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Abstract: Integrating a dissolvable membrane into a sensor allows the control of sample flow, location
and duration in critical areas. These time-barrier films stop the flow of samples until the membrane
has dissolved, thus, for example, allowing increased exposure time between immunoreagents for
the formation of greater numbers of immuno-complexes, ensuring higher sensitivity, reactivity, and
helping to reduce false-positive signals. In this study, dissolvable polyvinyl alcohol (PVA) films are
used in a 3D-printed sensor holder, which enables film integration without the use of glue. PVA is a
synthetic hydrophilic linear polymer, its solubility is dependent on its molecular weight and degree of
hydrolysis. Three types of PVAs films were tested herein: (1) PVA 1-Mw: 30–70 K, 87–90% hydrolyzed;
(2) PVA 2-Mw: 31–50 K, 98–99% hydrolyzed and (3) PVA 3-Mw: 89–98 K, >99% hydrolyzed. The
films were exposed to water in (1) the novel 3D-printed holder and (2) directly immersed into a water
droplet. After comparing the time taken to dissolve PVA 1–3 films, PVA 1 films of 5–20% (w/v) are
found to be most suitable as time barrier films, due to their optimal dissolution times and physical
properties for integration into the customized 3D-printed holder.

Keywords: polyvinyl alcohol; dissolvable membrane; time barrier film; paper based sensors; sample
flow control; 3D-printed holder

1. Introduction

A dissolvable membrane can be integrated into a sensor in order to allow control of sample
flow. The membrane acts as a time-barrier film, by stopping the sample flow until it is dissolved.
The control of sample flow in sensor critical areas, such as conjugation and blocking layers, allows
increased exposure time between immunoreagents for the formation of more immuno-complexes. This
helps to ensure higher sensitivity, reactivity and in some cases reduces false-positive signals [1–4].
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The ideal material to function as a time-barrier film should be stable in dry form but still dissolves
easily upon wetting, thus allow the flow of the sample. A recent study demonstrated the use of a
polyacrylamide-based dissolvable membrane in a microfluidic chemical and biological sensor. In
the presence of the sample, the membrane dissolves and permits the sample flow into interdigitated
electrodes. This results in a resistance change between the electrodes and transduces the chemical
event into an electrical signal [5]. However, in order for such dissolvable membranes to be employed
in high-speed sensing technologies, the total operation time of the device should be approximately
30 min or less. This should include the time taken for the time-barrier films to dissolve, enable optimal
protein-antibody reaction, and signal testing. As a result, the time taken for the time-barrier films to
dissolve should ideally be within the range of 10–15 min [6].

Dissolvable films contain a water-soluble polymer, such as hydroxylpropyl-methylcellulose,
polyvinylpyrrolidone, polyvinyl-alcohol, carboxymethyl-cellulose, polyethylene-oxide, hydroxylpropyl-
cellulose, hydroxylethyl-cellulose, methyl-cellulose, pullulan, gelatin, pectin, sodium alginate,
maltodextrin, polymerized rosin, and xanthan [7]. The polymer of choice is usually selected based
on its brittleness as well as its rate of dissolution, which is inversely related to its molecular weight.
Moreover, plasticizers, such as glycerol, propylene glycol, poly (ethylene glycol), glycerine, dimethyl
phthalate, diacetyl phthalate, dibutyl phthalate, triacetrin, castor oil, citrate ether, and tryethyle citrate
are added for the control of the film mechanical properties [8]. In addition, there are two main methods
for dissolvable film preparation: Solvent-casting and hot-melt extrusion. In the solvent-casting method,
the polymer is dissolved together with the plasticizer in a selected solvent (usually water or ethanol),
which is later spread out using casting and drying technique. This method is ideal for heat-sensitive
materials, however can contain trace amounts of the solvent used. In the hot-melt extrusion method,
the dry form of the ingredients are heated and extruded until they are mixed. Then, the melted material
is forced through an extrusion die to form the desired shape. In this method there is no addition of
solvent material, however the material can go through thermal degradation due to high temperature
used [9,10].

