Percussion Entropy Analysis of Synchronized ECG and PPG Signals as a Prognostic Indicator for Future Peripheral Neuropathy in Type 2 Diabetic Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.1.1. The Inclusion and Exclusion Criteria Were as Follows
2.1.2. Grouping
2.1.3. Ethical Issues, IRB, and Consent Form
2.1.4. Study Protocol
2.1.5. Follow-up and DPN Status
2.2. Baseline Measurements and Protocol of Measurement of Synchronized Electrocardiogram (ECG) and Photoplethysmography (PPG) Signals
2.3. Statistical Analysis
3. Results
3.1. Comparison among LHR, MEISS, MEILS, PWVmean, and PEI for Age-Controlled Healthy and Diabetic Subjects with and without DPN
3.2. Three Diabetic Subgroups Using Different Percussion Entropy Index (PEI) Values
3.3. Goodness-of-Fit Test and Cox Proportional Hazards Model for Relative Risks Analysis
3.3.1. The Goodness-of-Fit Test
3.3.2. Cox Proportional Hazards Model
3.4. Cox Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
BRS | Baroreflex Sensitivity |
CI | Confidence Interval |
DBP | Diastolic Blood Pressure |
DM | Diabetes Mellitus |
DPN | Diabetic Peripheral Neuropathy |
DVP | Digital Volume Pulse |
ECG | Electrocardiography |
FPG | Fasting Plasma Glucose |
HbA1c | Glycosylated hemoglobin |
HDL | High-Density Lipoprotein cholesterol |
HFP | High Frequency Power |
HRV | Heart Rate Variability |
LDL | Low-Density Lipoprotein cholesterol |
LFP | Low-Frequency Power |
LHR | Low-/High-frequency power Ratio (LFP/HFP, LHR) using the RRI dataset |
MEI | Multiscale Entropy Index using the RRI dataset only |
PEI | Percussion Entropy Index using synchronized {RRI} and {Amp} signals |
PN | Peripheral Neuropathy |
PP | Pulse Pressure |
PPG | Photoplethysmography |
PPI | Peak-to-Peak Interval |
PWV | Pulse Wave Velocity |
RR | Relative Risks |
RRI | R-R Interval of ECG |
SBP | Systolic Blood Pressure |
SD | Standard Deviation |
SPSS | Statistical Package for the Social Sciences |
TG | Triglyceride |
WC | Waist Circumference |
References
- Marshall, S.M.; Flyvbjerg, A. Prevention and early detection of vascular complications of diabetes. BMJ 2006, 333, 475–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckman, J.A.; Creager, M.A. Vascular complications of diabetes. Circ. Res. 2016, 118, 1771–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juster-Switlyk, K.; Smith, A.G. Updates in diabetic peripheral neuropathy. F1000Research 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Z.; Azmi, S.; Yadav, R.; Ferdousi, M.; Kumar, M.; Cuthbertson, D.J.; Lim, J.; Malik, R.A.; Alam, U. Diabetic peripheral neuropathy: Epidemiology, diagnosis, and pharmacotherapy. Clin. Ther. 2018, 40, 828–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidya, V.; Gangan, N.; Sheehan, J. Impact of cardiovascular complications among patients with Type 2 diabetes mellitus: A systematic review. Expert Rev. Pharmacoecon. Outcomes Res. 2015, 15, 487–497. [Google Scholar] [CrossRef]
- Lin, I.W.; Chang, H.H.; Lee, Y.H.; Wu, Y.C.; Lu, C.W.; Huang, K.C. Blood sugar control among type 2 diabetic patients who travel abroad: A cross sectional study. Medicine 2019, 98, e14946. [Google Scholar] [CrossRef]
- Home, P. Safety of very tight blood glucose control in type 2 diabetes. BMJ 2008, 336, 458–459. [Google Scholar] [CrossRef] [Green Version]
