Blood-Based Biomarkers Are Associated with Different Ischemic Stroke Mechanisms and Enable Rapid Classification between Cardioembolic and Atherosclerosis Etiologies
Abstract
:1. Introduction
2. Biomarkers that Best Indicate Cardioembolic Etiology
2.1. B-Type Natriuretic Peptide (BNP)
2.2. D-Dimer
2.3. Inflammatory Biomarkers: C-Reactive Protein (CRP), Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1β (IL-1β)
3. Biomarkers that Best Indicate Atherosclerosis Etiology
3.1. Inflammatory Biomarkers: C-Reactive Protein (CRP) and Neutrophil–Lymphocyte Ratio (NLR)
3.2. Common Lipid Panel: Total Cholesterol, Triglycerides, Low-Density Lipoprotein (LDL), and High-Density Lipoprotein (HDL)
3.3. Apolipoprotein A
4. Point-of-Care Biosensor as On-Site Test for Blood-Based Biomarker Detection
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hawkes, M.A.; Rabinstein, A.A. Acute Ischemic Stroke. In Neurological Emergencies: A Practical Approach; Rabinstein, A.A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 171–188. [Google Scholar]
- American Heart & Stroke Association. Types of Stroke. Available online: https://www.stroke.org/en/about-stroke/types-of-stroke (accessed on 1 August 2020).
- Mehndiratta, P.; Smith, S.C.; Worrall, B.B. Etiologic stroke subtypes: Updated definition and efficient workup strategies. Curr. Treat. Options Cardiovasc. Med. 2015, 17, 357. [Google Scholar] [CrossRef] [PubMed]
- Amarenco, P.; Bogousslavsky, J.; Caplan, L.R.; Donnan, G.A.; Hennerici, M.G. Classification of stroke subtypes. Cerebrovasc. Dis. 2009, 27, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Mac Grory, B.; Flood, S.P.; Apostolidou, E.; Yaghi, S. Cryptogenic Stroke: Diagnostic Workup and Management. Curr. Treat. Options Cardiovasc. Med. 2019, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, S.; Bernstein, R.A.; Passman, R.; Okin, P.M.; Furie, K.L. Cryptogenic stroke: Research and practice. Circ. Res. 2017, 120, 527–540. [Google Scholar] [CrossRef]
- Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Davalos, A.; Guidetti, D.; Larrue, V.; Lees, K.R.; Medeghri, Z.; Machnig, T.; et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 2008, 359, 1317–1329. [Google Scholar] [CrossRef] [Green Version]
- Sandercock, P.; Wardlaw, J.M.; Lindley, R.I.; Dennis, M.; Cohen, G.; Murray, G.; Innes, K.; Venables, G.; Czlonkowska, A.; Kobayashi, A.; et al. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): A randomised controlled trial. Lancet 2012, 379, 2352–2363. [Google Scholar]
- Kernan, W.N.; Ovbiagele, B.; Black, H.R.; Bravata, D.M.; Chimowitz, M.I.; Ezekowitz, M.D.; Fang, M.C.; Fisher, M.; Furie, K.L.; Heck, D.V. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke J. Cereb. Circ. 2014, 45, 2160–2236. [Google Scholar] [CrossRef]
- García-Berrocoso, T.; Palà, E.; Consegal, M.; Piccardi, B.; Negro, A.; Gill, N.; Penalba, A.; Encabo, H.H.; Fernández-Cadenas, I.; Meisel, A. Cardioembolic ischemic stroke gene expression fingerprint in blood: A systematic review and verification analysis. Transl. Stroke Res. 2020, 11, 326–336. [Google Scholar] [CrossRef]
- Audebert, H.J.; Saver, J.L.; Starkman, S.; Lees, K.R.; Endres, M. Prehospital stroke care: New prospects for treatment and clinical research. Neurology 2013, 81, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Leys, D.; Ringelstein, E.B.; Kaste, M.; Hacke, W. Facilities available in European hospitals treating stroke patients. Stroke J. Cereb. Circ. 2007, 38, 2985–2991. [Google Scholar] [CrossRef] [Green Version]
- Fladt, J.; Meier, N.; Thilemann, S.; Polymeris, A.; Traenka, C.; Seiffge, D.J.; Sutter, R.; Peters, N.; Gensicke, H.; Flückiger, B. Reasons for Prehospital Delay in Acute Ischemic Stroke. J. Am. Heart Assoc. 2019, 8, e013101. [Google Scholar] [CrossRef] [PubMed]
- Sharobeam, A.; Jones, B.; Walton-Sonda, D.; Lueck, C.J. Factors delaying intravenous thrombolytic therapy in acute ischaemic stroke: A systematic review of the literature. J. Neurol. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.J.; Yan, B. Minimising time to treatment: Targeted strategies to minimise time to thrombolysis for acute ischaemic stroke. Intern. Med. J. 2013, 43, 1176–1182. [Google Scholar] [CrossRef]
- Evenson, K.R.; Rosamond, W.D.; Morris, D.L. Prehospital and in-hospital delays in acute stroke care. Neuroepidemiology 2001, 20, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.; De Silva, D.A.; Macleod, M.R.; Coutts, S.B.; Schwamm, L.H.; Davis, S.M.; Donnan, G.A. Ischaemic stroke. Nat. Rev. Dis. Primers 2019, 5, 1–22. [Google Scholar] [CrossRef]
- Joshi, B. Stroke Diagnostics and Therapeutics: Global Markets; HLC180A; BCC Research: Wellesley, MA, USA, 2015. [Google Scholar]
- Goldstein, L.B.; Adams, R.; Alberts, M.J.; Appel, L.J.; Brass, L.M.; Bushnell, C.D.; Culebras, A.; Degraba, T.J.; Gorelick, P.B.; Guyton, J.R.; et al. Primary prevention of ischemic stroke: A guideline from the American Heart Association/American Stroke Association Stroke Council: Cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: The American Academy of Neurology affirms the value of this guideline. Stroke 2006, 37, 1583–1633. [Google Scholar]
- Rothwell, P.M.; Coull, A.J.; Silver, L.E.; Fairhead, J.F.; Giles, M.F.; Lovelock, C.E.; Redgrave, J.N.; Bull, L.M.; Welch, S.J.; Cuthbertson, F.C.; et al. Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study). Lancet 2005, 366, 1773–1783. [Google Scholar] [CrossRef]
- Chen, R.L.; Balami, J.S.; Esiri, M.M.; Chen, L.K.; Buchan, A.M. Ischemic stroke in the elderly: An overview of evidence. Nat. Rev. Neurol. 2010, 6, 256–265. [Google Scholar] [CrossRef]
- MacKay-Lyons, M.; Gubitz, G.; Giacomantonio, N.; Wightman, H.; Marsters, D.; Thompson, K.; Blanchard, C.; Eskes, G.; Thornton, M. Program of rehabilitative exercise and education to avert vascular events after non-disabling stroke or transient ischemic attack (PREVENT Trial): A multi-centred, randomised controlled trial. BMC Neurol. 2010, 10, 122. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.-X.; Lin, X.-L.; Lu, H.-K.; Liang, X.-Y.; Fan, L.-J.; Liu, X.-T. Lifestyles correlate with stroke recurrence in Chinese inpatients with first-ever acute ischemic stroke. J. Neurol. 2019, 266, 1194–1202. [Google Scholar] [CrossRef]