In this study, a PVA film was employed inside capillary flow paper diagnostics, in order to control
the sample flow. Polyvinyl alcohol (PVA) is a synthetic hydrophilic linear polymer which forms
copolymers of vinyl alcohol and vinyl acetate. PVA was first synthesized by Hermann and Haehnel in
1924 by hydrolyzing polyvinyl acetate in ethanol with potassium hydroxide [11]. Since vinyl alcohol is
unstable and rapidly tautomerizes into acetaldehyde, PVA is commercially produced via the hydrolysis
of Polyvinyl Acetate. As such, the physical and structural properties of PVA are dependent on the
extent of polymerization and hydrolysis. Esterification, etherification, crystallization, ion-polymer
complexation in the polymer can be caused by changes in these factors [12]. The unique properties of
these modified PVA structures, such as their adhesiveness, strength, film forming, biocompatibility,
swelling, safety, and non-carcinogenicity, are beneficial in different industries including textile, paper,
adhesives, food, biomedical, and pharmaceutical in particular [13].

PVA is widely used as a non-protein blocking agent in immunoassays to saturate the unoccupied
sites on the solid phase. This prevents non-specific binding of the immune-reactants, since it does not
get contaminated by interfering proteins like immunoglobulins or endogenous peroxidases [14–18].
Moreover, PVA is widely used as a humidity-sensing material. The hydrophilic functional groups in
PVA give the polymer its high affinity to water. They absorb the moisture in the air, which changes
the water content in the PVA film [19–22]. In addition, since PVA is a water soluble polymer, it is
also widely used in the creation of biodegradable packaging. Plasticizers, such as glycerol, are added
for increased flexibility and reduced brittleness, whereas surfactants, such as tween 20, are added to
enhance the plasticizer function [23]. Together with reagents such as chitosan, cellulose, and cross
linking reagents, a biodegradable film which is highly dissolvable in water is created [24–30].

PVA is highly soluble in water as it comprises a large amount of hydroxyl groups, which interact
with the water molecules through hydrogen bonds. The PVA solubility depends on its degree of
hydrolysis and molecular weight [31]. The degree of hydrolysis of the PVA is inversely proportional



Materials 2019, 12, 343 3 of 11

to its solubility. PVA with a high degree of hydrolysis will be less soluble in water due to inter- and
intra- molecular H-bonds that form between the hydroxyl groups of the PVA molecules. With higher
degree of hydrolysis, there will be greater interactions amongst the PVA molecules than with the water
molecules, thus PVA solubility is reduced. Conversely, with a lower degree of hydrolysis, inter- and
intra- molecular H-bonds are reduced due to steric hindrance from a large quantity of hydrophobic
acetate groups. This helps to increase interactions between PVA molecules and water molecules, thus
boosting solubility. Similarly, PVA with lower molecular weights will dissolve faster in water over
higher molecular weights as they exhibit lesser intramolecular interaction [32]. Therefore, in this study,
three types of PVAs films were tested herein: (1) PVA 1-Mw: 30–70 K, 87–90% hydrolyzed; (2) PVA
2-Mw: 31–50 K, 98–99% hydrolyzed and (3) PVA 3-Mw: 89–98 K, >99% hydrolyzed.

In this study, the films were integrated inside a 3D-printed holder, for the elimination of the use of
glue, and the time taken for the dissolution of the films was measured. With the recent emergence of
3D printing technology, it has become possible to rapidly and easily produce customized objects. 3D
printing has allowed for constant design-build-test cycles for objects ranging from microfluidic chips
to smartphone interfaces, which are complements to sensor applications [33]. 3D-printing technology
has allowed us the creation of a prototype that can securely hold the PVA film for it to function as
a time barrier film inside a paper based sensor casing, without the use of glue. The ability of these
time-barrier films was examined by employing them in the customized 3D-printed holder.

