Cerebral [18F]-FDOPA Uptake in Autism Spectrum Disorder and Its Association with Autistic Traits
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Autism Spectrum Quotient
2.3. MRI and PET/CT Acquisition and Processing
2.4. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. ROI Analyses
3.3. Voxel-Based Comparisons
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 2001, 31, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.D.; Taylor, M.; Roberts, A.D.; Oakes, T.R.; Schueller, M.; Holden, J.E.; Malischke, L.; DeJesus, O.T.; Nickles, R.J. FluoroDOPA PET shows the nondopaminergic as well as dopaminergic destinations of levodopa. Neurology 1999, 53, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Cauda, F.; Geda, E.; Sacco, K.; D’Agata, F.; Duca, S.; Geminiani, G.; Keller, R. Grey matter abnormality in autism spectrum disorder: An activation likelihood estimation meta-analysis study. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Cools, R.; D’Esposito, M. Inverted-U–shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry 2011, 69, e113–e125. [Google Scholar] [CrossRef] [PubMed]
- Damasio, A.R.; Maurer, R.G. A neurological model for childhood autism. Arch. Neurol. 1978, 35, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Egerton, A.; Demjaha, A.; McGuire, P.; Mehta, M.A.; Howes, O.D. The test–retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function. Neuroimage 2010, 50, 524–531. [Google Scholar] [CrossRef]
- Ernst, M.; Zametkin, A.; Matochik, J.; Pascualvaca, D.; Cohen, R. Low medial prefrontal dopaminergic activity in autistic children. Lancet 1997, 350, 638. [Google Scholar] [CrossRef]
- Fuccillo, M.V. Striatal circuits as a common node for autism pathophysiology. Front. Neurosci. 2016, 10, 27. [Google Scholar] [CrossRef]
- Hammers, A.; Allom, R.; Koepp, M.J.; Free, S.L.; Myers, R.; Lemieux, L.; Mitchell, T.N.; Brooks, D.J.; Duncan, J.S. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum. Brain Mapp. 2003, 19, 224–247. [Google Scholar] [CrossRef]
- Hoekstra, R.A.; Bartels, M.; Cath, D.C.; Boomsma, D.I. Factor structure, reliability and criterion validity of the Autism-Spectrum Quotient (AQ): A study in Dutch population and patient groups. J. Autism Dev. Disord. 2008, 38, 1555–1566. [Google Scholar] [CrossRef]
- Hus, V.; Lord, C. The autism diagnostic observation schedule, module 4: Revised algorithm and standardized severity scores. J. Autism Dev. Disord. 2014, 44, 1996–2012. [Google Scholar] [CrossRef] [PubMed]
- JASP Team. JASP (Version 0.16); University of Amsterdam: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Kapur, S.; Mizrahi, R.; Li, M. From dopamine to salience to psychosis—Linking biology, pharmacology and phenomenology of psychosis. Schizophr. Res. 2005, 79, 59–68. [Google Scholar] [CrossRef]
- Kubota, M.; Fujino, J.; Tei, S.; Takahata, K.; Matsuoka, K.; Tagai, K.; Sano, Y.; Yamamoto, Y.; Shimada, H.; Takado, Y. Binding of Dopamine D1 receptor and noradrenaline transporter in individuals with autism spectrum disorder: A PET study. Cereb. Cortex 2020, 30, 6458–6468. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.-C.; Kassee, C.; Besney, R.; Bonato, S.; Hull, L.; Mandy, W.; Szatmari, P.; Ameis, S.H. Prevalence of co-occurring mental health diagnoses in the autism population: A systematic review and meta-analysis. Lancet Psychiatry 2019, 6, 819–829. [Google Scholar] [CrossRef]
- Lord, C.; Petkova, E.; Hus, V.; Gan, W.; Lu, F.; Martin, D.M.; Ousley, O.; Guy, L.; Bernier, R.; Gerdts, J. A multisite study of the clinical diagnosis of different autism spectrum disorders. Arch. Gen. Psychiatry 2012, 69, 306–313. [Google Scholar] [CrossRef]