- Balkau, B.; Calvi-Gries, F.; Freemantle, N.; Vincent, M.; Pilorget, V.; Home, P.D. Predictors of HbA1c over 4 years in people with type 2 diabetes starting insulin therapies: The CREDIT study. Diabetes Res. Clin. Pract. 2015, 108, 432–440. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S.; Blumenfeld, N.R.; Laksanasopin, T.; Sia, S.K. Point-of-care diagnostics: Recent developments in a connected age. Anal. Chem. 2017, 89, 102–123. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, P.O.; Lerman, L.O.; Lerman, A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 168–175. [Google Scholar] [CrossRef]
- Bonetti, P.O.; Pumper, G.M.; Higano, S.T.; Holmes, D.R., Jr.; Kuvin, J.T.; Lerman, A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J. Am. Coll. Cardiol. 2004, 44, 2137–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover-Paez, F.; Zavalza-Gomez, A.B. Endothelial dysfunction and cardiovascular risk factors. Diabetes Res. Clin. Pract. 2009, 84, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Quattrini, C.; Jeziorska, M.; Boulton, A.J.; Malik, R.A. Reduced vascular endothelial growth factor expression and intra-epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care 2008, 31, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Pozza, R.D.; Bechtold, S.; Bonfig, W.; Putzker, S.; Kozlik-Feldmann, R.; Schwarz, H.-P.; Netz, H. Impaired short-term blood pressure regulation and autonomic dysbalance in children with type 1 diabetes mellitus. Diabetologia 2007, 50, 2417–2423. [Google Scholar] [CrossRef] [Green Version]
- Rosengard-Barlund, M.; Bernardi, L.; Fagerudd, J.; Mantysaari, M.; Af Bjorkesten, C.G.; Lindholm, H.; Forsblom, C.; Waden, J.; Groop, P.H. Early autonomic dysfunction in type 1 diabetes: A reversible disorder? Diabetologia 2009, 52, 1164–1172. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.K.; Lin, C.; Tsai, P.H.; Chang, F.C.; Lin, K.P.; Hu, H.H.; Su, M.C.; Lo, M.T. Acute increase of complexity in the neuro-cardiovascular dynamics following carotid stenting. Acta Neurol. Scand. 2011, 123, 187–192. [Google Scholar] [CrossRef]
- Lerma, C.; Infante, O.; Perez-Grovas, H.; Jose, M.V. Poincare plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin. Physiol. Funct. Imaging 2003, 23, 72–80. [Google Scholar]
- Merati, G.; Di Rienzo, M.; Parati, G.; Veicsteinas, A.; Castiglioni, P. Assessment of the autonomic control of heart rate variability in healthy and spinal-cord injured subjects: Contribution of different complexity-based estimators. IEEE Trans. Biomed. Eng. 2006, 53, 43–52. [Google Scholar] [CrossRef]
- Pan, W.Y.; Su, M.C.; Wu, H.T.; Su, T.J.; Lin, M.C.; Sun, C.K. Multiscale entropic assessment of autonomic dysfunction in patients with obstructive sleep apnea and therapeutic impact of continuous positive airway pressure treatment. Sleep Med. 2016, 20, 12–17. [Google Scholar] [CrossRef]
- Wei, H.C.; Xiao, M.X.; Ta, N.; Wu, H.T.; Sun, C.K. Assessment of diabetic autonomic nervous dysfunction with a novel percussion entropy approach. Complexity 2019, 2019, 6469853. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.X.; Lu, C.H.; Ta, N.; Jiang, W.W.; Tang, X.J.; Wu, H.T. Application of a Speedy Modified Entropy Method in Assessing the Complexity of Baroreflex Sensitivity for Age-Controlled Healthy and Diabetic Subjects. Entropy 2019, 21, 894. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.