini, C.; Bielli, A.; Gesu, G.; Liebregts, T.; van Bree, A.; Jansz, A.; Soucy, G.; et al. Automated Scoring of Chromogenic Media for Detection of Methicillin-Resistant Staphylococcus aureus by Use of WASPLab Image Analysis Software. J. Clin. Microbiol. 2016, 54, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Faron, M.L.; Buchan, B.W.; Coon, C.; Liebregts, T.; van Bree, A.; Jansz, A.R.; Soucy, G.; Korver, J.; Ledeboer, N.A. Automatic Digital Analysis of Chromogenic Media for Vancomycin-Resistant-Enterococcus Screens Using Copan WASPLab. J. Clin. Microbiol. 2016, 54, 2464–2469. [Google Scholar] [CrossRef] [PubMed]
- Panicker, R.O.; Soman, B.; Saini, G.; Rajan, J. A Review of Automatic Methods Based on Image Processing Techniques for Tuberculosis Detection from Microscopic Sputum Smear Images. J. Med. Syst. 2016, 40, 17. [Google Scholar] [CrossRef] [PubMed]
- Zingue, D.; Weber, P.; Soltani, F.; Raoult, D.; Drancourt, M. Automatic microscopic detection of mycobacteria in sputum: A proof-of-concept. Sci. Rep. 2018, 8, 11308. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.-C.; Cheng, H.-Y.; Chen, P.-F.; Liu, Y.-L.; Kang, M.; Kuo, M.-C.; Hsu, S.-F.; Lu, H.-J.; Hong, S.; Su, C.-H.; et al. Assessment of Expert-Level Automated Detection of Plasmodium falciparum in Digitized Thin Blood Smear Images. JAMA Netw. Open 2020, 3, e200206. [Google Scholar] [CrossRef] [PubMed]
- Maturana, C.R.; de Oliveira, A.D.; Nadal, S.; Serrat, F.Z.; Sulleiro, E.; Ruiz, E.; Bilalli, B.; Veiga, A.; Espasa, M.; Abelló, A.; et al. iMAGING: A novel automated system for malaria diagnosis by using artificial intelligence tools and a universal low-cost robotized microscope. Front. Microbiol. 2023, 14, 1240936. [Google Scholar] [CrossRef] [PubMed]
- Maturana, C.R.; de Oliveira, A.D.; Zarzuela, F.; Ruiz, E.; Sulleiro, E.; Mediavilla, A.; Martínez-Vallejo, P.; Nadal, S.; Pumarola, T.; López-Codina, D.; et al. Development of an automated artificial intelligence-based system for urogenital schistosomiasis diagnosis using digital image analysis techniques and a robotized microscope. PLoS Negl. Trop. Dis. 2024, 18, e0012614. [Google Scholar] [CrossRef]
- Meulah, B.; Hoekstra, P.T.; Popoola, S.; Jujjavarapu, S.; Aderogba, M.; Fadare, J.O.; Omotayo, J.A.; Bell, D.; Hokke, C.H.; van Lieshout, L.; et al. Evaluation of the AiDx Assist device for automated detection of Schistosoma eggs in stool and urine samples in Nigeria. Front. Parasitol. 2025, 4, 1440299. [Google Scholar] [CrossRef] [PubMed]
- Lundin, J.; Suutala, A.; Holmström, O.; Henriksson, S.; Valkamo, S.; Kaingu, H.; Kinyua, F.; Muinde, M.; Lundin, M.; Diwan, V.; et al. Diagnosis of soil-transmitted helminth infections with digital mobile microscopy and artificial intelligence in a resource-limited setting. PLoS Negl. Trop. Dis. 2024, 18, e0012041. [Google Scholar] [CrossRef]
- Mathison, B.A.; Kohan, J.L.; Walker, J.F.; Smith, R.B.; Ardon, O.; Couturier, M.R. Detection of Intestinal Protozoa in Trichrome-Stained Stool Specimens by Use of a Deep Convolutional Neural Network. J. Clin. Microbiol. 2020, 58, e02053-19. [Google Scholar] [CrossRef]