- Moore, R.Y.; Whone, A.L.; McGowan, S.; Brooks, D.J. Monoamine neuron innervation of the normal human brain: An 18F-DOPA PET study. Brain Res. 2003, 982, 137–145. [Google Scholar] [CrossRef]
- Nieminen-von Wendt, T.S.; Metsähonkala, L.; Kulomäki, T.A.; Aalto, S.; Autti, T.H.; Vanhala, R.; Eskola, O.; Bergman, J.; Hietala, J.A.; von Wendt, L.O. Increased presynaptic dopamine function in Asperger syndrome. Neuroreport 2004, 15, 757–760. [Google Scholar] [CrossRef]
- Patlak, C.S.; Blasberg, R.G. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 1985, 5, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Pavăl, D. A dopamine hypothesis of autism spectrum disorder. Dev. Neurosci. 2017, 39, 355–360. [Google Scholar] [CrossRef]
- Pavăl, D.; Micluția, I.V. The dopamine hypothesis of autism spectrum disorder revisited: Current status and future prospects. Dev. Neurosci. 2021, 43, 73–83. [Google Scholar] [CrossRef]
- Pavese, N.; Simpson, B.; Metta, V.; Ramlackhansingh, A.; Chaudhuri, K.R.; Brooks, D.J. [18F]FDOPA uptake in the raphe nuclei complex reflects serotonin transporter availability. A combined [18F]FDOPA and [11C]DASB PET study in Parkinson’s disease. Neuroimage 2012, 59, 1080–1084. [Google Scholar] [CrossRef]
- Quarantelli, M.; Berkouk, K.; Prinster, A.; Landeau, B.; Svarer, C.; Balkay, L.; Alfano, B.; Brunetti, A.; Baron, J.-C.; Salvatore, M. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J. Nucl. Med. 2004, 45, 192–201. [Google Scholar]
- Radua, J.; Via, E.; Catani, M.; Mataix-Cols, D. Voxel-based meta-analysis of regional white-matter volume differences in autism spectrum disorder versus healthy controls. Psychol. Med. 2011, 41, 1539–1550. [Google Scholar] [CrossRef] [PubMed]
- Salgado, S.; Kaplitt, M.G. The nucleus accumbens: A comprehensive review. Stereotact. Funct. Neurosurg. 2015, 93, 75–93. [Google Scholar] [CrossRef]
- Schalbroeck, R.; van Velden, F.H.P.; de Geus-Oei, L.-F.; Yaqub, M.; van Amelsvoort, T.; Booij, J.; Selten, J.-P. Striatal dopamine synthesis capacity in autism spectrum disorder and its relation with social defeat: An [18F]-FDOPA PET/CT study. Transl. Psychiatry 2021, 11, 47. [Google Scholar] [CrossRef]
- Selten, J.-P.; Booij, J.; Buwalda, B.; Meyer-Lindenberg, A. Biological mechanisms whereby social exclusion may contribute to the etiology of psychosis: A narrative review. Schizophr. Bull. 2017, 43, 287–292. [Google Scholar] [CrossRef][Green Version]
- Svarer, C.; Madsen, K.; Hasselbalch, S.G.; Pinborg, L.H.; Haugbøl, S.; Frøkjær, V.G.; Holm, S.; Paulson, O.B.; Knudsen, G.M. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage 2005, 24, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Verwer, E.E.; Golla, S.; Kaalep, A.; Lubberink, M.; van Velden, F.; Bettinardi, V.; Yaqub, M.; Sera, T.; Rijnsdorp, S.; Lammertsma, A.A.; et al. Harmonisation of PET/CT contrast recovery performance for brain studies. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2856–2870. [Google Scholar] [CrossRef]
- Wong, A.Y.; Hsia, Y.; Chan, E.W.; Murphy, D.G.; Simonoff, E.; Buitelaar, J.K.; Wong, I.C. The variation of psychopharmacological prescription rates for people with autism spectrum disorder (ASD) in 30 countries. Autism Res. 2014, 7, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Zürcher, N.R.; Bhanot, A.; McDougle, C.J.; Hooker, J.M. A systematic review of molecular imaging (PET and SPECT) in autism spectrum disorder: Current state and future research opportunities. Neurosci. Biobehav. Rev. 2015, 52, 56–73. [Google Scholar] [CrossRef]