-C.; Ta, N.; Hu, W.-R.; Xiao, M.-X.; Tang, X.-J.; Haryadi, B.; Liou, J.J.; Wu, H.-T. Digital Volume Pulse Measured at the Fingertip as an Indicator of Diabetic Peripheral Neuropathy in the Aged and Diabetic. Entropy 2019, 21, 1229. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Bai, Y.; Ye, P.; Luo, L.; Xiao, W.; Wu, H.; Liu, D. Type 2 diabetes is associated with increased pulse wave velocity measured at different sites of the arterial system but not augmentation index in a Chinese population. Clin. Cardiol. 2011, 34, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.C.; Chen, J.Y.; Wang, M.C.; Wu, H.T.; Chi, C.K.; Chen, Y.K.; Chen, J.H.; Lin, L.J. Association of Risk Factors With Increased Pulse Wave Velocity Detected by a Novel Method Using Dual-Channel Photoplethysmography. Am. J. Hypertens. 2005, 18, 1118–1122. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.T.; Hsu, P.C.; Liu, A.B.; Chen, Z.L.; Huang, R.M.; Chen, C.P.; Tang, C.J.; Sun, C.K. Six-channel ECG-based pulse wave velocity for assessing whole-body arterial stiffness. Blood Press. 2012, 21, 167–176. [Google Scholar] [CrossRef]
- Wu, H.T.; Hsu, P.C.; Lin, C.F.; Wang, H.J.; Sun, C.K.; Liu, A.B.; Lo, M.T.; Tang, C.J. Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic. IEEE Trans. Biomed. Eng. 2011, 58, 2978–2981. [Google Scholar]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. 1), S81–S90. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.Y.; Lee, K.A.; Park, T.S. The impact of glycemic variability on diabetic peripheral neuropathy. Endocrine 2016, 53, 643–648. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr. (Ed.) “Introduction to survival analysis,” and “Parametric survival models”. In Regression Modeling Strategies with Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd ed.; Springer Series in Statistics: New York, NY, USA, 2015; pp. 399–451. [Google Scholar]
- Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016, 20, 546–551. [Google Scholar] [CrossRef]
- Giorgino, F.; Home, P.D.; Tuomilehto, J. Glucose control and vascular outcomes in Type 2 diabetes: Is the picture clear? Diabetes Care 2016, 39 (Suppl. 2), S187–S195. [Google Scholar] [CrossRef] [Green Version]
- Croft, P.; Altman, D.G.; Deeks, J.J.; Dunn, K.M.; Hay, A.D.; Hemingway, H.; Timmis, A. The science of clinical practice: Disease diagnosis or patient prognosis? Evidence about “what is likely to happen” should shape clinical practice. BMC Med. 2015, 13, 20. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.; Monbaron, D.; Parati, G.; Perret, S.; Haesler, E.; Danzeisen, C.; Hayoz, D. Diabetic neuropathy is a more important determinant of baroreflex sensitivity than carotid elasticity in type 2 diabetes. Hypertension 2005, 46, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Martin, C.; Pertega-Diaz, S.; Seoane-Pillado, T.; Balboa-Barreiro, V.; Soto-Gonzalez, A.; Veiga-Seijo, R. Structural, Dermal and Ungual Characteristics of the Foot in Patients with Type II Diabetes. Medicina 2019, 55, 639. [Google Scholar] [CrossRef] [Green Version]
- Vinik, A.; Casellini, C.; Nevoret, M.L. Diabetic Neuropathies. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Boyce, A., Eds.; South Dartmouth (MA): MDText.com, Inc.: Boston, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279175/ (accessed on 9 November 2019).
