Cognitive Stimulation and Strength Training in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Design and Participants
2.2. Eligibility Criteria
2.3. Randomization
2.4. Intervention
2.5. Outcomes
2.5.1. Cognitive Impairment
2.5.2. Verbal Fluency
2.5.3. Executive Functions
2.5.4. Processing Speed
2.5.5. Balance, Gait, and Falls of Risk
2.5.6. Grip Strength
2.5.7. Lower Body Strength
2.6. Sample Size Calculation
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MCI | Mild cognitive impairment |
CG | Control group |
EG | Experimental group |
MMSE | Mini-Mental State Examination |
MoCA | The Montreal Cognitive Assessment |
TMT | The Trail Making Test |
DSST | The Digit Symbol Substitution Test |
CST | The Chair Stand Test |
RBT | Balance training |
RT | Resistance training |
V-TIME | Treadmill training program combined with virtual reality |
References
- Knopman, D.S.; Petersen, R.C. Mild cognitive impairment and mild dementia: A clinical perspective. Mayo Clin. Proc. 2014, 89, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.L.; Unverzagt, F.; LaMantia, M.A.; Khan, B.A.; Boustani, M.A. Risk factors for the progression of mild cognitive impairment to dementia. Clin. Geriatr. Med. 2013, 29, 873–893. [Google Scholar] [CrossRef] [PubMed]
- Jessen, F.; Amariglio, R.E.; Buckley, R.F.; van der Flier, W.M.; Han, Y.; Molinuevo, J.L.; Rabin, L.; Rentz, D.M.; Rodriguez-Gomez, O.; Saykin, A.J.; et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020, 19, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Pappalettera, C.; Carrarini, C.; Miraglia, F.; Vecchio, F.; Rossini, P.M. Cognitive resilience/reserve: Myth or reality? A review of definitions and measurement methods. Alzheimer’s Dement. 2024, 20, 3567–3586. [Google Scholar] [CrossRef]
- Marselli, G.; Favieri, F.; Casagrande, M. Episodic and Semantic Autobiographical Memory in Mild Cognitive Impairment (MCI): A Systematic Review. J. Clin. Med. 2023, 12, 2856. [Google Scholar] [CrossRef]
- Draheim, C.; Pak, R.; Draheim, A.A.; Engle, R.W. The role of attention control in complex real-world tasks. Psychon. Bull. Rev. 2022, 29, 1143–1197. [Google Scholar] [CrossRef]
- Jobson, D.D.; Hase, Y.; Clarkson, A.N.; Kalaria, R.N. The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Commun. 2021, 3, fcab125. [Google Scholar] [CrossRef]
- Randhawa, S.S.; Varghese, D. Geriatric Evaluation and Treatment of Age-Related Cognitive Decline. In StatPearls; [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK580536/ (accessed on 14 March 2025).
- Holshausen, K.; Harvey, P.D.; Elvevåg, B.; Foltz, P.W.; Bowie, C.R. Latent semantic variables are associated with formal thought disorder and adaptive behavior in older inpatients with schizophrenia. Cortex 2014, 55, 88–96. [Google Scholar] [CrossRef]
- Cipriani, G.; Danti, S.; Picchi, L.; Nuti, A.; Fiorino, M.D. Daily functioning and dementia. Dement. Neuropsychol. 2020, 14, 93–102. [Google Scholar] [CrossRef]
- Ferrucci, L.; Cooper, R.; Shardell, M.; Simonsick, E.M.; Schrack, J.A.; Kuh, D. Age-Related Change in Mobility: Perspectives From Life Course Epidemiology and Geroscience. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1184–1194. [Google Scholar] [CrossRef]
- Rodrigues, F.; Domingos, C.; Monteiro, D.; Morouço, P. A Review on Aging, Sarcopenia, Falls, and Resistance Training in Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 874. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Bao, Y.; Wang, B.; Shi, M.; Wei, Y.; Huang, X.; Dai, Y.; Shi, H.; Gai, X.; Luo, Q.; et al. Falls caused by balance disorders in the elderly with multiple systems involved: Pathogenic mechanisms and treatment strategies. Front. Neurol. 2023, 14, 1128092. [Google Scholar] [CrossRef] [PubMed]
- Buchman, A.S.; Boyle, P.A.; Leurgans, S.E.; Barnes, L.L.; Bennett, D.A. Cognitive function is associated with the development of mobility impairments in community-dwelling elders. Am. J. Geriatr. Psychiatry 2011, 19, 571–580. [Google Scholar] [CrossRef]
