Absolute Quantification in Diagnostic SPECT/CT: The Phantom Premise
Abstract
1. Introduction
2. Understanding the Need for Quantification
3. Requirements for Absolute Quantification
4. From Feasibility Study to Clinical Practice
5. Phantoms in Nuclear Medicine
6. 3D-Printed Phantoms: A New Hope?
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bailey, D.L.; Willowson, K.P. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur. J. Nucl. Med. Mol. Imaging 2014, 41 (Suppl. S1), S17–S25. [Google Scholar] [CrossRef]
- Dickson, J.; Ross, J.; Voo, S. Quantitative SPECT: The time is now. EJNMMI Phys. 2019, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Israel, O.; Pellet, O.; Biassoni, L.; De Palma, D.; Estrada-Lobato, E.; Gnanasegaran, G.; Kuwert, T.; la Fougere, C.; Mariani, G.; Massalha, S.; et al. Two decades of SPECT/CT—The coming of age of a technology: An updated review of literature evidence. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1990–2012. [Google Scholar] [CrossRef]
- Van den Wyngaert, T.; Elvas, F.; De Schepper, S.; Kennedy, J.A.; Israel, O. SPECT/CT: Standing on the Shoulders of Giants, It Is Time to Reach for the Sky! J. Nucl. Med. 2020, 61, 1284–1291. [Google Scholar] [CrossRef]
- Ritt, P.; Kuwert, T. Quantitative SPECT/CT. Recent Results Cancer Res. 2013, 187, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Solnes, L.; Werner, R.; Jones, K.M.; Sadaghiani, M.S.; Bailey, C.R.; Lapa, C.; Pomper, M.G.; Rowe, S.P. Theranostics: Leveraging Molecular Imaging and Therapy to Impact Patient Management and Secure the Future of Nuclear Medicine. J. Nucl. Med. 2020, 61, 311–318. [Google Scholar] [CrossRef]
- Hofman, M.S.; Emmett, L.; Sandhu, S.; Iravani, A.; Joshua, A.M.; Goh, J.C.; Pattison, D.A.; Tan, T.H.; Kirkwood, I.D.; Ng, S.; et al. [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): A randomised, open-label, phase 2 trial. Lancet 2021, 397, 797–804. [Google Scholar] [CrossRef]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Konik, A.; O’Donoghue, J.A.; Wahl, R.L.; Graham, M.M.; Van den Abbeele, A.D. Theranostics: The Role of Quantitative Nuclear Medicine Imaging. Semin. Radiat. Oncol. 2021, 31, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Gregory, R.A.; Murray, I.; Gear, J.; Leek, F.; Chittenden, S.; Fenwick, A.; Wevrett, J.; Scuffham, J.; Tipping, J.; Murby, B.; et al. Standardised quantitative radioiodine SPECT/CT Imaging for multicentre dosimetry trials in molecular radiotherapy. Phys. Med. Biol. 2019, 64, 245013. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Lugassi, R.; Gill, R.; Keidar, Z. Digital Solid-State SPECT/CT Quantitation of Absolute (177)Lu Radiotracer Concentration: In Vivo and In Vitro Validation. J. Nucl. Med. 2020, 61, 1381–1387. [Google Scholar] [CrossRef]
- Peters, S.M.B.; Meyer Viol, S.L.; van der Werf, N.R.; de Jong, N.; van Velden, F.H.P.; Meeuwis, A.; Konijnenberg, M.W.; Gotthardt, M.; de Jong, H.; Segbers, M. Variability in lutetium-177 SPECT quantification between different state-of-the-art SPECT/CT systems. EJNMMI Phys. 2020, 7, 9. [Google Scholar] [CrossRef]
- Tran-Gia, J.; Salas-Ramirez, M.; Lassmann, M. What You See Is Not What You Get—On the Accuracy of Voxel-Based Dosimetry in Molecular Radiotherapy. J. Nucl. Med. 2019, 61, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zang, J.; Wang, H.; Liu, Q.; Li, F.; Lin, Y.; Huo, L.; Jacobson, O.; Niu, G.; Fan, X.; et al. Pretherapeutic 68Ga-PSMA-617 PET May Indicate the Dosimetry of 177Lu-PSMA-617 and 177Lu-EB-PSMA-617 in Main Organs and Tumor Lesions. Clin. Nucl. Med. 2019, 44, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Willowson, K.P.; Tapner, M.; Team, Q.I.; Bailey, D.L. A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres: The QUEST Phantom Study. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1202–1222. [Google Scholar] [CrossRef] [PubMed]