- Petty, G.W.; Brown, R.D., Jr.; Whisnant, J.P.; Sicks, J.R.D.; O’Fallon, W.M.; Wiebers, D.O. Ischemic stroke subtypes: A population-based study of incidence and risk factors. Stroke J. Cereb. Circ. 1999, 30, 2513–2516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodder, J.; Bamford, J.M.; Sandercock, P.A.G.; Jones, L.N.; Warlow, C.P. Are hypertension or cardiac embolism likely causes of lacunar infarction? Stroke J. Cereb. Circ. 1990, 21, 375–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grau, A.J.; Weimar, C.; Buggle, F.; Heinrich, A.; Goertler, M.; Neumaier, S.; Glahn, J.; Brandt, T.; Hacke, W.; Diener, H.-C. Risk Factors, Outcome, and Treatment in Subtypes of Ischemic Stroke. Ger. Stroke Data Bank 2001, 32, 2559–2566. [Google Scholar]
- Lee, L.J.; Kidwell, C.S.; Alger, J.; Starkman, S.; Saver, J.L. Impact on stroke subtype diagnosis of early diffusion-weighted magnetic resonance imaging and magnetic resonance angiography. Stroke J. Cereb. Circ. 2000, 31, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke J. Cereb. Circ. 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landau, W.M.; Nassief, A. Editorial comment—Time to burn the TOAST. Stroke J. Cereb. Circ. 2005, 36, 902–904. [Google Scholar] [CrossRef]
- Amarenco, P. Patent foramen ovale and the risk of stroke: Smoking gun guilty by association? Heart (British Cardiac Society) 2005, 91, 441–443. [Google Scholar] [CrossRef] [Green Version]
- Sacco, R.L.; Ellenberg, J.H.; Mohr, J.P.; Tatemichi, T.K.; Hier, D.B.; Price, T.R.; Wolf, P.A. Infarcts of undetermined cause: The NINCDS Stroke Data Bank. Ann. Neurol. 1989, 25, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Bamford, J.; Sandercock, P.; Dennis, M.; Burn, J.; Warlow, C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991, 337, 1521–1526. [Google Scholar] [CrossRef]
- Lindley, R.I.; Warlow, C.P.; Wardlaw, J.M.; Dennis, M.S.; Slattery, J.; Sandercock, P.A. Interobserver reliability of a clinical classification of acute cerebral infarction. Stroke J. Cereb. Circ. 1993, 24, 1801–1804. [Google Scholar] [CrossRef] [Green Version]
- Ng, G.J.L.; Quek, A.M.L.; Cheung, C.; Arumugam, T.V.; Seet, R.C.S. Stroke biomarkers in clinical practice: A critical appraisal. Neurochem. Int. 2017, 107, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Simpkins, A.N.; Janowski, M.; Oz, H.S.; Roberts, J.; Bix, G.; Doré, S.; Stowe, A.M. Biomarker Application for Precision Medicine in Stroke. Transl. Stroke Res. 2019, 30, 46–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menosi Gualandro, D.; Twerenbold, R.; Boeddinghaus, J.; Nestelberger, T.; Puelacher, C.; Müller, C. Biomarkers in cardiovascular medicine: Towards precision medicine. Swiss Med Wkly. 2019, 149, W20125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peplow, P.V.; Martinez, B.; Dambinova, S.A. Stroke Biomarkers; Springer: New York, NY, USA, 2020. [Google Scholar]
- Kamtchum-Tatuene, J.; Jickling, G.C. Blood Biomarkers for Stroke Diagnosis and Management. Neuromol. Med. 2019, 21, 1–25. [Google Scholar] [CrossRef]
- Sharp, F.; Jickling, G.C. Biomarkers for the Diagnosis of Lacunar Stroke. Google Patents WO2012121978A2, 13 September 2012. [Google Scholar]
- Ford, B.D.; Ford, G. Biomarkers for Stroke. Google Patents US20120040858A1, 16 February 2012. [Google Scholar]
- Augello, C.J.; Noll, J.M.; Distel, T.J.; Wainright, J.D.; Stout, C.E.; Ford, B.D. Identification of novel blood biomarker panels to detect ischemic stroke in patients and their responsiveness to therapeutic intervention. Brain Res. 2018, 1698, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Makris, K.; Haliassos, A.; Chondrogianni, M.; Tsivgoulis, G. Blood biomarkers in ischemic stroke: Potential role and challenges in clinical practice and research. Crit. Rev. Clin. Lab. Sci. 2018, 55, 294–328. [Google Scholar] [CrossRef]
- Ng, G.J.; Ng, M.Y.; Quek, A.M.; Seet, R.C. Resolving Difficult Case Scenarios by Incorporating Stroke Biomarkers in Clinical Decision-making. In Acute Brain Impairment; Incorporating Stroke: London, UK, 2017; pp. 289–314. [Google Scholar]
- Misra, S.; Kumar, A.; Kumar, P.; Yadav, A.K.; Mohania, D.; Pandit, A.K.; Prasad, K.; Vibha, D. Blood-based protein biomarkers for stroke differentiation: A systematic review. Proteom. Clin. Appl. 2017, 11, 1700007. [Google Scholar] [CrossRef]
- LaMont, J.; Mc Connell, I.; Fitzgerald, P. Biomarker-Based Methods and Biochips for Aiding the Diagnosis of Stroke. Google Patents CN104272112A, 7 January 2015. [Google Scholar]
- Montaner, J.; Ramiro, L.; Simats, A.; Tiedt, S.; Makris, K.; Jickling, G.C.; Debette, S.; Sanchez, J.-C.; Bustamante, A. Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat. Rev. Neurol. 2020, 16, 1–18. [Google Scholar] [CrossRef]
- Pawluk, H.; Woźniak, A.; Grześk, G.; Kołodziejska, R.; Kozakiewicz, M.; Kopkowska, E.; Grzechowiak, E.; Kozera, G. The Role of Selected Pro-Inflammatory Cytokines in Pathogenesis of Ischemic Stroke. Clin. Interv. Aging 2020, 15, 469. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.J.; Liu, W.; Timmins, G.; Pan, R. Blood Biomarker for Early Blood Brain Barrier Disruption in Ischemic Stroke. Google Patents US20140314737A1, 23 October 2014. [Google Scholar]
- Gąsiorek, P.; Banach, M.; Sakowicz, A.; Głąbiński, A.; Sosnowska, B.; Maciejewski, M.; Bielecka-Dabrowa, A. The potential role of inflammation in cryptogenic stroke. Adv. Med Sci. 2019, 64, 381–387. [Google Scholar] [CrossRef]
- Harpaz, D.; Eltzov, E.; Seet, R.; Marks, R.S.; Tok, A.I.Y. Point-of-care-testing in acute stroke management: An unmet need ripe for technological harvest. Biosensors 2017, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Monbailliu, T.; Goossens, J.; Hachimi-Idrissi, S.; Idigr, S.H. Blood protein biomarkers as diagnostic tool for ischemic stroke: A systematic review. Biomark. Med. 2017, 11, 503–512. [Google Scholar] [CrossRef]
