Postoperative Radiologic Changes in Early Recurrent Lumbar Foraminal Stenosis After Transforaminal Endoscopic Lumbar Foraminotomy for Lower Lumbar Segments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Populations
- (1)
- Adults aged 18 years and older diagnosed with lumbar foraminal stenosis.
- (2)
- Lumbar foraminal stenosis findings clearly observed on lumbar spine magnetic resonance imaging (MRI), with corresponding symptoms of lower extremity radiculopathy.
- (3)
- Lower extremity radiculopathy persisting for more than 3 months, despite conservative treatment.
- (4)
- (1)
- Concurrent spondylolytic spondylolisthesis, spondylolisthesis Grade 2 or higher, or segmental instability.
- (2)
- Congenital foraminal stenosis.
- (3)
- Concurrent severe Grade 3–4 central canal stenosis [16].
- (4)
- (5)
- Presence of other pathological conditions, such as infection, trauma, or tumours.
- (6)
- Cases attributed to a herniated lumbar disc.
2.2. Selection of Case–Control Group
- (1)
- Improvement of lower extremity radiculopathy for at least 1 month post TELF.
- (2)
- Recurrence of lower extremity radiculopathy at the same location as preoperative symptoms within 6 months post surgery.
- (3)
- Radiological confirmation of recurrence of foraminal stenosis at the same site as the initial surgery.
2.3. Clinical Outcome Assessment
2.4. Radiologic Assessment
- (1)
- Total lumbar lordosis angle (TLLA): The angle between the upper endplate of L1 and the upper endplate of S1.
- (2)
- Segmental lumbar lordosis angle (SLLA): The angle between the upper endplate of the upper vertebra and the lower endplate of the lower vertebra, which comprise the surgical segment, provides information about the curvature of a specific segment of the lumbar spine.
- (3)
- Coronal Cobb’s angle (CCA): The angle formed by the most tilted upper vertebra and the most tilted lower vertebra in an anteroposterior simple radiograph.
- (4)
- Disc height (DH): The average height between the foremost and rearmost points of the intervertebral disc indicates the thickness of the intervertebral disc.
- (5)
- Foraminal height (FH): The distance between the lower surface of the pedicle of the upper vertebra and the upper surface of the pedicle of the lower vertebra.
- (6)
- Disc wedging (DW): The angle between the endplate adjacent to the upper part of the disc and the endplate adjacent to the lower part of the disc.
- (7)
- Dynamic segmental lumbar lordosis angle (DSLLA): The difference in segmental lordotic angle (SLA) between flexion and extension postures provides information about the flexibility and range of motion of a specific segment of the lumbar spine.
2.5. Statistical Analysis
2.6. Surgical Procedure
3. Results
3.1. Patient Characteristics
3.2. Illustrative Case
3.3. Postoperative Radiologic Changes
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jenis, L.G.; An, H.S. Spine update. Lumbar foraminal stenosis. Spine 2000, 25, 389–394. [Google Scholar] [CrossRef]
- Jenis, L.G.; An, H.S.; Gordin, R. Foraminal stenosis of the lumbar spine: A review of 65 surgical cases. Am. J. Orthop. 2001, 30, 205–211. [Google Scholar]