- Rosar, F.; Schon, N.; Bohnenberger, H.; Bartholoma, M.; Stemler, T.; Maus, S.; Khreish, F.; Ezziddin, S.; Schaefer-Schuler, A. Comparison of different methods for post-therapeutic dosimetry in [(177)Lu]Lu-PSMA-617 radioligand therapy. EJNMMI Phys. 2021, 8, 40. [Google Scholar] [CrossRef]
- Bailey, D.L.; Willowson, K.P. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J. Nucl. Med. 2013, 54, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Dickson, J.C. Quantitative SPECT: A survey of current practice in the UK Nuclear Medicine Community. Nucl. Med. Commun. 2019, 40, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.T.; Gault, R.S. A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf. 1998, 38, 1257–1287. [Google Scholar] [CrossRef]
- Filippou, V.; Tsoumpas, C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med. Phys. 2018, 45, e740–e760. [Google Scholar] [CrossRef] [PubMed]
- Masri, A.; Bukhari, S.; Eisele, Y.S.; Soman, P. Molecular Imaging of Cardiac Amyloidosis. J. Nucl. Med. 2020, 61, 965–970. [Google Scholar] [CrossRef]
- Saridin, C.P.; Raijmakers, P.G.; Al Shamma, S.; Tuinzing, D.B.; Becking, A.G. Comparison of different analytical methods used for analyzing SPECT scans of patients with unilateral condylar hyperactivity. Int. J. Oral Maxillofac. Surg. 2009, 38, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Morbelli, S.; Esposito, G.; Arbizu, J.; Barthel, H.; Boellaard, R.; Bohnen, N.I.; Brooks, D.J.; Darcourt, J.; Dickson, J.C.; Douglas, D.; et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1885–1912. [Google Scholar] [CrossRef] [PubMed]
- Blaufox, M.D.; De Palma, D.; Taylor, A.; Szabo, Z.; Prigent, A.; Samal, M.; Li, Y.; Santos, A.; Testanera, G.; Tulchinsky, M. The SNMMI and EANM practice guideline for renal scintigraphy in adults. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2218–2228. [Google Scholar] [CrossRef]
- Qi, N.; Meng, Q.; You, Z.; Chen, H.; Shou, Y.; Zhao, J. Standardized uptake values of (99m)Tc-MDP in normal vertebrae assessed using quantitative SPECT/CT for differentiation diagnosis of benign and malignant bone lesions. BMC Med. Imaging 2021, 21, 39. [Google Scholar] [CrossRef]
- Mohd Rohani, M.F.; Mat Nawi, N.; Shamim, S.E.; Wan Sohaimi, W.F.; Wan Zainon, W.M.N.; Musarudin, M.; Said, M.A.; Hashim, H. Maximum standardized uptake value from quantitative bone single-photon emission computed tomography/computed tomography in differentiating metastatic and degenerative joint disease of the spine in prostate cancer patients. Ann. Nucl. Med. 2020, 34, 39–48. [Google Scholar] [CrossRef]
- Tabotta, F.; Jreige, M.; Schaefer, N.; Becce, F.; Prior, J.O.; Nicod Lalonde, M. Quantitative bone SPECT/CT: High specificity for identification of prostate cancer bone metastases. BMC Musculoskelet Disord. 2019, 20, 619. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Yu, H.; Song, J.; Zhou, Y.; Shi, H. The value of skeletal standardized uptake values obtained by quantitative single-photon emission computed tomography-computed tomography in differential diagnosis of bone metastases. Nucl. Med. Commun. 2021, 42, 63–67. [Google Scholar] [CrossRef]
- Dorbala, S.; Park, M.A.; Cuddy, S.; Singh, V.; Sullivan, K.; Kim, S.; Falk, R.H.; Taqueti, V.; Skali, H.; Blankstein, R.; et al. Absolute Quantitation of Cardiac (99m)Tc-pyrophosphate Using Cadmium Zinc Telluride-based SPECT/CT. J. Nucl. Med. 2021, 62, 716–722. [Google Scholar] [CrossRef]
- Huang, S.C. Anatomy of SUV. Standardized uptake value. Nucl. Med. Biol. 2000, 27, 643–646. [Google Scholar] [CrossRef]
- Boellaard, R.; Krak, N.C.; Hoekstra, O.S.; Lammertsma, A.A. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: A simulation study. J. Nucl. Med. 2004, 45, 1519–1527. [Google Scholar] [PubMed]