- Vemmos, K.N.; Spengos, K.; Tsivgoulis, G.; Zakopoulos, N.; Manios, E.; Kotsis, V.; Daffertshofer, M.; Vassilopoulos, D. Factors influencing acute blood pressure values in stroke subtypes. J. Hum. Hypertens. 2004, 18, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Jiang, Y.; Feng, S.; Sun, D.; Zhuang, A.; Zeng, Q.; Zhang, Y.; Huang, H.; Nie, H.; Zhou, F. Microembolic signal monitoring of TOAST-classified cerebral infarction patients. Mol. Med. Rep. 2013, 8, 1135–1142. [Google Scholar] [CrossRef]
- Ohara, T.; Yamamoto, Y.; Nagakane, Y.; Tanaka, E.; Morii, F.; Koizumi, T. Classification of etiologic subtypes for transient ischemic attacks: Clinical significance of lacunar transient ischemic attack. Clin. Neurol. 2011, 51, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saposnik, G.; Hassan, K.A.; Selchen, D.; Fang, J.; Kapral, M.K.; Smith, E.E. Stroke unit care: Does ischemic stroke subtype matter? Int. J. Stroke 2011, 6, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.A.; Vangala, H.; Tong, D.C.; Campbell, D.M.; Balgude, A.; Eyngorn, I.; Beraud, A.S.; Olivot, J.M.; Hsia, A.W.; Bernstein, R.A. MRI guides diagnostic approach for ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Sonderer, J.; Katan Kahles, M. Aetiological blood biomarkers of ischaemic stroke. Swiss Med Wkly. 2015, 145, w14138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katan, M.; Elkind, M.S.V. The potential role of blood biomarkers in patients with ischemic stroke: An expert opinion. Clin. Transl. Neurosci. 2018, 2, 2514183X18768050. [Google Scholar] [CrossRef] [Green Version]
- Tian, D.; Yang, Q.; Dong, Q.; Li, N.; Yan, B.; Fan, D. Trends in stroke subtypes and vascular risk factors in a stroke center in China over 10 years. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jickling, G.C.; Sharp, F.R. Biomarker panels in ischemic stroke. Stroke J. Cereb. Circ. 2015, 46, 915–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhuri, J.R.; Sharma, V.K.; Mridula, K.R.; Balaraju, B.; Bandaru, V.C. Association of plasma brain natriuretic peptide levels in acute ischemic stroke subtypes and outcome. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2015, 24, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, I.M.; Cojocaru, M.; Sapira, V.; Ionescu, A.; Barlan, S.; Tacu, N. Could pro-BNP, uric acid, bilirubin, albumin and transferrin be used in making the distinction between stroke subtypes? Rom. J. Intern. Med. 2013, 51, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Kawase, S.; Kowa, H.; Suto, Y.; Fukuda, H.; Kusumi, M.; Nakayasu, H.; Nakashima, K. Plasma Brain Natriuretic Peptide is a Marker of Prognostic Functional Outcome in Non-Cardioembolic Infarction. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2015, 24, 2285–2290. [Google Scholar] [CrossRef] [Green Version]
- Llombart, V.; Antolin-Fontes, A.; Bustamante, A.; Giralt, D.; Rost, N.S.; Furie, K.; Shibazaki, K.; Biteker, M.; Castillo, J.; Rodriguez-Yanez, M.; et al. B-type natriuretic peptides help in cardioembolic stroke diagnosis: Pooled data meta-analysis. Stroke J. Cereb. Circ. 2015, 46, 1187–1195. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhao, M.; He, M.; Zeng, H.; Tan, F.; Li, K.; Chen, S.; Han, Q.; Wang, Q. Validation of the use of B-type natriuretic peptide point-of-care test platform in preliminary recognition of cardioembolic stroke patients in the ED. Am. J. Emerg. Med. 2015, 33, 521–526. [Google Scholar] [CrossRef]
- Hajsadeghi, S.; Kashani Amin, L.; Bakhshandeh, H.; Rohani, M.; Azizian, A.R.; Jafarian Kerman, S.R. The diagnostic value of N-terminal pro-brain natriuretic peptide in differentiating cardioembolic ischemic stroke. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2013, 22, 554–560. [Google Scholar] [CrossRef]
- Kara, K.; Gronewold, J.; Neumann, T.; Mahabadi, A.A.; Weimar, C.; Lehmann, N.; Berger, K.; Kalsch, H.I.; Bauer, M.; Broecker-Preuss, M.; et al. B-type natriuretic peptide predicts stroke of presumable cardioembolic origin in addition to coronary artery calcification. Eur. J. Neurol. 2014, 21, 914–921. [Google Scholar] [CrossRef]
- Maruyama, K.; Shiga, T.; Iijima, M.; Moriya, S.; Mizuno, S.; Toi, S.; Arai, K.; Ashihara, K.; Abe, K.; Uchiyama, S. Brain natriuretic peptide in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2014, 23, 967–972. [Google Scholar] [CrossRef]
- Qihong, G.; Zhixin, W.; Mingfeng, H.; Lianhong, Y.; Wenchong, X. Experiences and the use of BNP POCT platform on suspected stroke patients by a Chinese emergency department. Ann. Indian Acad. Neurol. 2014, 17, 243–244. [Google Scholar]
- Sakai, K.; Shibazaki, K.; Kimura, K.; Aoki, J.; Kobayashi, K.; Fujii, S.; Okada, Y. Brain natriuretic peptide as a predictor of cardioembolism in acute ischemic stroke patients: Brain natriuretic peptide stroke prospective study. Eur. Neurol. 2013, 69, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Shibazaki, K.; Kimura, K.; Iguchi, Y.; Okada, Y.; Inoue, T. Plasma brain natriuretic peptide can be a biological marker to distinguish cardioembolic stroke from other stroke types in acute ischemic stroke. Intern. Med. 2009, 48, 259–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, W.S.; ElGawad, E.A.A.; ElMotayam, A.S.; Fathy, S.E. Cardio embolic stroke and blood biomarkers: Diagnosis and predictors of short-term outcome. Egypt. J. Neurol. Psychiatry Neurosurg. 2019, 55, 68. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-l.; Lin, Y.-P.; Long, Y.; Ma, Q.-l.; Zhou, C. Predicting Cardioembolic Stroke with the B-Type Natriuretic Peptide Test: A Systematic Review and Meta-analysis. J. Stroke Cerebrovasc. Dis. 2014, 23, 1882–1889. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, L.; Guo, Q.; He, M.; Li, K. Experiences and the use of BNP POCT platform on suspected ischemic stroke patients in the emergency department setting. Clin. Neurol. Neurosurg. 2014, 123, 199–200. [Google Scholar] [CrossRef]
- Ueno, Y.; Tanaka, R.; Yamashiro, K.; Shimada, Y.; Kuroki, T.; Hira, K.; Urabe, T.; Hattori, N. Impact of BNP on cryptogenic stroke without potential embolic sources on transesophageal echocardiography. J. Neurol. Sci. 2015, 359, 287–292. [Google Scholar] [CrossRef]