- Kim, J.Y.; Kim, H.S.; Jeon, J.B.; Lee, J.H.; Park, J.H.; Jang, I.T. The Novel Technique of Uniportal Endoscopic Interlaminar Contralateral Approach for Coexisting L5-S1 Lateral Recess, Foraminal, and Extraforaminal Stenosis and Its Clinical Outcomes. J. Clin. Med. 2021, 10, 1364. [Google Scholar] [CrossRef]
- Ahn, Y.; Oh, H.K.; Kim, H.; Lee, S.H.; Lee, H.N. Percutaneous endoscopic lumbar foraminotomy: An advanced surgical technique and clinical outcomes. Neurosurgery 2014, 75, 124–133; discussion 123–132. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, H.S.; Kapoor, A.; Adsul, N.; Kim, K.J.; Choi, S.H.; Jang, J.S.; Jang, I.T.; Oh, S.H. Feasibility of Full Endoscopic Spine Surgery in Patients over the Age of 70 Years with Degenerative Lumbar Spine Disease. Neurospine 2018, 15, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.S.; Park, P.; Le, H.; Reisner, L.; Chou, D.; Mummaneni, P.V. Short-term and long-term outcomes of minimally invasive and open transforaminal lumbar interbody fusions: Is there a difference? Neurosurg. Focus 2013, 35, E6. [Google Scholar] [CrossRef]
- Sairyo, K.; Chikawa, T.; Nagamachi, A. State-of-the-art transforaminal percutaneous endoscopic lumbar surgery under local anesthesia: Discectomy, foraminoplasty, and ventral facetectomy. J. Orthop. Sci. 2018, 23, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Evins, A.I.; Banu, M.A.; Njoku, I., Jr.; Elowitz, E.H.; Härtl, R.; Bernado, A.; Hofstetter, C.P. Endoscopic lumbar foraminotomy. J. Clin. Neurosci. 2015, 22, 730–734. [Google Scholar] [CrossRef]
- Knight, M.; Goswami, A. Management of isthmic spondylolisthesis with posterolateral endoscopic foraminal decompression. Spine 2003, 28, 573–581. [Google Scholar] [CrossRef]
- Ahn, Y.; Park, H.B.; Yoo, B.R.; Jeong, T.S. Endoscopic lumbar foraminotomy for foraminal stenosis in stable spondylolisthesis. Front. Surg. 2022, 9, 1042184. [Google Scholar] [CrossRef]
- Haimoto, S.; Nishimura, Y.; Hara, M.; Nakajima, Y.; Yamamoto, Y.; Ginsberg, H.J.; Wakabayashi, T. Clinical and Radiological Outcomes of Microscopic Lumbar Foraminal Decompression: A Pilot Analysis of Possible Risk Factors for Restenosis. Neurol. Med. Chir. 2018, 58, 49–58. [Google Scholar] [CrossRef]
- Yamada, K.; Matsuda, H.; Nabeta, M.; Habunaga, H.; Suzuki, A.; Nakamura, H. Clinical outcomes of microscopic decompression for degenerative lumbar foraminal stenosis: A comparison between patients with and without degenerative lumbar scoliosis. Eur. Spine J. 2011, 20, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Ju, C.I.; Kim, S.W.; Lee, S.M.; Kim, P. Risk Factors of Restenosis After Full Endoscopic Foraminotomy for Lumbar Foraminal Stenosis: Case-Control Study. Neurospine 2023, 20, 899–907. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.W.; Yeom, J.S.; Kim, K.J.; Kim, H.J.; Chung, S.K.; Kang, H.S. A practical MRI grading system for lumbar foraminal stenosis. AJR Am. J. Roentgenol. 2010, 194, 1095–1098. [Google Scholar] [CrossRef] [PubMed]
- Jeong, T.S.; Ahn, Y.; Lee, S.G.; Kim, W.K.; Son, S.; Kwon, J.H. Correlation between MRI Grading System and Surgical Findings for Lumbar Foraminal Stenosis. J. Korean Neurosurg. Soc. 2017, 60, 465–470. [Google Scholar] [CrossRef]