- Woods, B.; Rai, H.K.; Elliott, E.; Aguirre, E.; Orrell, M.; Spector, A. Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database Syst. Rev. 2023, 1, CD005562. [Google Scholar]
- Buele, J.; Avilés-Castillo, F.; Del-Valle-Soto, C.; Varela-Aldás, J.; Palacios-Navarro, G. Effects of a dual intervention (motor and virtual reality-based cognitive) on cognition in patients with mild cognitive impairment: A single-blind, randomized controlled trial. J. Neuroeng. Rehabil. 2024, 21, 149. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine; Division of Behavioral and Social Sciences and Education; Health and Medicine Division; Board on Behavioral, Cognitive, and Sensory Sciences; Board on Health Sciences Policy; Committee on the Health and Medical Dimensions of Social Isolation and Loneliness in Older Adults. Social Isolation and Loneliness in Older Adults: Opportunities for the Health Care System; Risk and Protective Factors for Social Isolation and Loneliness; National Academies Press (US): Washington, DC, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557971/ (accessed on 21 March 2025).
- Adams, M.; Gordt-Oesterwind, K.; Bongartz, M.; Zimmermann, S.; Seide, S.; Braun, V.; Schwenk, M. Effects of Physical Activity Interventions on Strength, Balance and Falls in Middle-Aged Adults: A Systematic Review and Meta-Analysis. Sports Med. Open 2023, 9, 61. [Google Scholar] [CrossRef]
- Gomez-Pinilla, F.; Hillman, C. The influence of exercise on cognitive abilities. Compr. Physiol. 2013, 3, 403–428. [Google Scholar] [CrossRef]
- Do, N.M.; Tolos, C. Empowering Fall Prevention Through Integrated Lifestyle Medicine Strategies-From Recognition of Fall Risks to Implementation of Prevention of Falls for all in Practice. Am. J. Lifestyle Med. 2025. [Google Scholar] [CrossRef]
- Bahar-Fuchs, A.; Clare, L.; Woods, B. Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer’s or vascular type: A review. Alzheimer’s Res. Ther. 2013, 5, 35. [Google Scholar] [CrossRef]
- Albarqi, M.N. Assessing the Impact of Multidisciplinary Collaboration on Quality of Life in Older Patients Receiving Primary Care: Cross Sectional Study. Healthcare 2024, 12, 1258. [Google Scholar] [CrossRef]
- Whear, R.; Campbell, F.; Rogers, M.; Sutton, A.; Robinson-Carter, E.; Sharpe, R.; Cohen, S.; Fergy, R.; Garside, R.; Kneale, D.; et al. What is the effect of intergenerational activities on the wellbeing and mental health of older people?: A systematic review. Campbell Syst. Rev. 2023, 19, e1355. [Google Scholar] [CrossRef] [PubMed]
- Castellote-Caballero, Y.; Carcelén Fraile, M.D.C.; Aibar-Almazán, A.; Afanador-Restrepo, D.F.; González-Martín, A.M. Effect of combined physical-cognitive training on the functional and cognitive capacity of older people with mild cognitive impairment: A randomized controlled trial. BMC Med. 2024, 22, 281. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Isaacs, B.; Kennie, A.T. The Set Test as an Aid to the Detection of Dementia in Old People. Br. J. Psychiat. 1971, 23, 467–470. [Google Scholar] [CrossRef]
- Reitan, R.M. Trail Making Test: Manual for Administration, Scoring and Interpretation; Indiana University Medical Center: Indianapolis, IN, USA, 1958. [Google Scholar]
- Jaeger, J. Digit Symbol Substitution Test: The Case for Sensitivity Over Specificity in Neuropsychological Testing. J. Clin. Psychopharmacol. 2018, 38, 513–519. [Google Scholar] [CrossRef]
- Tinetti, M.E. Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef]
- Salvá, A.; Bolibar, I.; Lucas, R.; Rojano-Luque, X. Utilización del POMA en nuestro medio para la valoración del equilibrio y la marcha en una población de personas mayores residentes en la comunidad. Revista Española de Geriatría y Gerontología 2005, 40, 36–44. [Google Scholar] [CrossRef]