- Otaki, Y.; Watanabe, T.; Sato, N.; Shirata, T.; Tsuchiya, H.; Wanezaki, M.; Tamura, H.; Nishiyama, S.; Arimoto, T.; Takahashi, H. Direct comparison of prognostic ability of cardiac biomarkers for cardiogenic stroke and clinical outcome in patients with stroke. Heart Vessel. 2019, 34, 1178–1186. [Google Scholar] [CrossRef]
- Bai, J.; Sun, H.; Xie, L.; Zhu, Y.; Feng, Y. Detection of cardioembolic stroke with B-type natriuretic peptide or N-terminal pro-BNP: A comparative diagnostic meta-analysis. Int. J. Neurosci. 2018, 128, 1100–1108. [Google Scholar] [CrossRef]
- Lee, S.-J.; Lee, D.-G.; Lim, D.-S.; Hong, S.; Park, J.-S. Difference in the prognostic significance of N-terminal pro-B-type natriuretic peptide between cardioembolic and noncardioembolic ischemic strokes. Dis. Markers 2015, 2015, 597570. [Google Scholar] [CrossRef]
- Nakamura, M.; Ishibashi, Y.; Tanaka, F.; Omama, S.; Onoda, T.; Takahashi, T.; Takahashi, S.; Tanno, K.; Ohsawa, M.; Sakata, K. Ability of B-Type Natriuretic Peptide Testing to Predict Cardioembolic Stroke in the General Population―Comparisons With C-Reactive Protein and Urinary Albumin. Circ. J. 2018, 82, 1017–1025. [Google Scholar] [CrossRef] [Green Version]
- Zhixin, W.U.; Yingying, L.I.; Liang, S.; Qing, F.; Lei, J.; Chen, J.; Mingfeng, H.E.; Kuangyi, L.I. The value of using B-type natriuretic peptide and D-dimer in preliminary recognition of cardioembolic stroke patients. J. Pract. Med. 2018, 34, 44–48. [Google Scholar]
- Lee, S.-J.; Lee, D.-G.; Chung, T.-I. N-Terminal pro-B-Type Natriuretic Peptide Predicts Long-Term Mortality but not Stroke Recurrence in Acute Ischemic Stroke Patients with a Cardioembolic Source (P1. 051); AAN Enterprises: Haryana, India, 2015. [Google Scholar]
- Hosomi, N.; Yoshimoto, T.; Kanaya, Y.; Neshige, S.; Hara, N.; Himeno, T.; Kono, R.; Takeshima, S.; Takamatsu, K.; Ota, T. Brain natriuretic peptide and particular left ventricle segment asynergy associated with cardioembolic stroke from old myocardial infarction. J. Stroke Cerebrovasc. Dis. 2016, 25, 1165–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, Y.; Terakawa, Y.; Murata, T.; Nakamura, K.; Shimotake, K.; Murata, H.; Ohata, K. Ability of NT-pro-BNP to Diagnose Cardioembolic Etiology in Patients with Acute Ischemic Stroke. Osaka City Med. J. 2016, 62, 95–102. [Google Scholar]
- Harpaz, D.; Seet, R.; Marks, R.S.; Tok, A.I.Y. B-Type Natriuretic Peptide as a Significant Brain Biomarker for Stroke Triaging Using a Bedside Point-of-Care Monitoring Biosensor. Biosensors 2020, 10, 107. [Google Scholar] [CrossRef]
- Ageno, W.; Finazzi, S.; Steidl, L.; Biotti, M.G.; Mera, V.; Melzi D’Eril, G.; Venco, A. Plasma measurement of D-dimer levels for the early diagnosis of ischemic stroke subtypes. Arch. Intern. Med. 2002, 162, 2589–2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dougu, N.; Takashima, S.; Sasahara, E.; Taguchi, Y.; Toyoda, S.; Hirai, T.; Nozawa, T.; Tanaka, K.; Inoue, H. Differential diagnosis of cerebral infarction using an algorithm combining atrial fibrillation and D-dimer level. Eur. J. Neurol. 2008, 15, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Haapaniemi, E.; Tatlisumak, T. Is D-dimer helpful in evaluating stroke patients? A systematic review. Acta Neurol. Scand. 2009, 119, 141–150. [Google Scholar] [CrossRef]
- Isenegger, J.; Meier, N.; Lammle, B.; Alberio, L.; Fischer, U.; Nedeltchev, K.; Gralla, J.; Kohler, H.P.; Mattle, H.P.; Arnold, M. D-dimers predict stroke subtype when assessed early. Cerebrovasc. Dis. 2010, 29, 82–86. [Google Scholar] [CrossRef]
- Robson, S.C.; Shephard, E.G.; Kirsch, R.E. Fibrin degradation product D-dimer induces the synthesis and release of biologically active IL-1 beta, IL-6 and plasminogen activator inhibitors from monocytes in vitro. Br. J. Haematol. 1994, 86, 322–326. [Google Scholar] [CrossRef]
- Sato, T.; Sato, S.; Yamagami, H.; Komatsu, T.; Mizoguchi, T.; Yoshimoto, T.; Takagi, M.; Ihara, M.; Koga, M.; Iwata, H. D-dimer level and outcome of minor ischemic stroke with large vessel occlusion. J. Neurol. Sci. 2020, 413, 116814. [Google Scholar] [CrossRef]
- Yuan, W.; Shi, Z.H. The relationship between plasma D-dimer levels and outcome of Chinese acute ischemic stroke patients in different stroke subtypes. J. Neural Transm. 2014, 121, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Zi, W.J.; Shuai, J. Plasma D-dimer levels are associated with stroke subtypes and infarction volume in patients with acute ischemic stroke. PLoS ONE 2014, 9, e86465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, K.; Takashima, S.; Dougu, N.; Taguchi, Y.; Nukui, T.; Konishi, H.; Toyoda, S.; Kitajima, I.; Tanaka, K. Study of hemostatic biomarkers in acute ischemic stroke by clinical subtype. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2012, 21, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Takano, K.; Yamaguchi, T.; Uchida, K. Markers of a hypercoagulable state following acute ischemic stroke. Stroke J. Cereb. Circ. 1992, 23, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melake, M.S.; El-Kabany, R.A.; Al-Emam, A.I.; El-Shereef, A.M.; Okda, M. The role of D-dimer, fibrinogen and C-reactive protein as plasma biomarkers in acute ischemic stroke. J. Neurol. Res. 2016, 5, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.-B.; Li, M.; Zhuo, W.-Y.; Zhang, Y.-S.; Xu, A.-D. The role of hs-CRP, D-dimer and fibrinogen in differentiating etiological subtypes of ischemic stroke. PLoS ONE 2015, 10, e0118301. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Perez, F.J.; Castelo-Branco, M.; Alvarez-Sabin, J. Albumin level and stroke. Potential association between lower albumin level and cardioembolic aetiology. Int. J. Neurosci. 2011, 121, 25–32. [Google Scholar] [CrossRef]
- Bonaventura, A.; Liberale, L.; Vecchié, A.; Casula, M.; Carbone, F.; Dallegri, F.; Montecucco, F. Update on inflammatory biomarkers and treatments in ischemic stroke. Int. J. Mol. Sci. 2016, 17, 1967. [Google Scholar] [CrossRef]