- Mathison, B.A.; Knight, K.; Potts, J.; Black, B.; Walker, J.F.; Markow, F.; Wood, A.; Bess, D.; Dixon, K.; Cahoon, B.; et al. Detection of protozoan and helminth parasites in concentrated wet mounts of stool using a deep convolutional neural network. J. Clin. Microbiol. 2025, 63, e0106225. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, R.S.; Sapp, S.G.H.; Potters, I.; Mathison, B.A.; Frean, J.; Mewara, A.; Sheorey, H.; Tamarozzi, F.; Couturier, M.R.; Chiodini, P.; et al. Where Have All the Diagnostic Morphological Parasitologists Gone? J. Clin. Microbiol. 2022, 60, e0098622. [Google Scholar] [CrossRef] [PubMed]

| Category (Species) | Number of Reference Sample/s | Slide-Level Agreement | Organism/Class-Level Agreement |
|---|---|---|---|
| Ascaris lumbricoides | 5 | 5/5 (100%) | 5/5 (100%) |
| Clonorchis sinensis/Opisthorchis spp. | 0 | - | - |
| Enterobius vermicularis | 3 | 3/3 (100%) | 3/3 (100%) |
| Fasciola spp./Fasciolopsis buski | 3 | 3/3 (100%) | 3/3 (100%) |
| Diphyllobothrium latum | 5 | 5/5 (100%) | 5/5 (100%) |
| Hookworm/Trichostrongylus | 5 | 5/5 (100%) | 5/5 (100%) |
| Hymenolepsis diminuta | 3 | 3/3 (100%) | 3/3 (100%) |
| Paragonimus spp. | 0 | - | - |
| Paracapillaria philippinensis | 1 | 1/1 (100%) | 1/1 (100%) |
| Rodentolepsis nana | 3 | 3/3 (100%) | 3/3 (100%) |
| Schistosoma mansoni Schistosoma mansoni (HFW algorithm v. 1.0.1) | 5 | 1/5 (20%) 4/5 (80%) | 0/5 (0%) 3/5 (60%) |
| Schistosoma japonicum /Schistosoma mekongi | 0 | - | - |
| Strongyloides spp. | 3 | 2/3 (66.7%) | 0/3 (0%) |
| Taenia spp. | 3 | 3/3 (100%) | 3/3 (100%) |
| Trichuris trichiura | 3 | 3/3 (100%) | 3/3 (100%) |
| Balantioides coli | 3 | 3/3 (100%) | 3/3 (100%) |
| Blastocystis spp. | 5 | 5/5 (100%) | 5/5 (100%) |
| Chilomastix mesnili | 3 | 3/3 (100%) | 2/3 (66.7%) |
| Cyclospora spp. | 3 | 3/3 (100%) | 3/3 (100%) |
| Cystoisospora belli | 3 | 3/3 (100%) | 3/3 (100%) |
| Dientamoeba fragilis (categorized as MSP) | 0 | - | - |
| Endolimax nana | 5 | 5/5 (100%) | 3/5 (60%) |
| Entamoeba coli (categorized as Entamoeba spp.) | 5 | 5/5 (100%) | 5/5 (100%) |
| Entamoeba hartmanni (categorized as MSP) | 1 | 1/1 (100%) | 1/1 (100%) |
| Entamoeba histolytica/dispar (categorized as Entamoeba spp.) | 5 | 5/5 (100%) | 3/5 (60%) |
| Entamoeba polecki (categorized as Entamoeba spp.) | 0 | - | - |
| Giardia duodenalis | 5 | 5/5 (100%) | 4/5 (80%) |
| Iodamoeba buetschlii | 5 | 5/5 (100%) | 5/5 (100%) |
| Overall agreement (HFW algorithm version 1.0) Overall agreement (HFW algorithm v. 1.0.1) | - | 80/85 (94.1%) 83/85 (97.6%) | 71/85 (83.5%) 74/85 (87.0%) |
| Ascaris lumbricoides | Blastocystis spp. | |||
|---|---|---|---|---|
| Dilution | LM | DM/CNN | LM | DM/CNN |
| 1:1 | 5/5 | 5/5 | 5/5 | 5/5 |
| 1:2 | 5/5 | 5/5 | 5/5 | 5/5 |
| 1:4 | 5/5 | 5/5 | 5/5 | 5/5 |
| 1:8 | 5/5 | 5/5 | 5/5 | 5/5 |
| 1:16 | 5/5 | 5/5 | 5/5 | 5/5 |
| 1:32 | 5/5 | 5/5 | 5/5 | 5/5 |
| 1:64 | 5/5 | 4/5 | 5/5 | 4/5 |
| 1:128 | 4/5 | 3/5 | 5/5 | 2/5 |
| 1:256 | 2/5 | 1/5 | 4/5 | 0/5 |
| 1:512 | 0/5 | 0/5 | 3/5 | 0/5 |
| DM/CNN | |||
|---|---|---|---|
| Positive | Negative | ||
