Unifying Phytochemistry, Analytics, and Target Prediction to Advance Dendropanax morbifera Bioactive Discovery
Abstract
1. Introduction
2. Phytochemical Profile and Bioactivities
3. Extraction Strategies and Methodological Variability
4. Standardized HPLC Strategies for Phytochemical Profiling
5. Ligand–Target Mapping of Bioactive Compounds
| Compound | Protein Targets * | Binding Evidence | Reference |
|---|---|---|---|
| Cannabidiol (CBD) | CB1; CB2 | Radioligand binding assay | [66,77] |
| Resveratrol | COX2; ESR1 | Cell signaling assay; In silico docking | [70] |
| Quercetin | SIRT1; AChE; AKT1 | Enzymatic assay; In silico docking | [71,72,73] |
| Kaempferol | AKT1; MMP9; GSK3B | Direct binding assays; In silico docking | [70,74] |
| Luteolin | PTPRZ1; STAT3 | Molecular dynamics; In silico docking | [16,75] |
| Ferulic acid | PTPRZ1; NOS2 | Molecular dynamics; In silico docking | [75,76] |
| Target Class | Representative Predicted Targets | Count (n) | Average Probability | Biological Relevance |
|---|---|---|---|---|
| Kinase | AKT1, FLT3, SRC, SYK, GSK3B, CDK1/2/5/6, EGFR, MET, NEK2, PLK1 | ~45 | ~0.45–0.65 | Neuroinflammation; tumor signaling; PI3K–AKT and MAPK pathways |
| Oxidoreductases | MAOA, XDH, CYP1B1, ALOX5, ALOX12, ALOX15 | ~20 | ~0.55–0.70 | Oxidative stress modulation |
| Lyases (Carbonic anhydrases) | CA1, CA2, CA3, CA4, CA6, CA7, CA9, CA12, CA13, CA14 | ~15 | ~0.40–0.80 | pH regulation; tumor microenvironment adaptation |
| GPCRs | ADORA1, ADORA2A, DRD4, GPR35, AVPR2 | ~10 | ~0.50–0.80 | Neurotransmission; neuroprotective signaling |
| Proteases | MMP2, MMP3, MMP9, MMP13, BACE1, Thrombin (F2) | ~10 | ~0.40–0.65 | Extracellular matrix (ECM) remodeling; glioma invasion |
| Phosphatases | PTPRS | 1 (high-confidence) | 0.61 | Glioblastoma-associated phosphatase |
| Nuclear Receptors | ESR1, ESR2, ESRRA | 3 | ~0.27–0.50 | Hormone signaling; metabolic regulation |
| Transporters/Efflux Proteins | ABCB1, ABCC1, ABCG2 | 3 | ~0.40–0.50 | Drug resistance; xenobiotic metabolism |
| Cytochrome P450 family | CYP19A1, CYP1B1 | 2 | ~0.40–0.65 | Metabolic detoxification |
| Miscellaneous Enzymes | ALDH2, PARP1, MPO, GLO1 | ~10 | ~0.40–0.60 | Oxidative and aldehyde detoxification |
| Compound | Literature-Validated Targets | STP-Predicted Targets | STP Probability |
|---|---|---|---|
| Cannabidiol (CBD) | CB1 | CB1 | 0.893 |
| CB2 | CB2 | 0.893 | |
| Resveratrol | COX2 | COX2 | 1.000 |
| ESR1 | ESR1 | 1.000 | |
| Quercetin | SIRT1 | 0.000 | |
| AKT1 | AKT1 | 1.000 | |
| AChE | AChE | 0.680 | |
| Kaempferol | AKT1 | AKT1 | 0.403 |
| MMP9 | MMP9 | 0.658 | |
| GSK3B | GSK3B | 0.658 | |
| Luteolin | PTPRZ1 | 0.000 | |
| STAT3 | 0.000 | ||
| Ferulic acid | PTPRZ1 | 0.000 | |
| NOS2 | NOS2 | 0.031 |
6. Current Research and Future Directions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balakrishnan, R.; Cho, D.Y.; Su-Kim, I.; Choi, D.K. Dendropanax Morbiferus and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology. Antioxidants 2020, 9, 962. [Google Scholar] [CrossRef] [PubMed]
- Park, B.Y.; Min, B.S.; Oh, S.R.; Kim, J.H.; Kim, T.J.; Kim, D.H.; Bae, K.H.; Lee, H.K. Isolation and anticomplement activity of compounds from Dendropanax morbifera. J. Ethnopharmacol. 2004, 90, 403–408. [Google Scholar] [CrossRef]