- Masotti, L.; Ceccarelli, E.; Forconi, S.; Cappelli, R. Prognostic role of C-reactive protein in very old patients with acute ischaemic stroke. J. Intern. Med. 2005, 258, 145–152. [Google Scholar] [CrossRef]
- Suwanwela, N.C.; Chutinet, A.; Phanthumchinda, K. Inflammatory markers and conventional atherosclerotic risk factors in acute ischemic stroke: Comparative study between vascular disease subtypes. J. Med Assoc. Thail. 2006, 89, 2021–2027. [Google Scholar]
- Rana, D.S.; Anand, I.; Batra, A.; Sethi, P.K.; Bhargava, S. Serum levels of high-sensitivity C-reactive protein in acute ischemic stroke and its subtypes: A prospective case-control study. Asia Pac. J. Clin. Trials Nerv. Syst. Dis. 2018, 3, 128. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Z.; Li, J.; Xu, Y. Serum CRP Concentrations and Severity of Ischemic Stroke Subtypes. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 2012, 39, 69–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, M.F.; Kallaur, A.P.; Oliveira, S.R.; Alfieri, D.F.; Delongui, F.; de Sousa Parreira, J.; de Araújo, M.C.M.; Rossato, C.; de Almeida, J.T.; Pelegrino, L.M. Inflammatory and metabolic markers and short-time outcome in patients with acute ischemic stroke in relation to TOAST subtypes. Metab. Brain Dis. 2015, 30, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Ladenvall, C.; Jood, K.; Blomstrand, C.; Nilsson, S.; Jern, C.; Ladenvall, P. Serum C-reactive protein concentration and genotype in relation to ischemic stroke subtype. Stroke J. Cereb. Circ. 2006, 37, 2018–2023. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; He, X.; Liu, J.; Wang, L.; Weng, S.; Wang, Y.; Chen, S.; Yang, G.-Y. Differences of circulating inflammatory markers between large-and small vessel disease in patients with acute ischemic stroke. Int. J. Med Sci. 2013, 10, 1399. [Google Scholar] [CrossRef] [Green Version]
- Solovyeva, L.N.; Shmonin, A.A.; Emanuel, Y.V.; Stolyarov, M.S.; Bondareva, E.A.; Mazing, V.A.; Lazareva, N.M.; Kholopova, I.V.; Blinova, T.V.; Kharitonova, T.V. The clinical laboratory markers of atherosclerosis in patients with atherothrombotic stroke. Klin. Lab. Diagn. 2015, 60, 12–16. [Google Scholar]
- Tuttolomondo, A.; Di Raimondo, D.; Pecoraro, R.; Arnao, V.; Pinto, A.; Licata, G. Inflammation in ischemic stroke subtypes. Curr. Pharm. Des. 2012, 18, 4289–4310. [Google Scholar] [CrossRef]
- Licata, G.; Tuttolomondo, A.; Di Raimondo, D.; Corrao, S.; Di Sciacca, R.; Pinto, A. Immuno-inflammatory activation in acute cardio-embolic strokes in comparison with other subtypes of ischaemic stroke. Thromb. Haemost. 2009, 101, 929–937. [Google Scholar]
- Piccardi, B.; Giralt, D.; Bustamante, A.; Llombart, V.; García-Berrocoso, T.; Inzitari, D.; Montaner, J. Blood markers of inflammation and endothelial dysfunction in cardioembolic stroke: Systematic review and meta-analysis. Biomarkers 2017, 22, 200–209. [Google Scholar] [CrossRef]
- Gokhan, S.; Ozhasenekler, A.; Mansur Durgun, H.; Akil, E.; Ustundag, M.; Orak, M. Neutrophil lymphocyte ratios in stroke subtypes and transient ischemic attack. Eur. Rev. Med Pharmacol. Sci. 2013, 17, 653–657. [Google Scholar]
- Elkind, M.S.; Sciacca, R.R.; Boden-Albala, B.; Rundek, T.; Paik, M.C.; Sacco, R.L. Relative elevation in baseline leukocyte count predicts first cerebral infarction. Neurology 2005, 64, 2121–2125. [Google Scholar] [CrossRef] [PubMed]
- Guven, H.; Cilliler, A.E.; Sarikaya, S.A.; Koker, C. The Etiologic and Prognostic Importance of High Leukocyte and Neutrophil Counts in Acute Ischemic Stroke. J. Neurol. Sci. 2010, 27, 311–318. [Google Scholar]
- Tokgoz, S.; Kayrak, M.; Akpinar, Z.; Seyithanoğlu, A.; Güney, F.; Yürüten, B. Neutrophil Lymphocyte Ratio as a Predictor of Stroke. J. Stroke Cerebrovasc. Dis. 2013, 22, 1169–1174. [Google Scholar] [CrossRef]
- Domaç, F.; Ülker, M.; Karaci, R.; Demir, M. The Relation Between Neutrophil-Lymphocyte Ratio and Etiologic Subtypes in Acute Ischaemic Stroke. Med J. Haydarpaşa Numune Train. Res. Hosp. 2019. [Google Scholar] [CrossRef]
- Lök, U.; Gülaçti, U. The predictive effect of the Neutrophil-to-Lymphocyte Ratio (NLR) on the mortality of acute ischemic stroke and its subtypes: A Retrospective Cross-Sectional Study. J. Acad. Emerg. Med. 2016, 15, 69. [Google Scholar]
- Rodriguez-Yanez, M.; Castillo, J. Role of inflammatory markers in brain ischemia. Curr. Opin. Neurol. 2008, 21, 353–357. [Google Scholar] [CrossRef]
- Iskra, T.; Turaj, W.; Slowik, A.; Szczudlik, A.; Dembinska-Kiec, A. Lipoprotein (a) in stroke patients with large and small vessel disease. Prz. Lek. 2002, 59, 877–880. [Google Scholar]
- Bang, O.Y.; Saver, J.L.; Liebeskind, D.S.; Pineda, S.; Ovbiagele, B. Association of serum lipid indices with large artery atherosclerotic stroke. Neurology 2008, 70, 841–847. [Google Scholar] [CrossRef]
- Laloux, P.; Galanti, L.; Jamart, J. Lipids in ischemic stroke subtypes. Acta Neurol. Belg. 2004, 104, 13–19. [Google Scholar]
- Slowik, A.; Iskra, T.; Turaj, W.; Hartwich, J.; Dembinska-Kiec, A.; Szczudlik, A. LDL phenotype B and other lipid abnormalities in patients with large vessel disease and small vessel disease. J. Neurol. Sci. 2003, 214, 11–16. [Google Scholar] [CrossRef]
- Yuan, B.-B.; Luo, G.-G.; Gao, J.-X.; Qiao, J.; Yang, J.-B.; Huo, K.; Li, Y.-B.; Liu, Y. Variance of serum lipid levels in stroke subtypes. Clin. Lab. 2015, 61, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Iso, H.; Yamagishi, K.; Saito, I.; Kokubo, Y.; Inoue, M.; Tsugane, S. High serum total cholesterol levels is a risk factor of ischemic stroke for general Japanese population: The JPHC study. Atherosclerosis 2012, 221, 565–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambrelli, E.; Emanuele, E.; Marcheselli, S.; Montagna, L.; Geroldi, D.; Micieli, G. Apo(a) size in ischemic stroke: Relation with subtype and severity on hospital admission. Neurology 2005, 64, 1366–1370. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Jung, H.S.; Bang, O.Y.; Chung, C.S.; Lee, K.H.; Kim, G.M. Elevated serum lipoprotein(a) as a potential predictor for combined intracranial and extracranial artery stenosis in patients with ischemic stroke. Atherosclerosis 2010, 212, 682–688. [Google Scholar] [CrossRef]