- Yuan, S.; Zou, Y.; Li, Y.; Chen, M.; Yue, Y. A clinically relevant MRI grading system for lumbar central canal stenosis. Clin. Imaging 2016, 40, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Watanabe, K.; Ishii, K.; Tsuji, T.; Takaishi, H.; Nakamura, M.; Toyama, Y.; Chiba, K. Posterior decompression surgery for extraforaminal entrapment of the fifth lumbar spinal nerve at the lumbosacral junction. J. Neurosurg. Spine 2010, 12, 72–81. [Google Scholar] [CrossRef]
- Rhee, D.Y.; Ahn, Y. Full-Endoscopic Lumbar Foraminotomy for Foraminal Stenosis in Spondylolisthesis: Two-Year Follow-Up Results. Diagnostics 2022, 12, 3152. [Google Scholar] [CrossRef]
- Cho, J.Y.; Lee, S.H.; Lee, H.Y. Prevention of development of postoperative dysesthesia in transforaminal percutaneous endoscopic lumbar discectomy for intracanalicular lumbar disc herniation: Floating retraction technique. Minim. Invasive Neurosurg. 2011, 54, 214–218. [Google Scholar] [CrossRef]
- Kim, H.S.; Adsul, N.; Kapoor, A.; Choi, S.H.; Kim, J.H.; Kim, K.J.; Bang, J.S.; Yang, K.H.; Han, S.; Lim, J.H.; et al. A Mobile Outside-in Technique of Transforaminal Lumbar Endoscopy for Lumbar Disc Herniations. J. Vis. Exp. 2018, 138, 57999. [Google Scholar] [CrossRef]
- Fiorenza, V.; Ascanio, F. Percutaneous Endoscopic Transforaminal Outside-In Outside Technique for Foraminal and Extraforaminal Lumbar Disc Herniations-Operative Technique. World Neurosurg. 2019, 130, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Schizas, C.; Theumann, N.; Burn, A.; Tansey, R.; Wardlaw, D.; Smith, F.W.; Kulik, G. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine 2010, 35, 1919–1924. [Google Scholar] [CrossRef]
- Ozeki, N.; Aota, Y.; Uesugi, M.; Kaneko, K.; Mihara, H.; Niimura, T.; Saito, T. Clinical results of intrapedicular partial pediculectomy for lumbar foraminal stenosis. J. Spinal Disord. Tech. 2008, 21, 324–327. [Google Scholar] [CrossRef]
- Park, Y.K.; Kim, J.H.; Chung, H.S.; Suh, J.K. Microsurgical midline approach for the decompression of extraforaminal stenosis in L5-S1. J. Neurosurg. 2003, 98, 264–270. [Google Scholar] [CrossRef]
- Zekaj, E.; Menghetti, C.; Saleh, C.; Isidori, A.; Bona, A.R.; Aimar, E.; Servello, D. Contralateral interlaminar approach for intraforaminal lumbar degenerative disease with special emphasis on L5-S1 level: A technical note. Surg. Neurol. Int. 2016, 7, 88. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.S.; Baba, T.; Matsumae, M. Long-term Outcomes after Microsurgical Decompression of Lumbar Foraminal Stenosis and Adverse Effects of Preoperative Scoliosis: A Prospective Cohort Study. Neurol. Med. Chir. 2021, 61, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Reinshagen, C.; Redjal, N.; Molcanyi, M.; Rieger, B. Surgical Approaches to the Lumbar Hidden Zone: Current Strategies and Future Directions. eBioMedicine 2015, 2, 1005–1007. [Google Scholar] [CrossRef]
- Yamada, H.; Yoshida, M.; Hashizume, H.; Minamide, A.; Nakagawa, Y.; Kawai, M.; Iwasaki, H.; Tsutsui, S. Efficacy of novel minimally invasive surgery using spinal microendoscope for treating extraforaminal stenosis at the lumbosacral junction. J. Spinal Disord. Tech. 2012, 25, 268–276. [Google Scholar] [CrossRef]
- Song, Q.P.; Hai, B.; Zhao, W.K.; Huang, X.; Liu, K.X.; Zhu, B.; Liu, X.G. Full-Endoscopic Foraminotomy with a Novel Large Endoscopic Trephine for Severe Degenerative Lumbar Foraminal Stenosis at L(5) S(1) Level: An Advanced Surgical Technique. Orthop. Surg. 2021, 13, 659–668. [Google Scholar] [CrossRef]