- Adams, M.C.; Turkington, T.G.; Wilson, J.M.; Wong, T.Z. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am. J. Roentgenol. 2010, 195, 310–320. [Google Scholar] [CrossRef]
- Kaalep, A.; Sera, T.; Rijnsdorp, S.; Yaqub, M.; Talsma, A.; Lodge, M.A.; Boellaard, R. Feasibility of state of the art PET/CT systems performance harmonisation. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1344–1361. [Google Scholar] [CrossRef] [PubMed]
- Erlandsson, K.; Buvat, I.; Pretorius, P.H.; Thomas, B.A.; Hutton, B.F. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys. Med. Biol. 2012, 57, R119–R159. [Google Scholar] [CrossRef]
- O’Connor M, K.; Kemp, B.; Anstett, F.; Christian, P.; Ficaro, E.P.; Frey, E.; Jacobs, M.; Kritzman, J.N.; Pooley, R.A.; Wilk, M. A multicenter evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models. J. Nucl. Cardiol. 2002, 9, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Hutton, B.F.; Buvat, I.; Beekman, F.J. Review and current status of SPECT scatter correction. Phys. Med. Biol. 2011, 56, R85–R112. [Google Scholar] [CrossRef]
- Sohlberg, A.O.; Kajaste, M.T. Fast Monte Carlo-simulator with full collimator and detector response modelling for SPECT. Ann. Nucl. Med. 2012, 26, 92–98. [Google Scholar] [CrossRef]
- Cheng, G.; Torigian, D.A.; Zhuang, H.; Alavi, A. When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET? Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 779–787. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Chen, J.H.; Ding, H.J.; Liang, J.A.; Yeh, J.J.; Kao, C.H. Potential value of dual-time-point (1)(8)F-FDG PET compared with initial single-time-point imaging in differentiating malignant from benign pulmonary nodules: A systematic review and meta-analysis. Nucl. Med. Commun. 2012, 33, 1011–1018. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Van den Wyngaert, T.; Strobel, K.; Kampen, W.U.; Kuwert, T.; van der Bruggen, W.; Mohan, H.K.; Gnanasegaran, G.; Delgado-Bolton, R.; Weber, W.A.; Beheshti, M.; et al. The EANM practice guidelines for bone scintigraphy. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1723–1738. [Google Scholar] [CrossRef] [PubMed]
- Kapucu, O.L.; Nobili, F.; Varrone, A.; Booij, J.; Vander Borght, T.; Nagren, K.; Darcourt, J.; Tatsch, K.; Van Laere, K.J. EANM procedure guideline for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals, version 2. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 2093–2102. [Google Scholar] [CrossRef]
- Bartel, T.B.; Kuruva, M.; Gnanasegaran, G.; Beheshti, M.; Cohen, E.J.; Weissman, A.F.; Yarbrough, T.L. SNMMI Procedure Standard for Bone Scintigraphy 4.0. J. Nucl. Med. Technol. 2018, 46, 398–404. [Google Scholar]
- Ackerhalt, R.E.; Blau, M.; Bakshi, S.; Sondel, J.A. A comparative study of three 99mTc-labeled phosphorus compounds and 18F-fluoride for skeletal imaging. J. Nucl. Med. 1974, 15, 1153–1157. [Google Scholar]
- Phelps, M.E.; Huang, S.C.; Hoffman, E.J.; Selin, C.; Sokoloff, L.; Kuhl, D.E. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method. Ann. Neurol. 1979, 6, 371–388. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.M.B.; van der Werf, N.R.; Segbers, M.; van Velden, F.H.P.; Wierts, R.; Blokland, K.; Konijnenberg, M.W.; Lazarenko, S.V.; Visser, E.P.; Gotthardt, M. Towards standardization of absolute SPECT/CT quantification: A multi-center and multi-vendor phantom study. EJNMMI Phys. 2019, 6, 29. [Google Scholar] [CrossRef]
- Hutton, B.F.; Erlandsson, K.; Thielemans, K. Advances in clinical molecular imaging instrumentation. Clin. Transl. Imaging 2018, 6, 31–45. [Google Scholar] [CrossRef]
- EANM. EARL. Available online: https://earl.eanm.org/ (accessed on 12 October 2021).