- Kim, R.W.; Lee, S.Y.; Kim, S.G.; Heo, Y.R.; Son, M.K. Antimicrobial, Antioxidant and Cytotoxic Activities of Dendropanax morbifera Leveille extract for mouthwash and denture cleaning solution. J. Adv. Prosthodont. 2016, 8, 172–180. [Google Scholar] [CrossRef]
- Jung, W.-S.; Kim, T.-G.; Bang, D.; Jhee, K.-H. Antibacterial Effects of Dendropanax morbifera Leaf Extracts and Fermented Sap against Oral Malodor Porphyromonas gingivalis Bacteria. J. Life Sci. Korea 2024, 34, 673–681. [Google Scholar] [CrossRef]
- Jun, J.E.; Hwang, Y.C.; Ahn, K.J.; Chung, H.Y.; Choung, S.Y.; Jeong, I.K. The efficacy and safety of Dendropanax morbifera leaf extract on the metabolic syndrome: A 12-week, placebo controlled, double blind, and randomized controlled trial. Nutr. Res. Pract. 2022, 16, 60–73. [Google Scholar] [CrossRef]
- Ngoc, L.T.N.; Moon, J.Y.; Lee, Y.C. Dendropanax morbifera Extracts for Cosmetic Applications: Systematic Review and Meta-Analysis. Curr. Issues Mol. Biol. 2024, 46, 13526–13541. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, D.W.; Park, S.E.; Lee, H.J.; Kim, K.M.; Kim, K.J.; Kim, M.K.; Kim, S.J.; Kim, S. Anti-thrombotic effect of rutin isolated from Dendropanax morbifera Leveille. J. Biosci. Bioeng. 2015, 120, 181–186. [Google Scholar] [CrossRef]
- Moon, H.I. Antidiabetic effects of dendropanoxide from leaves of Dendropanax morbifera Leveille in normal and streptozotocin-induced diabetic rats. Hum. Exp. Toxicol. 2011, 30, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Choo, G.S.; Lim, D.P.; Kim, S.M.; Yoo, E.S.; Kim, S.H.; Kim, C.H.; Woo, J.S.; Kim, H.J.; Jung, J.Y. Anti-inflammatory effects of Dendropanax morbifera in lipopolysaccharide-stimulated RAW264.7 macrophages and in an animal model of atopic dermatitis. Mol. Med. Rep. 2019, 19, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.S.; Kim, Y.J.; Na, H.J.; Jung, H.R.; Song, C.K.; Kang, S.Y.; Kim, J.Y. Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera LEV are dependent on the collecting season and extraction conditions. Food Sci. Biotechnol. 2019, 28, 201–207. [Google Scholar] [CrossRef]
- Park, H.J.; Kwak, M.; Baek, S.H. Neuroprotective effects of Dendropanax morbifera leaves on glutamate-induced oxidative cell death in HT22 mouse hippocampal neuronal cells. J. Ethnopharmacol. 2020, 251, 112518. [Google Scholar] [CrossRef]
- Kim, K.; Jung, J.H.; Yoo, H.J.; Hyun, J.K.; Park, J.H.; Na, D.; Yeon, J.H. Anti-Metastatic Effects of Plant Sap-Derived Extracellular Vesicles in a 3D Microfluidic Cancer Metastasis Model. J. Funct. Biomater. 2020, 11, 49. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, S. Antioxidant and antithrombotic properties of Dendropanax morbifera Leveille (Araliaceae) and its ferments produced by fermentation processing. J. Food Biochem. 2019, 43, e13056. [Google Scholar] [CrossRef]
- Kim, K.; Yoo, H.J.; Jung, J.H.; Lee, R.; Hyun, J.K.; Park, J.H.; Na, D.; Yeon, J.H. Cytotoxic Effects of Plant Sap-Derived Extracellular Vesicles on Various Tumor Cell Types. J. Funct. Biomater. 2020, 11, 22. [Google Scholar] [CrossRef]