- Knight, M.T.; Vajda, A.; Jakab, G.V.; Awan, S. Endoscopic laser foraminoplasty on the lumbar spine—Early experience. Minim. Invasive Neurosurg. 1998, 41, 5–9. [Google Scholar] [CrossRef]
- Knight, M.T.; Goswami, A.; Patko, J.T.; Buxton, N. Endoscopic foraminoplasty: A prospective study on 250 consecutive patients with independent evaluation. J. Clin. Laser Med. Surg. 2001, 19, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Lee, S.H.; Park, W.M.; Lee, H.Y. Posterolateral percutaneous endoscopic lumbar foraminotomy for L5-S1 foraminal or lateral exit zone stenosis. Technical note. J. Neurosurg. 2003, 99, 320–323. [Google Scholar] [CrossRef]
- Schubert, M.; Hoogland, T. Endoscopic transforaminal nucleotomy with foraminoplasty for lumbar disk herniation. Oper. Orthop. Traumatol. 2005, 17, 641–661. [Google Scholar] [CrossRef]
- Giordan, E.; Billeci, D.; Del Verme, J.; Varrassi, G.; Coluzzi, F. Endoscopic Transforaminal Lumbar Foraminotomy: A Systematic Review and Meta-Analysis. Pain Ther. 2021, 10, 1481–1495. [Google Scholar] [CrossRef] [PubMed]
- Telfeian, A.E.; Veeramani, A.; Zhang, A.S.; Quinn, M.S.; Daniels, A.H. Transforaminal 360° lumbar endoscopic foraminotomy in postfusion patients: Technical note and case series. J. Neurosurg. Spine 2022, 36, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Kim, J.U.; Lee, B.H.; Lee, S.H.; Park, J.D.; Hong, D.H.; Lee, J.H. Postoperative retroperitoneal hematoma following transforaminal percutaneous endoscopic lumbar discectomy. J. Neurosurg. Spine 2009, 10, 595–602. [Google Scholar] [CrossRef]
- Kim, H.S.; Ju, C.I.; Kim, S.W.; Kim, J.G. Huge Psoas Muscle Hematoma due to Lumbar Segmental Vessel Injury Following Percutaneous Endoscopic Lumbar Discectomy. J. Korean Neurosurg. Soc. 2009, 45, 192–195. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Zhang, Z. Postoperative dysesthesia in minimally invasive transforaminal lumbar interbody fusion: A report of five cases. Eur. Spine J. 2016, 25, 1595–1600. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.Y.; Wu, P.H.; Jang, I.T. Effect of Dorsal Root Ganglion Retraction in Endoscopic Lumbar Decompressive Surgery for Foraminal Pathology: A Retrospective Cohort Study of Interlaminar Contralateral Endoscopic Lumbar Foraminotomy and Discectomy versus Transforaminal Endoscopic Lumbar Foraminotomy and Discectomy. World Neurosurg. 2021, 148, e101–e114. [Google Scholar] [CrossRef]
- Nakashima, H.; Kawakami, N.; Tsuji, T.; Ohara, T.; Suzuki, Y.; Saito, T.; Nohara, A.; Tauchi, R.; Ohta, K.; Hamajima, N.; et al. Adjacent Segment Disease After Posterior Lumbar Interbody Fusion: Based on Cases with a Minimum of 10 Years of Follow-up. Spine 2015, 40, E831–E841. [Google Scholar] [CrossRef]
- Menezes-Reis, R.; Bonugli, G.P.; Dalto, V.F.; da Silva Herrero, C.F.P.; Defino, H.L.A.; Nogueira-Barbosa, M.H. Association Between Lumbar Spine Sagittal Alignment and L4–L5 Disc Degeneration Among Asymptomatic Young Adults. Spine 2016, 41, e1081–e1087. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Matsuda, H.; Cho, H.; Habunaga, H.; Kono, H.; Nakamura, H. Clinical and Radiological Outcomes of Microscopic Partial Pediculectomy for Degenerative Lumbar Foraminal Stenosis. Spine 2013, 38, E723–E731. [Google Scholar] [CrossRef] [PubMed]