- Zhang, R.; Wang, M.; Zhou, Y.; Wang, S.; Shen, Y.; Li, N.; Wang, P.; Tan, J.; Meng, Z.; Jia, Q. Impacts of acquisition and reconstruction parameters on the absolute technetium quantification of the cadmium-zinc-telluride-based SPECT/CT system: A phantom study. EJNMMI Phys. 2021, 8, 66. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Reizberg, I.; Lugassi, R.; Himmelman, S.; Keidar, Z. Absolute radiotracer concentration measurement using whole-body solid-state SPECT/CT technology: In vivo/in vitro validation. Med. Biol. Eng. Comput. 2019, 57, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, D.E.; Edwards, R.Q. Image Separation Radioisotope Scanning. Radiology 1963, 80, 653–662. [Google Scholar] [CrossRef]
- Jaszczak, R.J.; Murphy, P.H.; Huard, D.; Burdine, J.A. Radionuclide emission computed tomography of the head with 99mCc and a scintillation camera. J. Nucl. Med. 1977, 18, 373–380. [Google Scholar]
- Ismail, F.S.; Mansor, S. Impact of Resolution Recovery in Quantitative (99m)Tc SPECT/CT Cardiac Phantom Studies. J. Med. Imaging Radiat. Sci. 2019, 50, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Blaire, T.; Bailliez, A.; Ben Bouallegue, F.; Bellevre, D.; Agostini, D.; Manrique, A. First assessment of simultaneous dual isotope ((123)I/(99m)Tc) cardiac SPECT on two different CZT cameras: A phantom study. J. Nucl. Cardiol. 2018, 25, 1692–1704. [Google Scholar] [CrossRef] [PubMed]
- Fukami, M.; Matsutomo, N.; Yamamoto, T. Optimization of Number of Iterations as a Reconstruction Parameter in Bone SPECT Imaging Using a Novel Thoracic Spine Phantom. J. Nucl. Med. Technol. 2021, 49, 143–149. [Google Scholar] [CrossRef]
- Rakvongthai, Y.; Fahey, F.; Borvorntanajanya, K.; Tepmongkol, S.; Vutrapongwatana, U.; Zukotynski, K.; El Fakhri, G.; Ouyang, J. Joint reconstruction of Ictal/inter-ictal SPECT data for improved epileptic foci localization. Med. Phys. 2017, 44, 1437–1444. [Google Scholar] [CrossRef]
- Syed, I.S.; Glockner, J.F.; Feng, D.; Araoz, P.A.; Martinez, M.W.; Edwards, W.D.; Gertz, M.A.; Dispenzieri, A.; Oh, J.K.; Bellavia, D.; et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc. Imaging 2010, 3, 155–164. [Google Scholar] [CrossRef]
- de Dreuille, O.; Strijckmans, V.; Ameida, P.; Loc’h, C.; Bendriem, B. Bone equivalent liquid solution to assess accuracy of transmission measurements in SPECT and PET. IEEE Trans. Nucl. Sci. 1997, 44, 1186–1190. [Google Scholar] [CrossRef]
- Gear, J.I.; Cummings, C.; Craig, A.J.; Divoli, A.; Long, C.D.; Tapner, M.; Flux, G.D. Abdo-Man: A 3D-printed anthropomorphic phantom for validating quantitative SIRT. EJNMMI Phys. 2016, 3, 17. [Google Scholar] [CrossRef]
- Robinson, A.P.; Tipping, J.; Cullen, D.M.; Hamilton, D.; Brown, R.; Flynn, A.; Oldfield, C.; Page, E.; Price, E.; Smith, A.; et al. Organ-specific SPECT activity calibration using 3D-printed phantoms for molecular radiotherapy dosimetry. EJNMMI Phys. 2016, 3, 12. [Google Scholar] [CrossRef]
- Gear, J.I.; Long, C.; Rushforth, D.; Chittenden, S.J.; Cummings, C.; Flux, G.D. Development of patient-specific molecular imaging phantoms using a 3D printer. Med. Phys. 2014, 41, 082502. [Google Scholar] [CrossRef]