- Zürcher, N.R.; Walsh, E.C.; Phillips, R.D.; Cernasov, P.M.; Tseng, C.-E.J.; Dharanikota, A.; Smith, E.; Li, Z.; Kinard, J.L.; Bizzell, J.C. A simultaneous [11C]raclopride positron emission tomography and functional magnetic resonance imaging investigation of striatal dopamine binding in autism. Transl. Psychiatry 2021, 11, 33. [Google Scholar] [CrossRef] [PubMed]
Variable | ASD (n = 44) | Controls (n = 22) |
---|---|---|
Male, no. (%) | 28 (64%) | 14 (64%) |
Age in years, mean (SD) | 23.74 (2.64) | 23.47 (2.48) |
IQ, mean (SD) | 103.75 (5.19) | 105.05 (4.90) |
Smoker, no. (%) | 2 (5%) | 1 (5%) |
Scanned on Vereos PET/CT scanner, no. (%) | 31 (70%) | 13 (59%) |
Approximate injected [18F]-FDOPA dose in MBq, mean (SD) | 161.55 (7.26) | 157.24 (8.57) |
AQ total score, mean (SD) | 132.41 (20.05) | 91.73 (12.01) |
AQ social interaction subscale, mean (SD) | 105.25 (17.65) | 71.27 (10.22) |
AQ attention to detail subscale, mean (SD) | 27.16 (4.94) | 20.45 (4.19) |
Association Between kicer Value and AQ Scores | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
kicer, Mean (SD) | ASD | Controls | Combined Sample | |||||||||
ROI | ASD | Controls | p-value | Total | Social | Detail | Total | Social | Detail | Total | Social | Detail |
Whole striatum | 0.0145 (0.0023) a | 0.0143 (0.0024) a | 0.87 a | β = −0.04, p = 0.81 | β = 0.04, p = 0.80 | β = −0.35, p = 0.04 | β = 0.08, p = 0.74 | β = 0.08, p = 0.74 | β = 0.03, p = 0.90 | β = 0.02, p = 0.87 | β = 0.06, p = 0.65 | β = −0.14, p = 0.28 |
Putamen | 0.0157 (0.0025) | 0.0153 (0.0026) | 0.61 | β = 0.03, p = 0.86 | β = 0.12, p = 0.46 | β = −0.36, p = 0.04 | β = 0.10, p = 0.67 | β = 0.06, p = 0.80 | β = 0.13, p = 0.56 | β = 0.10, p = 0.43 | β = 0.14, p = 0.28 | β = −0.08, p = 0.52 |
Nucleus accumbens | 0.0114 (0.0024) | 0.0108 (0.0024) | 0.38 | β = −0.09, p = 0.58 | β = 0.00, p = 0.99 | β = −0.43, p = 0.01 | β = 0.13, p = 0.59 | β = 0.14, p = 0.57 | β = 0.04, p = 0.85 | β = 0.09, p = 0.49 | β = 0.12, p = 0.33 | β = −0.10, p = 0.45 |
Caudate nucleus | 0.0135 (0.0022) | 0.0137 (0.0025) | 0.69 | β = −0.12, p = 0.48 | β = −0.06, p = 0.72 | β = −0.29, p = 0.09 | β = 0.05, p = 0.84 | β = 0.10, p = 0.69 | β = −0.09, p = 0.72 | β = −0.09, p = 0.48 | β = −0.05, p = 0.66 | β = −0.19, p = 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schalbroeck, R.; de Geus-Oei, L.-F.; Selten, J.-P.; Yaqub, M.; Schrantee, A.; van Amelsvoort, T.; Booij, J.; van Velden, F.H.P. Cerebral [18F]-FDOPA Uptake in Autism Spectrum Disorder and Its Association with Autistic Traits. Diagnostics 2021, 11, 2404. https://doi.org/10.3390/diagnostics11122404
Schalbroeck R, de Geus-Oei L-F, Selten J-P, Yaqub M, Schrantee A, van Amelsvoort T, Booij J, van Velden FHP. Cerebral [18F]-FDOPA Uptake in Autism Spectrum Disorder and Its Association with Autistic Traits. Diagnostics. 2021; 11(12):2404. https://doi.org/10.3390/diagnostics11122404
Chicago/Turabian StyleSchalbroeck, Rik, Lioe-Fee de Geus-Oei, Jean-Paul Selten, Maqsood Yaqub, Anouk Schrantee, Therese van Amelsvoort, Jan Booij, and Floris H. P. van Velden. 2021. "Cerebral [18F]-FDOPA Uptake in Autism Spectrum Disorder and Its Association with Autistic Traits" Diagnostics 11, no. 12: 2404. https://doi.org/10.3390/diagnostics11122404
APA StyleSchalbroeck, R., de Geus-Oei, L.-F., Selten, J.-P., Yaqub, M., Schrantee, A., van Amelsvoort, T., Booij, J., & van Velden, F. H. P. (2021). Cerebral [18F]-FDOPA Uptake in Autism Spectrum Disorder and Its Association with Autistic Traits. Diagnostics, 11(12), 2404. https://doi.org/10.3390/diagnostics11122404