- Lee, N.S.; Daniels, L.B. Natriuretic Peptide Use in Screening in the Community. In Cardiac Biomarkers; Springer: Berlin, Germany,, 2016; pp. 181–193. [Google Scholar]
- Balion, C.; McKelvie, R.; Don-Wauchope, A.C.; Santaguida, P.L.; Oremus, M.; Keshavarz, H.; Hill, S.A.; Booth, R.A.; Ali, U.; Brown, J.A. B-type natriuretic peptide-guided therapy: A systematic review. Heart Fail. Rev. 2014, 19, 553–564. [Google Scholar] [CrossRef]
- Pemberton, C.J.; Charles, C.J.; Richards, A.M. Chapter 1—Cardiac Natriuretic Peptides. In Endocrinology of the Heart in Health and Disease; Schisler, J.C., Lang, C.H., Willis, M.S., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 3–39. [Google Scholar]
- Mair, J. Biochemistry of B-type natriuretic peptide–where are we now? Clin. Chem. Lab. Med. (CCLM) 2008, 46, 1507–1514. [Google Scholar] [CrossRef]
- Atisha, D.; Bhalla, M.A.; Morrison, L.K.; Felicio, L.; Clopton, P.; Gardetto, N.; Kazanegra, R.; Chiu, A.; Maisel, A.S. A prospective study in search of an optimal B-natriuretic peptide level to screen patients for cardiac dysfunction. Am. Heart J. 2004, 148, 518–523. [Google Scholar] [CrossRef]
- Tsioufis, C. Ischemic stroke in atrial fibrillation patients: Don’t put the blame always on heart. Hell. J. Cardiol. 2018. [Google Scholar] [CrossRef]
- Montaner, J.; Mendioroz, M.; Ribó, M.; Delgado, P.; Quintana, M.; Penalba, A.; Chacón, P.; Molina, C.; Fernández-Cadenas, I.; Rosell, A. A panel of biomarkers including caspase-3 and D-dimer may differentiate acute stroke from stroke-mimicking conditions in the emergency department. J. Intern. Med. 2011, 270, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Soomro, A.Y.; Guerchicoff, A.; Nichols, D.J.; Suleman, J.; Dangas, G.D. The current role and future prospects of D-dimer biomarker. Eur. Heart J. Cardiovasc. Pharmacother. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Lip, G.Y.H.; Apostolakis, S. Inflammation in atrial fibrillation. J. Am. Coll. Cardiol. 2012, 60, 2263–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, N.; Chen, X.; Cai, T.; Wu, L.; Xiang, Y.; Zhang, M.; Li, Y.; Song, Z.; Zhong, L. Association of inflammatory and hemostatic markers with stroke and thromboembolic events in atrial fibrillation: A systematic review and meta-analysis. Can. J. Cardiol. 2015, 31, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; Di Raimondo, D.; Pecoraro, R.; Arnao, V.; Pinto, A.; Licata, G. Atherosclerosis as an inflammatory disease. Curr. Pharm. Des. 2012, 18, 4266–4288. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Zhong, X.N.; Zhong, B.; Chen, Y.Q.; Liu, Z.Z.; Su, L.; Ling, Z.Y.; Cao, H.; Yin, Y.H. Significance of white blood cell count and its subtypes in patients with acute coronary syndrome. Eur. J. Clin. Investig. 2009, 39, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Papa, A.; Emdin, M.; Passino, C.; Michelassi, C.; Battaglia, D.; Cocci, F. Predictive value of elevated neutrophil-lymphocyte ratio on cardiac mortality in patients with stable coronary artery disease. Clin. Chim. Acta Int. J. Clin. Chem. 2008, 395, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.J.; Walsh, S.R.; Farooq, N.; Alberts, J.C.; Justin, T.A.; Keeling, N.J. Post-operative neutrophil-lymphocyte ratio predicts complications following colorectal surgery. Int. J. Surg. 2007, 5, 27–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caligiuri, G.; Nicoletti, A. Lymphocyte responses in acute coronary syndromes: Lack of regulation spawns deviant behaviour. Eur. Heart J. 2006, 27, 2485–2486. [Google Scholar] [CrossRef]
- Karabinos, I.; Koulouris, S.; Kranidis, A.; Pastromas, S.; Exadaktylos, N.; Kalofoutis, A. Neutrophil count on admission predicts major in-hospital events in patients with a non-ST-segment elevation acute coronary syndrome. Clin. Cardiol. 2009, 32, 561–568. [Google Scholar] [CrossRef]
- Cummins, B.M.; Ligler, F.S.; Walker, G.M. Point-of-care diagnostics for niche applications. Biotechnol. Adv. 2016, 34, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Vasan, A.S.; Mahadeo, D.M.; Doraiswami, R.; Huang, Y.; Pecht, M. Point-of-care biosensor system. Front. Biosci. 2013, 5, 39–71. [Google Scholar] [CrossRef] [Green Version]
- Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, D.; Maghsoudlou, D. Enzyme-linked immunosorbent assay (ELISA): The basics. Br. J. Hosp. Med. 2016, 77, C98–C101. [Google Scholar] [CrossRef] [PubMed]
- Price, C.P. Point of care testing. BMJ Br. Med J. 2001, 322, 1285–1288. [Google Scholar] [CrossRef]
- Drain, P.K.; Hyle, E.P.; Noubary, F.; Freedberg, K.A.; Wilson, D.; Bishai, W.R.; Rodriguez, W.; Bassett, I.V. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect. Dis. 2014, 14, 239–249. [Google Scholar] [CrossRef] [Green Version]
- St John, A.; Price, C.P. Existing and Emerging Technologies for Point-of-Care Testing. Clin. Biochem. Rev. 2014, 35, 155–167. [Google Scholar] [PubMed]
- Paul, S. Biomedical Engineering and its Applications in Healthcare; Springer: Berlin, Germany, 2019. [Google Scholar]
- Harpaz, D.; Axelrod, T.; Yitian, A.L.; Eltzov, E.; Marks, R.S.; Tok, A.I.Y. Dissolvable polyvinyl-alcohol film, a time-barrier to modulate sample flow in a 3D-printed holder for capillary flow paper diagnostics. Materials 2019, 12, 343. [Google Scholar] [CrossRef] [Green Version]
- Harpaz, D.; Eltzov, E.; Axelrod, T.; Marks, R.S.; Tok, A.I.Y. Membrane type comparison and modification to modulate sample flow in paper diagnostics. Biochem. Eng. J. 2020, 155, 107483. [Google Scholar] [CrossRef]
- Harpaz, D.; Eltzov, E.; Ng, T.S.E.; Marks, R.S.; Tok, A.I.Y. Enhanced Colorimetric Signal for Accurate Signal Detection in Paper-Based Biosensors. Diagnostics 2020, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Harpaz, D.; Koh, B.; Marks, R.S.; Seet, R.; Abdulhalim, I.; Tok, A.I.Y. Point-of-Care surface plasmon resonance biosensor for stroke biomarkers NT-proBNP and S100β using a functionalized gold chip with specific antibody. Sensors 2019, 19, 2533. [Google Scholar] [CrossRef] [Green Version]