- Woliner-van der Weg, W.; Deden, L.N.; Meeuwis, A.P.; Koenrades, M.; Peeters, L.H.; Kuipers, H.; Laanstra, G.J.; Gotthardt, M.; Slump, C.H.; Visser, E.P. A 3D-printed anatomical pancreas and kidney phantom for optimizing SPECT/CT reconstruction settings in beta cell imaging using (111)In-exendin. EJNMMI Phys. 2016, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Tran-Gia, J.; Schlogl, S.; Lassmann, M. Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology. J. Nucl. Med. 2016, 57, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Tran-Gia, J.; Lassmann, M. Optimizing Image Quantification for (177)Lu SPECT/CT Based on a 3D Printed 2-Compartment Kidney Phantom. J. Nucl. Med. 2018, 59, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Iida, H.; Hori, Y.; Ishida, K.; Imabayashi, E.; Matsuda, H.; Takahashi, M.; Maruno, H.; Yamamoto, A.; Koshino, K.; Enmi, J.; et al. Three-dimensional brain phantom containing bone and grey matter structures with a realistic head contour. Ann. Nucl. Med. 2013, 27, 25–36. [Google Scholar] [CrossRef]
- Negus, I.S.; Holmes, R.B.; Jordan, K.C.; Nash, D.A.; Thorne, G.C.; Saunders, M. Technical Note: Development of a 3D-printed subresolution sandwich phantom for validation of brain SPECT analysis. Med. Phys. 2016, 43, 5020. [Google Scholar] [CrossRef]
- Jonasson, L.S.; Axelsson, J.; Riklund, K.; Boraxbekk, C.J. Simulating effects of brain atrophy in longitudinal PET imaging with an anthropomorphic brain phantom. Phys. Med. Biol. 2017, 62, 5213–5227. [Google Scholar] [CrossRef][Green Version]
- Alqahtani, M.S.; Lees, J.E.; Bugby, S.L.; Samara-Ratna, P.; Ng, A.H.; Perkins, A.C. Design and implementation of a prototype head and neck phantom for the performance evaluation of gamma imaging systems. EJNMMI Phys. 2017, 4, 19. [Google Scholar] [CrossRef][Green Version]
- Verrecchia-Ramos, E.; Morel, O.; Retif, P.; Ben Mahmoud, S. Innovative procedure for measuring left ventricular ejection fraction from (18)F-FDG first-pass ultra-sensitive digital PET/CT images: Evaluation with an anthropomorphic heart phantom. EJNMMI Phys. 2021, 8, 42. [Google Scholar] [CrossRef]
- Black, D.G.; Yazdi, Y.O.; Wong, J.; Fedrigo, R.; Uribe, C.; Kadrmas, D.J.; Rahmim, A.; Klyuzhin, I.S. Design of an anthropomorphic PET phantom with elastic lungs and respiration modeling. Med. Phys. 2021, 48, 4205–4217. [Google Scholar] [CrossRef]
- Bouchet, L.G.; Bolch, W.E.; Blanco, H.P.; Wessels, B.W.; Siegel, J.A.; Rajon, D.A.; Clairand, I.; Sgouros, G. MIRD Pamphlet No 19: Absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney. J. Nucl. Med. 2003, 44, 1113–1147. [Google Scholar]
- Afanasenka, K.; Vaitkienė, D.; Kulakienė, I.; Šedienė, S.; Šimeliūnaitė, I. European Association of Nuclear Medicine October 20–23, 2021 Virtual. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1–648. [Google Scholar] [CrossRef]
- Gear, J.I.; Cummings, C.; Sullivan, J.; Cooper-Rayner, N.; Downs, P.; Murray, I.; Flux, G.D. Radioactive 3D printing for the production of molecular imaging phantoms. Phys. Med. Biol. 2020, 65, 175019. [Google Scholar] [CrossRef]
- Lappchen, T.; Meier, L.P.; Furstner, M.; Prenosil, G.A.; Krause, T.; Rominger, A.; Klaeser, B.; Hentschel, M. 3D printing of radioactive phantoms for nuclear medicine imaging. EJNMMI Phys. 2020, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Gillett, D.; Marsden, D.; Ballout, S.; Attili, B.; Bird, N.; Heard, S.; Gurnell, M.; Mendichovszky, I.A.; Aloj, L. 3D printing (18)F radioactive phantoms for PET imaging. EJNMMI Phys. 2021, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Ehler, E.; Craft, D.; Rong, Y. 3D printing technology will eventually eliminate the need of purchasing commercial phantoms for clinical medical physics QA procedures. J. Appl. Clin. Med. Phys. 2018, 19, 8–12. [Google Scholar] [CrossRef] [PubMed]
- NIH. NIH 3D Print Exchange. Available online: https://3dprint.nih.gov/ (accessed on 12 October 2021).