2. Materials and Methods

2.1. Materials

PVA 1, Mw: 30–70 K, 87–90% hydrolyzed (Cat. 8136), PVA 2, Mw: 31–50 K, 98–99% hydrolyzed
(Cat. 363138), PVA 3, Mw: 89–98 K, >99% hydrolyzed (Cat.341584), Glycerol (Cat. G6279), and Tween20
(Cat. P7949) were purchased from Sigma-Aldrich. Sample (Cat. GFB-R4), absorbent (Cat. AP-080) and
conjugate release matrix (Cat. PT-R5) pads were purchased from Advanced Microdevices Pvt. Ltd
(20-21, Industrial Area, Ambala Cantt, Haryana, India). Nitrocellulose membrane 0.45 µm (Cat. No.
1620115) was purchased from Bio-Rad. Fullcure 810 VeroClear (OBJ-03271) and Resin Support Fullcure
705 (OBJ-03200) were purchased from Stratasys (Eden Prairie, Minnesota, United States). Parafilm “M”
was purchased from Bemis (Neenah, WI, USA).

2.2. Equipment

Balance was purchased from Mettler Toledo. The hotplate (WH220PLUS) and the Binder oven
were purchased from Gaia Science Pte Ltd. Film cutter (PAT/RE38, 219 & D613, 795) was purchased
from EK Tools, Vaessen Creative (Vaessen B.V. Thermiekstraat 25 6361HB Nuth, The Netherlands).
Digital Vernier Caliper was purchased from Kincrome. PowerBlast (high pressure water cleaner,
20-120 bar, manufactured by Balco UK for Objet Geometries Limited) and Inkjet 3D Printer (Stratasys
Eden 260) were purchased from Stratasys (Eden Prairie, MN, USA).

2.3. Preparation of Films

Using the solvent-casting technique, the PVA films were made from aqueous polymer solutions.
The PVA was first weighed, and then added into deionized water according to the required
concentration. For the preparation of 1% PVA, add 0.1 g PVA slowly into 10 mL of deionized (DI)
water. Once added, the solution was mixed on a hotplate at 250 rpm and 80 ◦C for 1 h to obtain a
homogenous solution. The PVA solution was heated up to 80 ◦C in order to break up the crystal
structure and thus allow it to dissolute. Then, 10 mL of the homogenous PVA solution was placed in a
disposable plastic petri dish and placed into the oven at 37 ◦C for 22 h. The PVA solution volume was
also varied and the following volumes were tested: 10 mL, 15 mL, and 20 mL.
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2.4. 3D-Printing of Customized Holder

The customized 3D-printed holder was modelled using Autodesk Fusion 360 software and printed
using Stratasys Eden 260 Inkjet 3D Printer, using VeroClear and Sup705 as supporting material. Once
printed, the prototypes were washed using PowerBlast to remove the excess support material.

2.5. Determination of Dissolution Time in Water

In order to eliminate factors such as, breaking or tearing of the film and poor exposure of film
to sample within the 3D-printed holder, the dissolution time of the tested PVA 1–3 films was first
determined under standard conditions. Each tested PVA film was cut into small circles of 6 mm
diameter then immersed into a 100 µL DI-water droplet on a parafilm. The films were visually and
physically examined to determine the time for dissolution.

2.6. Determination of Dissolution Time in the 3D-Printed Holder

PVA 1–3 films were also integrated into customized 3D-printed holders and the time taken
for the films to dissolve inside the holder was determined. First, an absorption pad was cut into
5 mm × 20 mm and placed in the designated rectangle at the bottom of the holder. Then, each tested
PVA film was cut into a 15 mm × 15 mm square which were placed between the top and bottom
components of the 3D-printed holder, exactly on the ring of the bottom of the holder (Figure 1). After
the tested PVA film was integrated into the holder an ink sample was then added through the top
entrance of the holder. The dissolution time of each tested film was measured after observing the
visible flow of the ink sample into the absorption pad (Figure 2). Since reagent-containing membranes
are a common components of many sensors, the effect of such membranes on the dissolution time was
also tested by adding sample pads above the PVA film before the addition of the ink sample.