- Laurentani, F.; Russo, C.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Lorio, A.; Corsi, A.A.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. Age-associated changes in skeletalmuscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport. 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Suzuki, T.; Shimada, H.; Makizako, H.; Doi, T.; Yoshida, D.; Ito, K.; Shimokata, H.; Washimi, Y.; Endo, H.; Kato, T. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS ONE 2013, 8, e61483. [Google Scholar] [CrossRef]
- Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: A systematic review. Rejuvenat. Res. 2013, 16, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Rabin, L.A.; Smart, C.M.; Crane, P.K.; Amariglio, R.E.; Berman, L.M.; Boada, M.; Buckley, R.F.; Chételat, G.; Dubois, B.; Ellis, K.A.; et al. Subjective Cognitive Decline in Older Adults: An Overview of Self-Report Measures Used Across 19 International Research Studies. J. Alzheimer’s Dis. 2015, 1, S63–S86. [Google Scholar] [CrossRef] [PubMed]
- Korkki, S.M.; Richter, F.R.; Jeyarathnarajah, P.; Simons, J.S. Healthy ageing reduces the precision of episodic memory retrieval. Psychol. Aging 2020, 35, 124–142. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, E.; Subiron-Valera, A.B.; Marcén-Román, Y.; Salavera, C.; Andrade-Gómez, E.; Rodríguez-Roca, B.; Gómez-Soria, I. Effects on language and verbal fluency of a cognitive stimulation program in older adults: Randomized controlled trial. Sustainability 2023, 15, 2533. [Google Scholar] [CrossRef]
- Welford, P.; Östh, J.; Hoy, S.; Rossell, S.L.; Pascoe, M.; Diwan, V.; Hallgren, M. Effects of yoga and aerobic exercise on verbal fluency in physically inactive older adults: Randomized controlled trial (FitForAge). Clin. Interv. Aging 2023, 18, 1–12. [Google Scholar] [CrossRef]
- Murman, D.L. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef]
- Pirau, L.; Lui, F. Frontal Lobe Syndrome. In StatPearls; [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532981/ (accessed on 30 March 2025).
- Arokiaraj, A.S.; Khairudin, R.; Sulaiman, W.S.W. The impact of a computerized cognitive training on healthy older adults: A systematic review focused on processing speed and attention. Int. J. Acad. Res. Bus. Social. Sci. 2020, 10, 645–685. [Google Scholar] [CrossRef]
- Nishiguchi, S.; Yamada, M.; Tanigawa, T.; Sekiyama, K.; Kawagoe, T.; Suzuki, M.; Aoyama, T. A 6-week randomized controlled trial of a newly developed TV-based cognitive training game for improving driving skills in older adults. Front. Aging Neurosci. 2019, 11, 99. [Google Scholar]
- Crespillo-Jurado, M.; Delgado-Lobete, L.; Montes-Montes, R. Physical activity, sports practice, and cognitive functioning: A systematic review. Front. Psychol. 2019, 10, 2658. [Google Scholar]
- Battilana, F.; Steurer, S.; Rizzi, G.; Delgado, A.C.; Tan, K.R.; Handschin, C. Exercise-linked improvement in age-associated loss of balance is associated with increased vestibular input to motor neurons. Aging Cell 2020, 19, e13274. [Google Scholar] [CrossRef]
- Jiang, G.; Tan, X.; Zou, J.; Wu, X. A 24-week combined resistance and balance training program improves physical function in older adults: A randomized controlled trial. J. Strength. Cond. Res. 2025, 39, e62–e69. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.T.; Chang, W.C.; Chiu, H.L.; Kao, C.C.; Liu, D.; Chu, H.; Chou, K.R. Effect of interactive cognitive motor training on gait and balance performance in older adults: A randomized controlled trial. Geriatr. Nurs. 2018, 39, 522–528. [Google Scholar]
- Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly: A clinical guide. Wien. Klin. Wochenschr. 2017, 129, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.d.M.; Maduro, P.A.; Rios, P.M.B.; Nascimento, L.d.S.; Silva, C.N.; Kliegel, M.; Ihle, A. Effects of 12 Weeks of Physical-Cognitive Dual-Task Training on Executive Functions, Depression, Sleep Quality, and Quality of Life in Older Adult Women: A Randomized Pilot Study. Sustainability 2023, 15, 97. [Google Scholar] [CrossRef]
- Appeadu, M.K.; Bordoni, B. Falls and Fall Prevention in Older Adults. In StatPearls; [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560761/ (accessed on 30 March 2025).