- Tran-Gia, J.; Denis-Bacelar, A.M.; Ferreira, K.M.; Robinson, A.P.; Calvert, N.; Fenwick, A.J.; Finocchiaro, D.; Fioroni, F.; Grassi, E.; Heetun, W.; et al. A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project. EJNMMI Phys. 2021, 8, 55. [Google Scholar] [CrossRef] [PubMed]
Author | Region | Method | Evaluation | Isotopes |
---|---|---|---|---|
Iida et al., 2013 [66] | Brain | SLA | Visual | F, Tc, I |
Gear et al., 2014 [62] | Abdomen (liver, spleen, kidneys) | SLA | Visual | F, Tc |
Gear et al., 2016 [60] | Liver, spherical inserts | FDM | Total activity | Tc, Y |
Negus et al., 2016 [67] | Brain | FDM | Visual | Tc |
Tran-Gia et al., 2016 [64] | Kidney | FDM | CF | Tc, Lu, I |
Tran-Gia et al., 2018 [65] | Kidney | FDM | CF | Lu |
Robinson et al., 2016 [61] | Abdomen (liver, spleen, kidney, pancreas) | FDM | CF | Tc, Lu |
Woliner-van der Weg et al., 2016 [63] | Pancreas, kidney | FDM | Ratio | In |
Alqahtani et al., 2017 [69] | Head & Neck | FDM | CNR | Tc |
Jonasson et al., 2017 [68] | Striata | FDM | RC | F |
Verrecchia-Ramos et al., 2021 [70] | Heart | FDM | LVEF | F, Tc |
Black et al., 2021 [71] | Lungs | Unknown | Not yet | N/A |
Imaging | Modality | |
Processing | ||
Software | Application in workflow | |
3D Printer | Model | |
Material | Type | |
Relevant properties | ||
Technical | Layer thickness | |
Phantom thickness | ||
Attachments | Type | |
Position | ||
Filling method | ||
Assembly | Single/multiple parts | |
Assembly method | ||
Key design choices | ||
Flow chart of the design process |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Schepper, S.; Gnanasegaran, G.; Dickson, J.C.; Van den Wyngaert, T. Absolute Quantification in Diagnostic SPECT/CT: The Phantom Premise. Diagnostics 2021, 11, 2333. https://doi.org/10.3390/diagnostics11122333
De Schepper S, Gnanasegaran G, Dickson JC, Van den Wyngaert T. Absolute Quantification in Diagnostic SPECT/CT: The Phantom Premise. Diagnostics. 2021; 11(12):2333. https://doi.org/10.3390/diagnostics11122333
Chicago/Turabian StyleDe Schepper, Stijn, Gopinath Gnanasegaran, John C. Dickson, and Tim Van den Wyngaert. 2021. "Absolute Quantification in Diagnostic SPECT/CT: The Phantom Premise" Diagnostics 11, no. 12: 2333. https://doi.org/10.3390/diagnostics11122333
APA StyleDe Schepper, S., Gnanasegaran, G., Dickson, J. C., & Van den Wyngaert, T. (2021). Absolute Quantification in Diagnostic SPECT/CT: The Phantom Premise. Diagnostics, 11(12), 2333. https://doi.org/10.3390/diagnostics11122333