Figure 1. Schematic description of customized 3D-printed polyvinyl alcohol (PVA) film holder. (a) Top
part: Outer circle with 13 mm diameter and inner circle with 8 mm diameter. Bottom part: Ring
thickness of 1 mm. (b) PVA film (15 mm × 15 mm) integration and sample addition.
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Figure 2. Control of sample flow. (a) Integration of a PVA film inside the customized 3D-printed holder,
after applying ink sample, there is a visible delay of flow. It is clear to identify the sample flow after
10 min of waiting time. (b) Dissolved PVA film, after applying the ink sample and allowing for a
waiting time of 30 min for full sample flow.

2.7. Characterization of Film Weight and Thickness

The thickness of the tested PVA films was measured using a Digital Vernier Caliper. The weight
of the tested PVA films was measured after the films were cut into 15 mm × 15 mm squares.

3. Results and Discussion

3.1. Comparison of PVA 1-3 Films Dissolving Time in Water

Three types of PVA were tested for their use as time barrier films. The three types of PVA
used were as follow: (1) PVA 1-Mw: 30–70 K, 87–90% hydrolyzed; (2) PVA 2-Mw: 31–50 K, 98–99%
hydrolyzed and (3) PVA 3-Mw: 89–98 K, >99% hydrolyzed. The three types of PVAs were chosen
based on the differences in their Mw and level of hydrolysis. Theoretically, PVA degree of hydrolysis
is inversely proportional while the PVA Mw is directly proportional to its solubility [31,32]. As such,
it was hypothesized that PVA 1 will dissolve most quickly because of its lower Mw and lower level
of hydrolysis. This is followed by PVA 2, which has a higher level of hydrolysis, then PVA 3 due
to its high Mw and high level of hydrolysis. The dissolution time of the tested PVA 1–3 films were
first determined under standard conditions. Each tested PVA film was cut into small circles of 6mm
diameter and immersed into 100 µL of DI-water droplet on a parafilm. The films were visually and
physically examined to determine the time for dissolution and the results are presented in Figure 3. A
range of PVA concentrations were used to obtain films with different physical properties for testing
since their ease of integration into the 3D-printed holder is an essential factor. The dissolution time of
the PVA 1–3 films was determined for the following concentrations: 1% to 25% (w/v), 1% to 5% and
0.5% –1% respectively. PVA 1 1% and 2% (w/v) films dissolved rapidly after less than 1min, while the
PVA 1 25% (w/v) film dissolved too slowly, taking up to ~18min. These films were unsuitable as a
time-barrier as they either did not provide sufficient time for the formation of the immuno-complexes
or dissolved too slowly to be effective in a sensing device. PVA 1 5–20% (w/v) films, however, dissolved
after 4–10 min, which is within the time range of interest for a time barrier film for paper based sensors.
The PVA 2 films were tested with a narrower range of concentrations: 1% to 5% (w/v), as the films
did not dissolve even after 2 h for 10% (w/v) concentration. The results presented in Figure 3B show
that even a 5% (w/v) concentration gave a very long dissolution time of ~40 min. Although PVA 2
1–2.5% (w/v) films dissolved after 5–13 min, which is within the time range of interest, it was ultimately
deemed unsuitable due to its brittleness which would be a problem during the film-holder integration
The PVA 3 films dissolving time was determined in the concentrations: 0.5% to 1% (w/v), since 2%, 5%
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and 10% (w/v) films did not dissolve even after 2 h. The results presented in Figure 3C show that PVA
3 0.5% (w/v) films dissolved only after ~2 min while the PVA 3 0.8% and 1% (w/v) films dissolved after
12–16 min. Similarly, PVA 3 0.8% and 1% films were determined to be too brittle and thus unsuitable
for use as a time-barrier film inside paper-based sensors. To conclude, after the comparison of PVA 1–3
films, PVA 1 5–20% (w/v) films were found to be the most suitable for use as time barrier films, due to
their optimal dissolution times and physical properties for integration into the 3D-printed holder.

