Enhancing Transradial Transarterial Microembolization Efficiency and Patient Satisfaction with Oral Benzodiazepine Premedication
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. BZD Premedication
2.3. Transarterial Microembolization Procedure
2.4. Intra-Procedural Measurements and Outcomes
2.5. Statistical Analysis
3. Results
3.1. Patients and Procedure
3.2. Baseline and Intra-Procedural Outcomes
3.3. Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoy, D.; Bain, C.; Williams, G.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Vos, T.; Buchbinder, R. A Systematic Review of the Global Prevalence of Low Back Pain. Arthritis Rheum. 2012, 64, 2028–2037. [Google Scholar] [CrossRef] [PubMed]
- Hoy, D.G.; Protani, M.; De, R.; Buchbinder, R. The Epidemiology of Neck Pain. Best. Pract. Res. Clin. Rheumatol. 2020, 24, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.L.; Hunter, D.J. The Epidemiology of Osteoarthritis. Best. Pract. Res. Clin. Rheumatol. 2014, 28, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Briggs, A.M.; Woolf, A.D.; Dreinhöfer, K.; Homb, N.; Hoy, D.G.; Kopansky-Giles, D.; Åkesson, K.; March, L. Reducing the Global burden of Musculoskeletal Conditions. Bull. World Health Organ. 2018, 96, 366–368. [Google Scholar] [CrossRef]
- Muñoz Laguna, J.; Puhan, M.A.; Rodríguez Artalejo, F.; De Pauw, R.; Wyper, G.M.A.; Devleesschauwer, B.; Santos, J.V.; Hincapié, C.A. Certainty of the Global Burden of Disease 2019 Modelled Prevalence Estimates for Musculoskeletal Conditions: A Meta-Epidemiological Study. Int. J. Public Health 2023, 68, 1605763. [Google Scholar] [CrossRef]
- Williams, A.; Kamper, S.J.; Wiggers, J.H.; O’Brien, K.M.; Lee, H.; Wolfenden, L.; Yoong, S.L.; Robson, E.; McAuley, J.H.; Hartvigsen, J.; et al. Musculoskeletal conditions may increase the risk of chronic disease: A systematic review and meta-analysis of cohort studies. BMC Med. 2018, 16, 167. [Google Scholar] [CrossRef]
- Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2021, 396, 2006–2017. [Google Scholar] [CrossRef]
- Okuno, Y.; Matsumura, N.; Oguro, S. Transcatheter arterial embolization using imipenem/cilastatin sodium for tendinopathy and enthesopathy refractory to nonsurgical management. J. Vasc. Interv. Radiol. 2013, 24, 787–792. [Google Scholar] [CrossRef]
- Okuno, Y.; Korchi, A.M.; Shinjo, T.; Kato, S. Transcatheter arterial embolization as a treatment for medial knee pain in patients with mild to moderate osteoarthritis. Cardiovasc. Interv. Radiol. 2015, 38, 336–343. [Google Scholar] [CrossRef]
- Taguchi, H.; Tanaka, T.; Nishiofuku, H.; Fukuoka, Y.; Minamiguchi, K.; Taiji, R.; Takayama, K.; Takeda, M.; Hatakeyama, K.; Inoue, T. A rat model of frozen shoulder demonstrating the effect of transcatheter arterial embolization on angiography, histopathology, and physical activity. J. Vasc. Interv. Radiol. 2021, 32, 376–383. [Google Scholar] [CrossRef]
- Kishore, S.; Sheira, D.; Malin, M.L.; Trost, D.W.; Mandl, L.A. Transarterial embolization for the treatment of chronic musculoskeletal pain: A systematic review of indications, safety, and efficacy. ACR Open Rheumatol. 2022, 4, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Casadaban, L.C.; Mandell, J.C.; Epelboym, Y. Genicular artery embolization for osteoarthritis related knee pain: A systematic review and qualitative analysis of clinical outcomes. Cardiovasc. Interv. Radiol. 2021, 44, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M.; Sugihara, E.; Miyazaki, K.; Yamamoto, M.; Fujiwara, K.; Okuno, Y. Effects of Transcatheter Arterial Microembolization on Persistent Trapezius Myalgia Refractory to Conservative Treatment. Cardiovasc. Interv. Radiol. 2021, 44, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Bagla, S.; Piechowiak, R.; Sajan, A.; Orlando, J.; Hartman, T.; Isaacson, A. Multicenter randomized sham-controlled study of genicular artery embolization for knee pain secondary to osteoarthritis. J. Vasc. Interv. Radiol. 2022, 33, 2–10.e2. [Google Scholar] [CrossRef]