- Sherrington, C.; Fairhall, N.J.; Wallbank, G.K.; Tiedemann, A.; Michaleff, Z.A.; Howard, K.; Lamb, S.E. Exercise for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2019; 1, CD012424. [Google Scholar] [CrossRef]
- Mirelman, A.; Rochester, L.; Maidan, I.; Del Din, S.; Alcock, L.; Nieuwhof, F.; Hausdorff, J.M. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): A randomised controlled trial. Lancet 2016, 388, 1170–1182. [Google Scholar] [CrossRef]
- Ramnath, U.; Rauch, L.; Lambert, E.V.; Kolbe-Alexander, T.L. The relationship between functional status, physical fitness and cognitive performance in physically active older adults: A pilot study. PLoS ONE 2018, 13, e0194918. [Google Scholar] [CrossRef]
- Vieira, A.F.; Umpierre, D.; Teodoro, J.L.; Lisboa, S.C.; Barbalho, M.; Pinto, R.S. Strength training in elderly: An useful tool against sarcopenia. Front. Sports Act. Living 2022, 4, 950949. [Google Scholar]
- Grgic, J.; Garofolini, A.; Orazem, J.; Sabol, F.; Schoenfeld, B.J.; Pedisic, Z. Effects of Resistance Training on Muscle Size and Strength in Very Elderly Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports Med. 2020, 50, 1983–1999. [Google Scholar] [CrossRef]
- Kemala Sari, N.; Stepvia, S.; Ilyas, M.F.; Setiati, S.; Harimurti, K.; Fitriana, I. Handgrip strength as a potential indicator of aging: Insights from its association with aging-related laboratory parameters. Front. Med. 2025, 12, 1491584. [Google Scholar] [CrossRef]
- Liao, C.D.; Chen, H.C.; Huang, S.W.; Liou, T.H.; Tsauo, J.Y. The effect of resistance training on the rehabilitation of elderly patients with sarcopenia: A systematic review and meta-analysis. Front. Physiol. 2022, 13, 973956. [Google Scholar]
- Kirk, A.; Steele, J.; Fisher, J.P. Machine-based resistance training improves functional capacity in older adults: A systematic review and meta-analysis. J. Funct. Morphol. Kinesiol. 2024, 9, 239. [Google Scholar]
Week | Main Objectives | Activities | Cognitive Functions Targeted | Materials Used |
---|---|---|---|---|
1–2 | Activate basic functions | Visual memory games, shape and color recognition | Sustained attention, working memory | Flashcards, images, whiteboards |
3–4 | Reinforce orientation and language | Categorization games, word completion, temporal-spatial orientation tasks | Language, orientation, verbal fluency | Workbooks, teaching clock |
5–6 | Stimulate executive functions | Task sequencing, problem-solving in daily contexts | Planning, reasoning | Problem cards, everyday items |
7–8 | Strengthen episodic memory | List recall, event recall, paired associations | Short- and long-term memory | Lists, image/sound flashcards |
9–10 | Improve processing speed | Timed symbol–number matching, pattern identification | Processing speed, cognitive flexibility | Timer, worksheets |