Figure 3. Comparison of PVAs 1–3 films dissolving time in DI-water. The dissolution time was
determined after immersing the PVA films into 100 µL of DI-water droplet on parafilm. Dissolution
time was compared between three types of PVA: (A) PVA 1 (Mw: 30–70 K, 89–90% Hydrolysed);
(B) PVA 2 (Mw: 31–50 K, 98–99% Hydrolysed) and (C) PVA 3 (Mw: 89–98 K, 99% Hydrolysed).
Different concentrations were selected for each PVA type, according to the Mw and hydrolysis level.

3.2. PVA 1 Film Dissolving Time in 3D-Printed Holder

PVA 1 5–20% films were selected for further testing in the customized 3D-printed holder since
they were determined to have optimal dissolution times and physical properties compared to the other
tested films. After they were integrated into the holder, as described in Section 2.6, the dissolution time
of each tested film was determined after the visible flow of the ink sample into the absorption pad
(Figure 2) was observed. Moreover, the effect of three other factors, (1) sample volume, (2) presence of
membranes, and (3) plasticizers and surfactants, on dissolution time were also tested and the results
are presented in Figure 4. As presented in Figure 4A, the effect of sample volume on dissolution time
was tested for two different volumes of sample: 100 µL and 500 µL. The resultant dissolution time is
similar between the 100 µL and 500 µL samples: 10% (w/v): ~11–12 min; 15% (w/v): ~14 min and 20%
(w/v): ~15–17 min, except for a small difference in the case of PVA 1 5% (w/v) films (100 µL: ~10 min,
500 µL: ~6 min). Moreover, the PVA 1 films have a longer dissolution time in the 3D-printed holder
than in the water drop: 5% (w/v) - drop ~4 min vs. holder ~6 min; 10% (w/v) - drop ~5 min vs. holder
~11 min, 15% (w/v) - drop ~7 min vs. holder ~14 min and 20% (w/v) - drop ~9 min vs. holder ~15 min.
The time taken for dissolution was longer in the 3D-printed holder as the exposure area of the PVA
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film to water in the 3D printed holder is limited to only a 6 mm Ø surface, whereas the PVA film
was fully immersed inside the water droplet, which increased the exposure area. The results suggest
that the 3D-printed holder can be employed in sensors to effectively tune the dissolution time of PVA
films by adapting the area of film-sample exposure based on the needs of the sensor. As previously
mentioned, reagent-containing membranes are a common component of many sensors. Therefore,
the effect of the presence of membranes was also tested in the 3D-printed holder and the results are
presented in Figure 4B. Five sample pads were placed on top of the PVA 1 films before the addition
of the ink sample. The addition of membranes reduced the dissolution time of the PVA 1 films: 5%
(w/v) without ~6 min vs. with ~3 min and 10% (w/v) without ~11 min vs. with ~6 min. Furthermore,
the effect of adding plasticizer (0.5% (v/v) Glycerol) and surfactant (0.05% (v/v) Tween20) to the
PVA film was also tested in the 3D-printed holder and the results are presented in Figure 4C. The
plasticizer and surfactant effect was added to the PVA film with the intention of improving the film
flexibility for better integration into the 3d-printed holder. However, from the resultant dissolution
time, the plasticizer and surfactant addition into the PVA 1 film content reduced the dissolution time
significantly from ~4 min to ~1 min.

Figure 4. PVA 1 film dissolving time in customized 3D-Printed holder. (A) Effect of sample volume,
comparing dissolution time with 100 µL and 500 µL of DI-water. (B) Effect of Membranes on 7.5% (w/v)
PVA 1 film dissolution time, using 500 µL DI-water. (C) Effect of plasticizer and surfactant on 7.5%
(w/v) PVA 1 film dissolution time, using 500 µL DI-water.