- Okuno, Y.; Yasumoto, T.; Koganemaru, M.; Suyama, Y.; Nishiofuku, H.; Horikawa, M.; Komemushi, A. Transarterial Embolization of Neovascularity for Refractory Nighttime Shoulder Pain: A Multicenter, Open-Label, Feasibility Trial. J. Vasc. Interv. Radiol. 2022, 33, 1468–1475.e8. [Google Scholar] [CrossRef]
- Landers, S.; Hely, R.; Hely, A.; Harrison, B.; Page, R.S.; Maister, N.; Gwini, S.M.; Gill, S.D. Genicular artery embolization for early-stage knee osteoarthritis: Results from a triple-blind single-centre randomized controlled trial. Bone Jt. Open 2023, 4, 158–167. [Google Scholar] [CrossRef]
- Lin, H.Y.; Shih, Y.C.; Chai, J.W. Sustained Effectiveness of Transcatheter Arterial Microembolization for Refractory Ischiogluteal Bursitis. Cardiovasc. Interv. Radiol. 2024, 47, 1163–1167. [Google Scholar] [CrossRef]
- Yamashita, T.; Imai, S.; Tamada, T.; Yamamoto, A.; Egashira, N.; Watanabe, S.; Higashi, H.; Gyoten, M. Transradial approach for noncoronary angiography and interventions. Catheter. Cardiovasc. Interv. 2007, 70, 303–308. [Google Scholar] [CrossRef]
- Stathopoulos, I. Radial access—Be prepared! J. Invasive Cardiol. 2008, 20, 549–550. [Google Scholar] [PubMed]
- Posham, R.; Biederman, D.M.; Patel, R.S.; Kim, E.; Tabori, N.E.; Nowakowski, F.S.; Lookstein, R.A.; Fischman, A.M. Transradial Approach for Noncoronary Interventions: A Single-Center Review of Safety and Feasibility in the First 1500 Cases. J. Vasc. Interv. Radiol. 2016, 27, 159–166. [Google Scholar] [CrossRef]
- van Dijk, L.J.D.; van Noord, D.; van Mierlo, M.; Bijdevaate, D.C.; Bruno, M.J.; Moelker, A. Single-Center Retrospective Comparative Analysis of Transradial, Transbrachial, and Transfemoral Approach for Mesenteric Arterial Procedures. J. Vasc. Interv. Radiol. 2020, 31, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Bair, M.J.; Robinson, R.L.; Katon, W.; Kroenke, K. Depression and pain comorbidity: A literature review. Arch. Intern. Med. 2003, 163, 2433–2445. [Google Scholar] [CrossRef] [PubMed]
- Kremer, M.; Becker, L.J.; Barrot, M.; Yalcin, I. How to study anxiety and depression in rodent models of chronic pain? Eur. J. Neurosci. 2021, 53, 236–270. [Google Scholar] [CrossRef] [PubMed]
- Sakata, K.; Yoshida, H.; Hoshino, T.; Kurata, C. Sympathetic nerve activity in the spasm-induced coronary artery region is associated with disease activity of vasospastic angina. J. Am. Coll. Cardiol. 1996, 28, 460–464. [Google Scholar] [CrossRef]
- Ishihara, H.; Ishihara, S.; Niimi, J.; Neki, H.; Kakehi, Y.; Uemiya, N.; Kohyama, S.; Yamane, F.; Kato, H. Risk factors and prevention of guiding catheter-induced vasospasm in neuroendovascular treatment. Neurol. Med. Chir. (Tokyo) 2015, 55, 261–265. [Google Scholar] [CrossRef]
- Kim, W.J.; Dacey, M.; Samarage, H.M.; Zarrin, D.; Goel, K.; Chan, C.; Qi, X.; Wang, A.C.; Shivkumar, K.; Ardell, J. Sympathetic nervous system hyperactivity results in potent cerebral hypoperfusion in swine. Auton. Neurosci. 2022, 241, 102987. [Google Scholar] [CrossRef]
- PMID: 23789008Griffin CE3rd Kaye, A.M.; Bueno, F.R.; Kaye, A.D. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J. 2013, 13, 214–223. [Google Scholar]