| LM | positive | 25 | 1 |
| negative | 3 | 179 | |
| Sample ID | LM | DM/CNN | LM with Separate Slide w.o. Mounting Medium |
|---|---|---|---|
| 14 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 34 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 35 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 36 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 40 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 51 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 56 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 62 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 77 | P/G. intestinalis | P/G. intestinalis | P/G. intestinalis |
| 85 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 109 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 113 | P/G. intestinalis | P/G. intestinalis | P/G. intestinalis |
| 117 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 118 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 127 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 151 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 159 | P/Blastocystis spp., C. mesnili | P/Blastocystis spp., MSP | P/Blastocystis spp. |
| 160 | P/Blastocystis spp., C. mesnili | P/Blastocystis spp., MSP | P/C. mesnili |
| 163 | N | P/Blastocystis spp. | P/Blastocystis spp. |
| 165 | N | P/Blastocystis spp. | N |
| 167 | P/Blastocystis spp. | P/MSP | P/Blastocystis spp. |
| 168 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 169 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 170 | P/G. intestinalis | P/G. intestinalis | P/G. intestinalis |
| 172 | N | P/Blastocystis spp. | N |
| 177 | P/Blastocystis spp. | N | P/Blastocystis spp. |
| 183 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 201 | P/Blastocystis spp. | P/Blastocystis spp. | P/Blastocystis spp. |
| 205 | P/E. coli | P/E. coli | P/E. coli |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Büschlen, C.; Rotzer, D.; Sidler, N.; Nguyen, H.T.T.; Oberli, A. Validation of Digital Slide Scanning and a Convolutional Neural Network for the Detection of Intestinal Parasites in Human Stool Samples. Diagnostics 2025, 15, 2974. https://doi.org/10.3390/diagnostics15232974
Büschlen C, Rotzer D, Sidler N, Nguyen HTT, Oberli A. Validation of Digital Slide Scanning and a Convolutional Neural Network for the Detection of Intestinal Parasites in Human Stool Samples. Diagnostics. 2025; 15(23):2974. https://doi.org/10.3390/diagnostics15232974
Chicago/Turabian StyleBüschlen, Céline, Daniel Rotzer, Nadine Sidler, Ha Thu Trang Nguyen, and Alexander Oberli. 2025. "Validation of Digital Slide Scanning and a Convolutional Neural Network for the Detection of Intestinal Parasites in Human Stool Samples" Diagnostics 15, no. 23: 2974. https://doi.org/10.3390/diagnostics15232974
APA StyleBüschlen, C., Rotzer, D., Sidler, N., Nguyen, H. T. T., & Oberli, A. (2025). Validation of Digital Slide Scanning and a Convolutional Neural Network for the Detection of Intestinal Parasites in Human Stool Samples. Diagnostics, 15(23), 2974. https://doi.org/10.3390/diagnostics15232974