- Harpaz, D.; Koh, B.; Seet, R.C.S.; Abdulhalim, I.; Tok, A.I.Y. Functionalized silicon dioxide self-referenced plasmonic chip as point-of-care biosensor for stroke biomarkers NT-proBNP and S100β. Talanta 2020, 212, 120792. [Google Scholar] [CrossRef]
- Sinawang, P.D.; Harpaz, D.; Fajs, L.; Seet, R.C.S.; Tok, A.I.Y.; Marks, R.S. Electrochemical impedimetric detection of stroke biomarker NT-proBNP using disposable screen-printed gold electrodes. EuroBiotech J. 2017, 1, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, S.; Ali, M.A.; Anand, P.; Agrawal, V.V.; John, R.; Maji, S.; Malhotra, B.D. Microfluidic-integrated biosensors: Prospects for point-of-care diagnostics. Biotechnol. J. 2013, 8, 1267–1279. [Google Scholar] [CrossRef] [PubMed]
- Harpaz, D.; Eltzov, E.; Seet, R.C.S.; Marks, R.S.; Tok, A.I.Y. Rapid Point-of-Care-Tests for Stroke Monitoring. Org. Bioelectron. Life Sci. Healthc. 2019, 56, 263–314. [Google Scholar]
- Drescher, M.J.; Spence, A.; Rockwell, D.; Smally, A.J. Point-of-Care Testing for Coagulation Studies in an Emergency Department Stroke Protocol: A Time-Saving Innovation. Ann. Emerg. Med. 2007, 50, S25. [Google Scholar] [CrossRef]
- Eli, C.; Raviv, G.; Irene, N. Apparatus and Method to Determine Stroke Subtype. Google Patents WO/2016/077657, 19 May 2016. [Google Scholar]
- Rizos, T.; Herweh, C.; Jenetzky, E.; Lichy, C.; Ringleb, P.A.; Hacke, W.; Veltkamp, R. Point-of-Care International Normalized Ratio Testing Accelerates Thrombolysis in Patients With Acute Ischemic Stroke Using Oral Anticoagulants. Stroke 2009, 40, 3547–3551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, S.; Kostopoulos, P.; Haass, A.; Lesmeister, M.; Grasu, M.; Grunwald, I.; Keller, I.; Helwig, S.; Becker, C.; Geisel, J.; et al. Point-of-care laboratory halves door-to-therapy-decision time in acute stroke. Ann. Neurol. 2011, 69, 581–586. [Google Scholar] [CrossRef]
- Adams, H.P., Jr.; del Zoppo, G.; Alberts, M.J.; Bhatt, D.L.; Brass, L.; Furlan, A.; Grubb, R.L.; Higashida, R.T.; Jauch, E.C.; Kidwell, C.; et al. Guidelines for the early management of adults with ischemic stroke: A guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Circulation 2007, 115, e478–e534. [Google Scholar]
- Karlinski, M.; Gluszkiewicz, M.; Czlonkowska, A. The accuracy of prehospital diagnosis of acute cerebrovascular accidents: An observational study. Arch. Med. Sci. 2015, 11, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Brandler, E.S.; Sharma, M.; Sinert, R.H.; Levine, S.R. Prehospital stroke scales in urban environments: A systematic review. Neurology 2014, 82, 2241–2249. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Shan, Y.; Cai, W.; Liu, S.; Hu, M.; Liao, S.; Huang, X.; Zhang, B.; Wang, Y. Cerebral small vessel disease: Neuroimaging markers and clinical implication. J. Neurol. 2019, 266, 2347–2362. [Google Scholar] [CrossRef]
- Regenhardt, R.W.; Das, A.S.; Lo, E.H.; Caplan, L.R. Advances in understanding the pathophysiology of lacunar stroke: A review. JAMA Neurol. 2018, 75, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Cardioembolic | Atherosclerosis | Lacunar | Ref. |
---|---|---|---|---|
B-Type Natriuretic Peptide (BNP) | ↑ | ↓ | ↓ | [61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84] |
D-Dimer | ↑ | ↓ | ↓ | [72,80,85,86,87,88,89,90,91,92,93,94,95,96,97,98] |
C-Reactive Protein (CRP) | ↑ | ↑ | ↓ | [98,99,100,101,102,103,104,105,106] |
Inflammatory Cytokines: Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1β (IL-1β) | ↑ | ↓ | ↓ | [89,107,108,109] |
Neutrophil Lymphocyte Ratio (NLR) | ↑ | ↑ | ↓ | [110,111,112,113,114,115,116] |
Common Lipid Panel: Total Cholesterol, Triglycerides, Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL) and Apo-lipoprotein A | ↓ | ↑ | ↓ | [117,118,119,120,121,122,123,124] |
Biomarker | Finding | Study Ref. |
---|---|---|
BNP (Cardiac Biomarker) | cardioembolic ≥ 140 pg/mL (sensitivity = 80.5% and a specificity = 80.5%) | Shibazaki K. et al. 2009 [71] |
cardioembolic = 366.6 pg/mL, vs. non-cardioembolic = 105.6 pg/mL (p < 0.01) | Kawase S. et al. 2015 [63] | |
Cardioembolic ≥ 66.5 pg/mL (sensitivity = 76% and a specificity = 87%) | Wu Z. et al. 2015 [65] | |
BNP predicted cardioembolic stroke (AUC ROC = 81%) | Nakamura M. et al. 2018 [79] | |
BNP (sensitivity = 65% (95% CI: 63%–68%) and specificity = 85% (95% CI: 83%–87%)) and NT-proBNP (sensitivity = 55% (95% CI: 52%–59%) and specificity = 93% (95% CI: 91%–94%)) | Bai J. et al. 2018 [77] | |
D-Dimer (Hemostatic Biomarker) | D-dimer ≥ 300 ng/mL for distinguishing cardioembolic stroke | Takano K. et al. 1992 [94] |
D-dimer ≥ 2.00 mg/mL for discriminating between the presence of a cardioembolic source (specificity = 93%, a sensitivity = 59%, a positive predictive value = 73% and a negative predictive value = 88%) | Ageno W. et al. 2002 [85] | |
D-dimer ≥ 1.6 mg/L may indicate cardioembolic stroke | Dougu N. et al. 2008 [86] | |
D-dimer = 2.17 mg/L (IQR, 1.24–3.48), median levels were significantly (p = 0.000) higher in patients with cardioembolic stroke | Zi W.J. and J. Shuai 2014 [92] | |
D-dimer ≥ 791.30 ng/mL may indicate cardioembolic stroke (sensitivity = 58% and a specificity = 78%) | Liu L.-B. et al. 2015 [96] | |
CRP (Inflammatory Biomarker) | CRP mean values were significantly higher in patients with cardioembolic stroke | Masotti L. et al. 2005 [99] |
TNF- α, IL-6 and IL1-β (Inflammatory Cytokines) | Cardioembolic patients showed significantly higher median plasma levels of TNF-α (38.5 (22.2–46) pg/mL; p < 0.0001), IL-6 (11 (5.5–19) pg/mL; p = 0.0029) and IL-1β (11.5 (8–13) pg/mL; p < 0.0001) | Licata G. et al. 2009 [108] |
Biomarker | Finding | Study Ref. |
---|---|---|
CRP (Inflammatory Biomarker) | Higher CRP levels were significantly found in patients with atherosclerosis as compared to lacunar | Suwanwela N.C. et al. 2006 [100] |