- Schreiber, A.K.; Nones, C.F.; Reis, R.C.; Chichorro, J.G.; Cunha, J.M. Diabetic neuropathic pain: Physiopathology and treatment. World J. Diabetes 2015, 6, 432–444. [Google Scholar] [CrossRef] [PubMed]
Parameters | Group 1 (n = 37) Female/Man (19/18) | Group 2 (n = 58) Female/Man (24/34) | Group 3 (n = 27) Female/Man (13/14) | ||
---|---|---|---|---|---|
Age, years | 59.20 ± 1.67 | 61.80 ± 1.45 | (p = 0.66) | 62.81 ± 1.71 | (p = 0.22) |
Body height, cm | 161.10 ± 1.19 | 160.37 ± 1.04 | (p = 0.65) | 164.15 ± 1.78 | (p = 0.06) |
Body weight, kg | 60.95 ± 1.66 | 68.86 ± 1.45 ** | (p = 0.00) | 72.48 ± 1.46 | (p = 0.13) |
WC, cm | 82.19 ± 1.77 | 93.32 ± 1.30 ** | (p = 0.00) | 96.50 ± 1.45 | (p = 0.14) |
BMI, kg/m2 | 23.47 ± 0.59 | 26.82 ± 0.57 ** | (p = 0.00) | 27.08 ± 0.75 | (p = 0.79) |
SBP, mmHg | 123.17 ± 3.21 | 125.96 ± 2.28 | (p = 0.47) | 127.85 ± 6.27 | (p = 0.73) |
DBP, mmHg | 74.69 ± 1.55 | 74.91 ± 1.29 | (p = 0.91) | 73.23 ± 3.45 | (p = 0.58) |
PP, mmHg | 48.49 ± 2.41 | 50.13 ± 2.08 | (p = 0.61) | 54.62 ± 3.73 | (p = 0.26) |
HDL, mg/dL | 52.01 ± 3.59 | 44.65 ± 2.62 | (p = 0.09) | 42.79 ± 3.77 | (p = 0.69) |
LDL, mg/dL | 114.65 ± 5.08 | 120.77 ± 6.48 | (p = 0.49) | 106.58 ± 4.90 | (p = 0.15) |
Cholesterol, mg/dL | 192.16 ± 8.33 | 177.02 ± 7.65 | (p = 0.19) | 183.60 ± 7.01 | (p = 0.58) |
Triglyceride, mg/dL | 92.45 ± 6.08 | 144.61 ± 11.44 ** | (p = 0.00) | 161.04 ± 13.47 | (p = 0.39) |
HbA1c, % | 5.90 ± 0.06 | 8.12 ± 0.23 ** | (p = 0.00) | 8.36 ± 0.30 | (p = 0.54) |
FPG, mg/dL | 99.80 ± 4.42 | 149.46 ± 6.59 ** | (p = 0.00) | 161.44 ± 11.26 | (p = 0.33) |
Parameters | Group 1 (n = 37) | Group 2 (n = 58) | Group 3 (n = 27) | ||
---|---|---|---|---|---|
LHR | 1.56 ± 0.17 | 2.00 ± 0.26 | (p = 0.23) | 2.34 ± 0.44 | (p = 0.49) |
MEIss | 0.62 ± 0.08 | 0.57 ± 0.02 * | (p = 0.01) | 0.55 ± 0.16 | (p = 0.72) |
MEILs | 1.56 ± 0.06 | 1.48 ± 0.04 | (p = 0.31) | 1.37 ± 0.06 | (p = 0.69) |
PWVmean | 4.65 ± 0.06 | 4.93 ± 0.06 * | (p = 0.01) | 4.80 ± 0.07 | (p = 0.22) |
PEI | 0.73 ± 0.01 | 0.63 ± 0.01 ** | (p = 0.00) | 0.59 ± 0.02 † | (p = 0.01) |
Parameters | Group A (n = 22) Female/Man (8/14) | Group B (n = 42) Female/Man (20/22) | Group C (n = 21) Female/Man (9/12) | ||
---|---|---|---|---|---|
Age, year | 65.62 ± 1.62 | 64.95 ± 2.22 | (p = 0.36) | 63.00 ± 2.30 | (p = 0.81) |
Body height, cm | 160.99 ± 1.32 | 162.90 ± 1.86 | (p = 0.82) | 161.53 ± 1.87 | (p = 0.41) |
Body weight, kg | 68.98 ± 1.58 | 70.53 ± 9.37 | (p = 0.32) | 71.79 ± 2.30 | (p = 0.57) |
WC, cm | 93.56 ± 1.51 | 94.10 ± 1.78 | (p = 0.29) | 96.32 ± 2.00 | (p = 0.83) |
BMI, kg/m2 | 26.67 ± 0.61 | 26.61 ± 0.78 | (p = 0.38) | 27.73 ± 1.12 | (p = 0.95) |