- Wang, B.; Liang, K.-W.; Chen, C.-H.; Wang, C.-K. Transcatheter Arterial Embolization for Alleviating Chronic Musculoskeletal Pain and Improving Physical Function: A Narrative Review. Diagnostics 2023, 13, 134. [Google Scholar] [CrossRef]
- Lin, H.Y.; Liang, K.W.; Wang, B.; Lee, C.C. Challenges and complications and their management of the transarterial microembolization for chronic musculoskeletal pain. Eur. Radiol. 2024, 34, 3260–3270. [Google Scholar] [CrossRef]
- Rashid, M.; Kwok, C.S.; Pancholy, S.; Chugh, S.; Kedev, S.A.; Bernat, I.; Ratib, K.; Large, A.; Fraser, D.; Nolan, J. Radial Artery Occlusion After Transradial Interventions: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2016, 5, e002686. [Google Scholar] [CrossRef]
- Sinha, S.K.; Jha, M.J.; Mishra, V.; Thakur, R.; Goel, A.; Kumar, A.; Singh, A.K.; Sachan, M.; Varma, C.M.; Krishna, V. Radial Artery Occlusion—Incidence, Predictors and Long-term outcome after TRAnsradial Catheterization: Clinico-Doppler ultrasound-based study (RAIL-TRAC study). Acta Cardiol. 2017, 72, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Buturak, A.; Gorgulu, S.; Norgaz, T.; Voyvoda, N.; Sahingoz, Y.; Degirmencioglu, A.; Dagdelen, S. The long-term incidence predictors of radial artery occlusion following a transradial coronary procedure. Cardiol. J. 2014, 21, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.M.; Artino, A.R., Jr. Analyzing and interpreting data from likert-type scales. J. Grad. Med. Educ. 2013, 5, 541–542. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D.K. Likert Scale: Explored and Explained. Br. J. Appl. Sci. Technol. 2015, 7, 396–403. [Google Scholar] [CrossRef]
- Bagla, S.; Piechowiak, R.; Hartman, T.; Orlando, J.; Del Gaizo, D.; Isaacson, A. Genicular artery embolization for the treatment of knee pain secondary to osteoarthritis. J. Vasc. Interv. Radiol. 2020, 31, 1096–1102. [Google Scholar] [CrossRef]
- Inui, S.; Yoshizawa, S.; Shintaku, T.; Kaneko, T.; Ikegami, H.; Okuno, Y. Intra-Arterial Infusion of Imipenem/Cilastatin Sodium through a Needle Inserted into the Radial Artery as a New Treatment for Refractory Trapeziometacarpal Osteoarthritis. J. Vasc. Interv. Radiol. 2021, 32, 1341–1347. [Google Scholar] [CrossRef]
- Kubo, T.; Miyazaki, K.; Shibuya, M.; Sugihara, E.; Nakata, M.; Okuno, Y. Intra-Arterial Injection of Temporary Embolic Material Through a Needle Inserted into the Radial or Ulnar Artery for Distal and Proximal Interphalangeal Joint Osteoarthritis: A Retrospective Study of 92 Patients. Cardiovasc. Interv. Radiol. 2023, 46, 1375–1382. [Google Scholar] [CrossRef]
- Kallivalappil, S.C.; Pullani, A.J.; Abraham, B.; Kumar, M.K.; Ashraf, S.M. Entrapment of a transradial angiogram catheter because of severe vasospasm. J. Cardiothorac. Vasc. Anesth. 2008, 22, 428–430. [Google Scholar] [CrossRef]
- Bouchahda, N.; Ben Abdessalem, M.A.; Ben Hlima, N.; Ben Messaoud, M.; Denguir, H.; Boussaada, M.M.; Saoudi, W.; Jamel, A.; Hassine, M.; Bouraoui, H. Combination Therapy With Nicardipine and Isosorbide Dinitrate to Prevent Spasm in Transradial Percutaneous Coronary Intervention (from the NISTRA Multicenter Double-Blind Randomized Controlled Trial). Am. J. Cardiol. 2023, 188, 89–94. [Google Scholar] [CrossRef]
- Li, K.W.; Liang, K.W.; Liao, W.Y.; Wang, C.K.; Liu, Y.S.; Yang, T.H.; Wu, C.H.; Wang, B. Nitroglycerin (NTG) Infusion for Intraprocedural Vasospasm in Transarterial Microembolization (TAME): A Case Series. Life 2024, 14, 1413. [Google Scholar] [CrossRef]