In the acute phase the CRP levels were higher in cardioembolic than in other etiologies (cardioembolic: 7.07 (2.39–17.8); atherosclerosis: 4.66 (1.79–13.9); lacunar: 3.08 (1.52–5.79)). While, after 3 months, the CRP levels were higher in atherosclerosis than in other etiologies (cardioembolic: 2.66 (1.07–5.46); atherosclerosis: 3.48 (1.42–9.99); lacunar: 2.65 (1.26–4.82)) | Ladenvall C. et al. 2006 [104] | |
The plasma levels of CRP were significantly (p < 0.05) higher in atherosclerosis etiology, with a cut off value of CRP ≥ 3.2 demonstrating 85.7% classification sensitivity | Zeng L. et al. 2013 [105] | |
NLR (Inflammatory Biomarker) | Higher leukocyte counts in cardioembolic and atherosclerotic stroke etiologies | Elkind M.S. et al. 2005 [111] |
Both higher leukocyte and neutrophil counts were shown in great artery atherosclerosis, while the counts were lower in the lacunar group | Guven H. et al. 2010 [112] | |
NLR ratio level was significantly (p < 0.001) higher in the great artery atherosclerosis or atherothrombosis group (6.67 ± 3.74) compared to the other etiologies groups (cardioembolic: 1.74 ± 0.40; lacunar: 3.75 ± 1.74; unknown origin: 3.00 ± 1.49) | Gokhan S. et al. 2013 [110] | |
NLR was significantly higher (p = 0.001) in both the atherosclerotic (6.5 (IQR 7.2)) and cardioembolic (7.5 (IQR 8.9)) stroke subgroups than the lacunar infarct (3.20 (IQR 3.50)) subgroup | Tokgoz S. et al. 2013 [113] | |
NLR level did not vary significantly among the stroke subtypes (p = 0.070), while the neutrophil counts (103/UL) were significantly (p = 0.008) different (large-artery disease (5.3 ± 1.5); cardioembolic (8.9 ± 4.01); lacunar (6.1 ± 2.0) and undetermined (7.1 ± 3.6)) | Lök U. and U. Gülaçti 2016 [115] | |
NLR levels in atherothrombotic and cardioembolic groups were 3.26 ± 2.35 and 4.46 ± 5.6, respectively, and this was found to be statistically significant (p = 0.03) | Domaç, F. et al. 2019 [114] | |
Common Lipid Panel: Total Cholesterol, Triglycerides, LDL, and HDL | LDL-B is more prevalent in patients with atherosclerosis | Iskra T. et al. 2002 [117] |
Patients with atherosclerosis had significantly higher concentrations of LDL than control (p < 0.05), higher concentrations of triglycerides, and lower concentrations of HDL than patients with lacunar and control (p < 0.05). LDL phenotype B was more frequent in patients with atherosclerosis (63.3%) than in patients with lacunar (39.0%) or in control (16.7%) (p < 0.05) | Slowik A. et al. 2003 [120] | |
The levels of total cholesterol were significantly higher in patients with lacunar (p = 0.005) and atherosclerosis (p = 0.018) as compared to controls. Patients with atherosclerosis etiology showed a significantly higher LDL levels (p < 0.004) and lower HDL levels (p = 0.001) | Laloux P. et al. 2004 [119] | |
HDL ratio was significantly higher in atherosclerosis vs. non-atherosclerosis and non-lacunar patients. After adjustments, significant ORs for atherosclerosis compared with all other ischemic stroke subtypes were triglycerides (OR 2.69, 95% CI 1.44 to 5.02) and non-HDL (OR 2.39, 95% CI 1.40 to 4.11) | Bang O.Y. et al. 2008 [118] | |
Hazard ratios of ischemic stroke with serum total cholesterol levels among large-artery patients for men (2.86 (1.31–6.27)) and women (0.75 (0.28–2.01)), while they were not associated with risk of lacunar or embolic infarction | Cui R. et al. 2012 [122] | |
The levels of total cholesterol, triglycerides, LDL, apolipoprotein A, apolipoprotein B, apolipoprotein E, and lipoprotein A were higher and HDL was lower in stroke patients with atherosclerosis etiology as compared to the cardioembolic etiology. The levels of lipoprotein A, total cholesterol, and total cholesterol/HDL were higher in patients with cardioembolic etiology as compared to the lacunar etiology. The levels of total cholesterol, triglycerides, LDL, apolipoprotein A, apolipoprotein B, apolipoprotein E, lipoprotein A, total cholesterol/HDL, and LDL/HDL were all significantly different between patients with atherosclerosis etiology as compared to that with lacunar etiology | Yuan B.-B. et al. 2015 [121] | |
Apo-lipoprotein A | The percentage of subjects with increased lipoprotein A concentrations (i.e., >30 mg/dL) was greater in large vessel disease (36.7%) than in small vessel disease (12.2%; p < 0.05) and in controls (10%; p < 0.05) | Iskra T. et al. 2002 [117] |
Subjects carrying at least one small Apo-lipoprotein A isoform were at increased risk of atherothrombotic stroke (OR 7.1, 95% CI 2.8 to 17.5, p = 0.00001) but not of lacunar infarction (OR 1.1, 95% CI 0.5 to 2.7, p = 0.78) | Zambrelli E. et al. 2005 [123] | |
Lipoprotein A levels of atherosclerosis stroke (n = 281, 34.6 mg/dL) were significantly (p < 0.001) higher as compared to other stroke mechanisms (cardioembolic: n = 204, 29.2 mg/dL, lacunar: n = 261, 24.2 mg/dL, other determined: n = 74, 24.1 mg/dL, undetermined: n = 192, 27 mg/dL) | Kim B.S. et al. 2010 [124] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harpaz, D.; Seet, R.C.S.; Marks, R.S.; Tok, A.I.Y. Blood-Based Biomarkers Are Associated with Different Ischemic Stroke Mechanisms and Enable Rapid Classification between Cardioembolic and Atherosclerosis Etiologies. Diagnostics 2020, 10, 804. https://doi.org/10.3390/diagnostics10100804
Harpaz D, Seet RCS, Marks RS, Tok AIY. Blood-Based Biomarkers Are Associated with Different Ischemic Stroke Mechanisms and Enable Rapid Classification between Cardioembolic and Atherosclerosis Etiologies. Diagnostics. 2020; 10(10):804. https://doi.org/10.3390/diagnostics10100804
Chicago/Turabian StyleHarpaz, Dorin, Raymond C. S. Seet, Robert S. Marks, and Alfred I. Y. Tok. 2020. "Blood-Based Biomarkers Are Associated with Different Ischemic Stroke Mechanisms and Enable Rapid Classification between Cardioembolic and Atherosclerosis Etiologies" Diagnostics 10, no. 10: 804. https://doi.org/10.3390/diagnostics10100804
APA StyleHarpaz, D., Seet, R. C. S., Marks, R. S., & Tok, A. I. Y. (2020). Blood-Based Biomarkers Are Associated with Different Ischemic Stroke Mechanisms and Enable Rapid Classification between Cardioembolic and Atherosclerosis Etiologies. Diagnostics, 10(10), 804. https://doi.org/10.3390/diagnostics10100804