SBP, mmHg | 125.38 ± 4.13 | 130.63 ± 4.83 | (p = 0.97) | 125.16 ± 2.84 | (p = 0.45) |
DBP, mmHg | 72.71 ± 2.26 | 75.58 ± 2.66 | (p = 0.26) | 76.79 ± 1.79 | (p = 0.46) |
PP, mmHg | 52.67 ± 2.72 | 52.30 ± 4.53 | (p = 0.32) | 48.37 ± 2.10 | (p = 0.94) |
HDL, mg/dL | 45.11 ± 3.19 | 46.67 ± 5.04 | (p = 0.22) | 38.88 ± 2.29 | (p = 0.79) |
LDL, mg/dL | 110.30 ± 6.04 | 122.11 ± 11.42 | (p = 0.27) | 122.12 ± 8.64 | (p = 0.32) |
Cholesterol, mg/dL | 171.53 ± 7.29 | 186.47 ± 10.13 | (p = 0.22) | 188.83 ± 13.38 | (p = 0.25) |
Triglyceride, mg/dL | 148.97 ± 10.80 | 139.89 ± 14.50 | (p = 0.57) | 162.28 ± 24.77 | (p = 0.63) |
HbA1c, % | 7.83 ± 0.24 | 8.40 ± 0.41 | (p = 0.03) | 8.78 ± 0.32 † | (p = 0.01) |
FPG, mg/dL | 148.84 ± 8.27 | 158.56 ± 13.71 | (p = 0.47) | 158.82 ± 8.78 | (p = 0.53) |
Categories of PEI Values | Subjects at Risk (n) | Events of DPN (n) | Relative Risk (95% CI) |
---|---|---|---|
Group A | 22 | 6 | 1.00 (reference) |
Group B | 42 | 10 | 0.95 (0.63–2.07) |
Group C | 21 | 11 | 2.90 (1.58–6.87) |
Total | 85 | 27 | — |
Risk Factors | Relative Risk | 95% CI | p Values |
---|---|---|---|
HbA1c, % | 0.73 | 0.52–1.05 | 0.041 |
FPG, mg/dL | 1.01 | 1.00–1.02 | 0.033 |
HbA1c× FPG | 1.00 | 1.00–1.01 | 0.205 |
PEI | 4.77 | 1.87–6.31 | 0.015 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.-C.; Ta, N.; Hu, W.-R.; Wang, S.-Y.; Xiao, M.-X.; Tang, X.-J.; Chen, J.-J.; Wu, H.-T. Percussion Entropy Analysis of Synchronized ECG and PPG Signals as a Prognostic Indicator for Future Peripheral Neuropathy in Type 2 Diabetic Subjects. Diagnostics 2020, 10, 32. https://doi.org/10.3390/diagnostics10010032
Wei H-C, Ta N, Hu W-R, Wang S-Y, Xiao M-X, Tang X-J, Chen J-J, Wu H-T. Percussion Entropy Analysis of Synchronized ECG and PPG Signals as a Prognostic Indicator for Future Peripheral Neuropathy in Type 2 Diabetic Subjects. Diagnostics. 2020; 10(1):32. https://doi.org/10.3390/diagnostics10010032
Chicago/Turabian StyleWei, Hai-Cheng, Na Ta, Wen-Rui Hu, Sheng-Ying Wang, Ming-Xia Xiao, Xiao-Jing Tang, Jian-Jung Chen, and Hsien-Tsai Wu. 2020. "Percussion Entropy Analysis of Synchronized ECG and PPG Signals as a Prognostic Indicator for Future Peripheral Neuropathy in Type 2 Diabetic Subjects" Diagnostics 10, no. 1: 32. https://doi.org/10.3390/diagnostics10010032
APA StyleWei, H.-C., Ta, N., Hu, W.-R., Wang, S.-Y., Xiao, M.-X., Tang, X.-J., Chen, J.-J., & Wu, H.-T. (2020). Percussion Entropy Analysis of Synchronized ECG and PPG Signals as a Prognostic Indicator for Future Peripheral Neuropathy in Type 2 Diabetic Subjects. Diagnostics, 10(1), 32. https://doi.org/10.3390/diagnostics10010032