- Kovacs, P.L.; Deutch, Z.; Castillo, D. Brachial Plexus Block for Removal of Retained Radial Artery Sheath. Cureus 2022, 14, e33068. [Google Scholar] [CrossRef]
Non-BZD Group | BZD Group | ||||||||
---|---|---|---|---|---|---|---|---|---|
Pt | Sex | Age (yr) | Diagnosis | Supplying Arteries (n) | Pt | Sex | Age (yr) | Diagnosis | Supplying Arteries (n) |
1 | F | 54 | Hand osteoarthritis (OA) | 2 | 1 | M | 40 | Medial and lateral epicondylitis | 7 |
2 | F | 56 | Hand OA | 2 | 2 | F | 52 | Medial epicondylitis | 3 |
3 | M | 54 | Adhesive capsulitis | 6 | 3 | M | 39 | Medial and lateral epicondylitis | 7 |
4 | M | 60 | Lateral epicondylitis | 4 | 4 | F | 53 | Hand OA | 2 |
5 | F | 61 | Adhesive capsulitis | 6 | 5 | F | 62 | Hand OA | 2 |
6 | M | 71 | Adhesive capsulitis | 6 | 6 | F | 61 | Hand OA | 2 |
7 | F | 67 | Hand OA | 2 | 7 | F | 66 | Hand OA | 2 |
8 | F | 65 | Hand OA | 2 | 8 | M | 58 | Adhesive capsulitis | 6 |
9 | F | 64 | Adhesive capsulitis | 6 | 9 | F | 68 | Adhesive capsulitis | 6 |
10 | M | 59 | Adhesive capsulitis | 6 | 10 | M | 43 | Medial and lateral epicondylitis | 7 |
11 | F | 64 | Psoriatic arthritis | 2 | 11 | M | 43 | Lateral epicondylitis | 4 |
12 | F | 61 | Psoriatic arthritis | 2 | 12 | F | 57 | Hand OA | 2 |
13 | M | 57 | Hand OA | 2 | 13 | F | 59 | Hand OA | 2 |
14 | M | 60 | Hand OA | 2 | 14 | F | 67 | Hand OA | 2 |
15 | M | 31 | Hand OA | 2 | 15 | F | 61 | Hand OA | 2 |
16 | M | 43 | Lateral epicondylitis | 4 |
Variables | Non-BZD (n = 15) | BZD (n = 16) | p Value |
---|---|---|---|
Age (yr +/− SD) | 61.6 ± 8.9 | 58.9 ± 11.6 | 0.11 |
Sex (Female, n, %) | 8 (53.3) | 10 (62.5) | 0.78 |
Dominant hand (n, %) | 6 (40.0) | 8 (50.0) | 0.58 |
Variables | Non-BZD (n = 15) | BZD (n = 16) | p Value |
---|---|---|---|
Intra-procedural measurements | |||
Patient anxiety | 3.80 ± 1.20 | 1.12 ± 0.75 | 0.04 |
Arterial diameter ≥ 2 mm (n, %) | 6 (40.0) | 14 (87.5) | 0.02 |
Mean heart rate (bpm) | 78.6 ± 12.2 | 71.0 ± 10.5 | 0.37 |
Mean systolic blood pressure (mmHg) | 159.0 ± 18.5 | 130.2 ± 15.8 | 0.44 |
Procedure time/per artery (mins) | 34.81 ± 7.92 | 23.58 ± 6.48 | 0.001 |
Post-procedural Satisfaction | |||
Immediate | 3.13 ± 0.90 | 4.25 ± 0.80 | 0.045 |
Short-term (one month) | 3.67 ± 1.00 | 4.69 ± 0.85 | 0.01 |
Mid-term (three months) | 3.80 ± 1.10 | 4.81 ± 0.70 | <0.001 |
Post-procedural reduction in VAS † score (mm) | |||
Short-term (one month) | 4.6 ± 2.77 | 5.3 ± 1.74 | 0.32 |
Mid-term (three months) | 6.2 ± 2.24 | 7.4 ± 1.26 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-Y.; Chiang, M.-C. Enhancing Transradial Transarterial Microembolization Efficiency and Patient Satisfaction with Oral Benzodiazepine Premedication. Diagnostics 2025, 15, 1667. https://doi.org/10.3390/diagnostics15131667
Lin H-Y, Chiang M-C. Enhancing Transradial Transarterial Microembolization Efficiency and Patient Satisfaction with Oral Benzodiazepine Premedication. Diagnostics. 2025; 15(13):1667. https://doi.org/10.3390/diagnostics15131667
Chicago/Turabian StyleLin, Hsuan-Yin, and Ming-Chuan Chiang. 2025. "Enhancing Transradial Transarterial Microembolization Efficiency and Patient Satisfaction with Oral Benzodiazepine Premedication" Diagnostics 15, no. 13: 1667. https://doi.org/10.3390/diagnostics15131667
APA StyleLin, H.-Y., & Chiang, M.-C. (2025). Enhancing Transradial Transarterial Microembolization Efficiency and Patient Satisfaction with Oral Benzodiazepine Premedication. Diagnostics, 15(13), 1667. https://doi.org/10.3390/diagnostics15131667