11–12 | Consolidation and integration | Group games combining previous tasks | Cognitive impairment, social interaction | Mixed materials, interactive games |
Week | Physical Objectives | Main Exercises | Materials Used | Progression |
---|---|---|---|---|
1–2 | General activation, introduce movement | March in place, assisted squats, sit to stand | Chairs, mats | Low intensity |
3–4 | Strengthen lower limbs | Leg raises, unsupported squats, step-ups | Low steps, resistance bands | Increased repetitions |
5–6 | Add upper body strength | Bicep curls, tricep extensions with bands | Bands, 1 kg dumbbells | Increased resistance |
7–8 | Introduce dynamic balance | Straight-line walking, single-leg stance, body shifting | Balance beam, cones | Longer hold times |
9–10 | Functional integration | Mobility circuits, lifting and carrying objects | Household items, timer | Requires coordination |
11–12 | Consolidation | Combined strength + balance circuits | Mixed materials | Moderate and sustained activity |
Total (n = 81) | Experimental (n = 40) | Control (n = 41) | p Value | ||
---|---|---|---|---|---|
Age | 71.17 ± 4.73 | 70.90 ± 4.24 | 71.44 ± 5.21 | 0.092 | |
Sex | Male | 25 (30.90) | 12 (48.00) | 13 (52.00) | 0.743 |
Female | 56 (69.10) | 28 (50.00) | 28 (50.00) | ||
Occupational status | Retired | 62 (76.50) | 30 (48.40) | 32 (51.60) | 0.285 |
Worker | 7 (8.60) | 3 (42.90) | 4 (57.10) | ||
Unemployed | 12 (14.80) | 7 (58.30) | 5 (41.70) | ||
Marital Status | Married | 32 (39.50) | 21 (65.60) | 11 (34.40) | 0.191 |
Divorced | 14 (17.30) | 3 (21.40) | 11 (78.60) | ||
Single | 17 (21.00) | 8 (47.10) | 9 (52.90) | ||
Widowed | 18 (22.20) | 8 (44.40) | 10 (55.60) | ||
Educational Status | Primary Education | 24 (29.60) | 13 (54.20) | 11 (45.80) | 0.776 |
Secondary Education | 35 (43.20) | 17 (48.60) | 18 (51.40) | ||
University studies | 22 (27.20) | 10 (45.50) | 12 (54.50) | ||
Height | 71.80 ± 8.35 | 70.35 ± 7.97 | 73.21 ± 8.57 | 0.356 | |
Weight | 1.73 ± 0.07 | 1.72 ± 0.08 | 1.73 ± 0.07 | 0.492 | |
BMI | 24.03 ± 1.25 | 23.79 ± 1.29 | 24.25 ± 1.19 | 0.746 | |
Cognitive impairment | 21.42 ± 1.11 | 21.45 ± 1.11 | 21.39 ± 1.12 | 0.885 | |
Verbal fluency | 26.89 ± 2.66 | 26.95 ± 2.61 | 26.83 ± 2.73 | 0.758 | |
Attention and speed | 103.49 ± 40.88 | 113.50 ± 39.07 | 93.88 ± 10.78 | 0.988 | |
Executive functions | 184.36 ± 80.33 | 204.53 ± 75.43 | 164.68 ± 80.97 | 0.935 | |
Processing Speed | 53.64 ± 7.05 | 51.03 ± 6.74 | 56.20 ± 6.44 | 0.950 | |
Balance | 10.78 ± 2.73 | 11.12 ± 2.81 | 10.44 ± 2.63 | 0.911 | |
Gait | 8.89 ± 2.77 | 9.43 ± 2.77 | 8.37 ± 2.69 | 0.770 | |
Risk of falls | 19.67 ± 4.71 | 20.55 ± 5.22 | 18.80 ± 4.02 | 0.119 | |
Grip strength | 16.92 ± 3.69 | 17.38 ± 3.70 | 16.48 ± 3.67 | 0.919 | |
Lower body strength | 11.83 ± 3.32 | 11.25 ± 3.54 | 13.39 ± 3.03 | 0.257 |