3.3. PVA 1 Film Weight and Thickness Characterization

The characterization of the weight and thickness of the PVA 1 films was also conducted. Results
are presented in Figure 5. PVA 1 7.5% (w/v) films were prepared and then cut into 6 mm diameter
circles. The PVA circles were first weighed then tested for their dissolution time when immersed in a
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DI-water droplet on parafilm. From the results presented in Figure 5A, a linear connection between
the PVA circles’ weight to its dissolution time was observed. After standardization per area, the
linear connection between the dissolution time (min) to weight/area (mg/cm2) can be described
with the following equation: y = 0.1934×−1.278, R2 = 0.9626. Moreover, the characterization of the
weight and thickness of the PVA 1 7.5% (w/v) films based on three different PVA solution volumes
was also conducted and the results are presented in Figure 5B. After the preparation of the PVA 1
7.5% (w/v) films, the films were cut into 15 mm × 15 mm squares. From the results presented in
Figure 5B, a linear connection between the films’ weight to the solution volume can be observed. After
standardization per area, the linear connection between weight/area (mg/cm2) to solution volume (mL)
can be described with the following equation: y = 7.8759× + 3.468, R2 = 0.98. The linear connection
between thickness (µm) to solution volume (mL) can be described with the following equation:
y = 61.667× + 57.778, R2 = 0.9343.

Figure 5. PVA 1 film weight and thickness characterization. (A) Effect of weight of 7.5% (w/v) PVA 1
film on dissolution time when immersed in 100 µL of DI-water droplet on parafilm. (B) Weight and
thickness as a function of PVA 1 solution volume.

4. Conclusions

In this study, dissolvable PVA films are used in a novel, customized 3D-printed sensor holder for
the control of sample flow. Integrating a dissolvable membrane inside a paper based sensor will allow
the control of the sample flow in selected critical areas. With the use of PVA as a time barrier film, the
sample will not flow until the required time. This allows increased exposure time between protein and
antibody in order to allow more immuno-complexes to be formed in order to ensure higher sensitivity,
reactivity, and reduced false-positive signal [1,2,5]. In addition, as previously discussed, the PVA
solubility depends on its molecular weight and degree of hydrolysis. Three types of PVAs films were
tested: (1) PVA 1-Mw: 30–70 K, 87–90% hydrolyzed; (2) PVA 2-Mw: 31–50 K, 98–99% hydrolyzed and
(3) PVA 3-Mw: 89–98 K, >99% hydrolyzed. PVA 1 5–20% (w/v) films were found to be the most suitable
for use as time barrier films, due to ideal dissolution times and physical properties for integration into
the customized 3D-printed holder. As expected, the dissolution times of PVA 1 films were slower in
the 3D-printed holder then in the DI-water droplet: 5% (w/v) drop ~4 min holder ~6 min; 10% (w/v)
drop ~5 min holder ~12 min, 15% (w/v) drop ~7 min holder ~14 min and 20% (w/v) - drop ~9 min vs.
holder ~15 min. Moreover, a linear relation can be observed between the PVA weight/area and it’s
dissolving time. As previously discussed, the intended use of the dissolvable PVA films is inside a
paper-based sensor. A potential sensor platform is Stack-pad [34,35]. Stack-pad is based on vertically
stacked functional membranes. The sample is added from the bottom-up, and as each layer is wetted,
the analyte is pushed upwards. Through the immunocomplex (analyte-antibody conjugated with
horseradish peroxidase (HRP)) migration, a measurable signal is produced. In order to prevent a false
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positive result, a proprietary blocking layer membrane is added to stop unbounded antibodies from
reaching the top membrane. Thus, only the analyte/antibody-HRP complex will generate a signal. For
example, the dissolvable PVA film has the potential to improve the sensitivity and specificity of the
stack-pad sensor if it is employed in order to allow increased exposure time of the tested sample in
the blocking layer membrane. To conclude, the dissolvable PVA film has the potential to improve the
sensitivity and specificity of such sensors by allowing increased exposure time in the sensor critical
areas, which will potentially increase immunocomplex formation.
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