Variables | Cases (n = 11) | Controls (n = 33) | p-Value | |
---|---|---|---|---|
Age (years) | 69.2 ± 6.6 | 66.0 ± 7.5 | 0.412 | |
Sex | ||||
Male | 8 (72.7) | 18 (54.5) | ||
Female | 3 (27.3) | 15 (45.5) | 0.286 | |
Level of surgery | ||||
L3–4 | 3 (27.2) | 7 (21.2) | ||
L4–5 | 6 (54.5) | 19 (59.4) | ||
L5–S1 | 2 (18.2) | 19 (21.2) | 0.912 | |
ASD | ||||
Present | 1 (9.1) | 4 (12.1) | ||
Absent | 10 (90.9) | 29 (87.9) | 0.750 | |
Spondylolisthesis (GI) | ||||
Present | 2 (18.2) | 3 (9.1) | ||
Absent | 9 (81.8) | 30 (90.9) | 0.442 | |
VAS | ||||
Preoperative | 8.1 ± 1.4 | 7.5 ± 1.6 | 0.295 | |
Postoperative | 3.3 ± 1.6 | 3.0 ± 1.7 | 0.574 | |
F/U at 6 months | 5.7 ± 1.0 | 2.3 ± 0.9 | <0.001 * | |
Recurrence time in months | 6.1 ± 1.3 | |||
F/U period (months) | 26.0 ± 5.7 | 20.5 ± 3.2 | 0.02 * | |
Complications | ||||
Dysesthesia | 1 (9.1) | 3 (9.1) | 1.0 | |
Motor weakness | 1 (9.1) | 1 (6.1) | 0.712 |
Preoperative Values | 6-Month Follow-Up Values | p-Value * | |
---|---|---|---|
Cases (n = 11) | |||
Disc height | 7.1 ± 2.3 | 5.8 ± 2.4 | 0.041* |
Foraminal height | 15.3 ± 1.5 | 13.2 ± 1.2 | 0.025 * |
Disc wedging (angle) | 3.5 ± 0.9 | 5.7 ± 1.5 | 0.002 * |
Coronal Cobb’s angle | 9.6 ± 5.4 | 12.2 ± 6.2 | 0.041 * |
Total lumbar lordosis angle | 35.1 ± 10.1 | 34.3 ± 10.8 | 0.241 |
Segmental lumbar lordosis angle | 11.3 ± 5.5 | 10.4 ± 6.7 | 0.725 |
Dynamic segmental lumbar lordosis angle | 9.9 ± 4.8 | 5.8 ± 4.3 | 0.944 |
Controls (n = 33) | |||
Disc height | 8.2 ± 1.9 | 7.4 ± 1.8 | 0.192 |
Foraminal height | 15.1 ± 2.0 | 14.8 ± 2.1 | 0.281 |
Disc wedging (angle) | 0.6 ± 1.2 | 0.9 ± 1.0 | 0.618 |
Coronal Cobb’s angle | 4.5 ± 2.6 | 4.1 ± 2.5 | 0.238 |
Total lumbar lordosis angle | 36.5 ± 10.5 | 39.8 ± 10.2 | 0.037 * |
Segmental lumbar lordosis angle | 17.2 ± 4.8 | 19.4 ± 4.5 | 0.029 * |
Dynamic segmental lumbar lordosis angle | 7.2 ± 3.6 | 6.9 ± 3.5 | 0.612 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.-H.; Kim, P.; Ju, C.-I.; Seo, J.-H. Postoperative Radiologic Changes in Early Recurrent Lumbar Foraminal Stenosis After Transforaminal Endoscopic Lumbar Foraminotomy for Lower Lumbar Segments. Diagnostics 2025, 15, 1299. https://doi.org/10.3390/diagnostics15101299
Kim C-H, Kim P, Ju C-I, Seo J-H. Postoperative Radiologic Changes in Early Recurrent Lumbar Foraminal Stenosis After Transforaminal Endoscopic Lumbar Foraminotomy for Lower Lumbar Segments. Diagnostics. 2025; 15(10):1299. https://doi.org/10.3390/diagnostics15101299
Chicago/Turabian StyleKim, Chi-Ho, Pius Kim, Chang-Il Ju, and Jong-Hun Seo. 2025. "Postoperative Radiologic Changes in Early Recurrent Lumbar Foraminal Stenosis After Transforaminal Endoscopic Lumbar Foraminotomy for Lower Lumbar Segments" Diagnostics 15, no. 10: 1299. https://doi.org/10.3390/diagnostics15101299
APA StyleKim, C.-H., Kim, P., Ju, C.-I., & Seo, J.-H. (2025). Postoperative Radiologic Changes in Early Recurrent Lumbar Foraminal Stenosis After Transforaminal Endoscopic Lumbar Foraminotomy for Lower Lumbar Segments. Diagnostics, 15(10), 1299. https://doi.org/10.3390/diagnostics15101299