EG (n = 40) | CG (n = 41) | Group | Time | Group × Time | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | F(80) | p-Value | η2 | F(80) | p-Value | η2 | F(80) | p-Value | η2 | |
Cognitive impairment | 21.45 ± 1.11 | 22.30 ± 1.22 | 21.39 ± 1.12 | 20.95 ± 1.14 | 13.183 | 0.000 | 0.143 | 1.542 | 0.218 | 0.019 | 15.170 | 0.000 | 0.161 |
Verbal fluency | 26.95 ± 2.61 | 28.48 ± 2.40 | 26.83 ± 2.73 | 26.29 ± 2.94 | 4.972 | 0.029 | 0.059 | 2.780 | 0.099 | 0.034 | 12.093 | 0.001 | 0.133 |
Attention and speed | 113.50 ± 39.07 | 79.23 ± 27.33 | 93.88 ± 40.78 | 95.51 ± 38.98 | 0.040 | 0.843 | 0.001 | 73.922 | 0.000 | 0.531 | 73.922 | 0.000 | 0.483 |
Executive Functions | 204.53 ± 75.43 | 186.58 ± 61.78 | 164.68 ± 80.97 | 164.07 ± 53.82 | 4.586 | 0.035 | 0.055 | 3.880 | 0.052 | 0.047 | 3.387 | 0.069 | 0.041 |
Processing Speed | 51.03 ± 6.74 | 60.13 ± 6.39 | 56.20 ± 6.44 | 55.68 ± 11.16 | 0.050 | 0.824 | 0.001 | 39.990 | 0.000 | 0.336 | 50.099 | 0.000 | 0.388 |
Balance | 11.12 ± 2.81 | 12.60 ± 2.94 | 10.44 ± 2.63 | 9.98 ± 2.54 | 10.335 | 0.002 | 0.116 | 2.472 | 0.120 | 0.030 | 9.076 | 0.003 | 0.103 |
Gait | 9.43 ± 2.77 | 10.38 ± 2.53 | 8.37 ± 2.69 | 7.80 ± 2.94 | 12.705 | 0.001 | 0.139 | 0.340 | 0.561 | 0.004 | 5.129 | 0.026 | 0.061 |
Risk of falls | 20.55 ± 5.22 | 22.98 ± 4.65 | 18.80 ± 4.02 | 17.78 ± 4.08 | 15.333 | 0.000 | 0.163 | 2.215 | 0.141 | 0.027 | 13.433 | 0.000 | 0.145 |
Grip strength | 17.38 ± 3.70 | 18.46 ± 3.79 | 16.48 ± 3.67 | 15.58 ± 3.63 | 6.197 | 0.015 | 0.073 | 0.094 | 0.761 | 0.001 | 10.075 | 0.002 | 0.113 |
Lower body strength | 11.25 ± 3.54 | 13.95 ± 3.40 | 12.39 ± 3.03 | 12.27 ± 3.25 | 0.159 | 0.691 | 0.002 | 20.651 | 0.00 | 0.207 | 24.743 | 0.000 | 0.239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Perete, J.M.; Carcelén-Fraile, M.d.M.; Castellote-Caballero, Y.; Carcelén-Fraile, M.d.C. Cognitive Stimulation and Strength Training in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Trial. Diagnostics 2025, 15, 1477. https://doi.org/10.3390/diagnostics15121477
Muñoz-Perete JM, Carcelén-Fraile MdM, Castellote-Caballero Y, Carcelén-Fraile MdC. Cognitive Stimulation and Strength Training in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Trial. Diagnostics. 2025; 15(12):1477. https://doi.org/10.3390/diagnostics15121477
Chicago/Turabian StyleMuñoz-Perete, Juan Miguel, María del Mar Carcelén-Fraile, Yolanda Castellote-Caballero, and María del Carmen Carcelén-Fraile. 2025. "Cognitive Stimulation and Strength Training in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Trial" Diagnostics 15, no. 12: 1477. https://doi.org/10.3390/diagnostics15121477
APA StyleMuñoz-Perete, J. M., Carcelén-Fraile, M. d. M., Castellote-Caballero, Y., & Carcelén-Fraile, M. d. C. (2025). Cognitive Stimulation and Strength Training in Older Adults with Mild Cognitive Impairment: A Randomized Controlled Trial. Diagnostics, 15(12), 1477. https://doi.org/10.3390/diagnostics15121477