- Lee, K.Y.; Jung, H.Y.; Yoo, D.Y.; Kim, W.; Kim, J.W.; Kwon, H.J.; Kim, D.W.; Yoon, Y.S.; Hwang, I.K.; Choi, J.H. Dendropanax morbifera Leveille extract ameliorates D-galactose-induced memory deficits by decreasing inflammatory responses in the hippocampus. Lab. Anim. Res. 2017, 33, 283–290. [Google Scholar] [CrossRef]
- Kim, J.M.; Park, S.K.; Guo, T.J.; Kang, J.Y.; Ha, J.S.; Lee, D.S.; Lee, U.; Heo, H.J. Anti-amnesic effect of Dendropanax morbifera via JNK signaling pathway on cognitive dysfunction in high-fat diet-induced diabetic mice. Behav. Brain Res. 2016, 312, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Sugiura, Y.; Cho, I.H.; Setou, N.; Koh, E.; Song, G.J.; Lee, S.; Yang, H.J. In Vivo Hypoglycemic Effects, Potential Mechanisms and LC-MS/MS Analysis of Dendropanax Trifidus Sap Extract. Nutrients 2021, 13, 4332. [Google Scholar] [CrossRef]
- Sachan, R.; Kundu, A.; Dey, P.; Son, J.Y.; Kim, K.S.; Lee, D.E.; Kim, H.R.; Park, J.H.; Lee, S.H.; Kim, J.H.; et al. Dendropanax morbifera Protects against Renal Fibrosis in Streptozotocin-Induced Diabetic Rats. Antioxidants 2020, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.D. Induction of Hepatocellular Carcinoma Cell Cycle Arrest and Apoptosis by Dendropanax morbifera Leveille Leaf Extract via the PI3K/AKT/mTOR Pathway. J. Cancer Prev. 2023, 28, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kim, M.J.; Cho, C.S.; Yang, Y.J.; Kim, J.K.; Jeon, R.; An, S.H.; Park, K.I.; Cho, K. The Therapeutic Effects of Dendropanax morbiferus Lev. Water Leaf Extracts in a Rheumatoid Arthritis Animal Model. Antioxidants 2025, 14, 548. [Google Scholar] [CrossRef]
- Eom, T.; Ko, G.; Kim, K.C.; Kim, J.S.; Unno, T. Dendropanax morbifera Leaf Extracts Improved Alcohol Liver Injury in Association with Changes in the Gut Microbiota of Rats. Antioxidants 2020, 9, 911. [Google Scholar] [CrossRef] [PubMed]
- Park, J.U.; Yang, S.Y.; Guo, R.H.; Li, H.X.; Kim, Y.H.; Kim, Y.R. Anti-Melanogenic Effect of Dendropanax morbiferus and Its Active Components via Protein Kinase A/Cyclic Adenosine Monophosphate-Responsive Binding Protein- and p38 Mitogen-Activated Protein Kinase-Mediated Microphthalmia-Associated Transcription Factor Downregulation. Front. Pharmacol. 2020, 11, 507. [Google Scholar] [CrossRef]
- Lim, L.; Jo, J.; Yoon, S.-P.; Jang, I.; Ki, Y.-J.; Choi, D.-H.; Song, H. Dendropanax morbifera Extract Inhibits Intimal Hyperplasia in Balloon-Injured Rat Carotid Arteries by Modulating Phenotypic Changes in Vascular Smooth Muscle Cells. Nat. Prod. Sci. 2020, 26, 71–78. [Google Scholar] [CrossRef]
- Na, J.R.; Lee, K.H.; Kim, E.; Hwang, K.; Na, C.S.; Kim, S. Laxative Effects of a Standardized Extract of Dendropanax morbiferus H. Leveille Leaves on Experimental Constipation in Rats. Medicina 2021, 57, 1147. [Google Scholar] [CrossRef]
- Heo, M.-G.; Byun, J.-H.; Kim, J.; Choung, S.-Y. Treatment of Dendropanax morbifera leaves extract improves diabetic phenotype and inhibits diabetes induced retinal degeneration in db/db mice. J. Funct. Foods 2018, 46, 136–146. [Google Scholar] [CrossRef]
- Kang, M.J.; Kwon, E.B.; Ryu, H.W.; Lee, S.; Lee, J.W.; Kim, D.Y.; Lee, M.K.; Oh, S.R.; Lee, H.S.; Lee, S.U.; et al. Polyacetylene from Dendropanax morbifera Alleviates Diet-Induced Obesity and Hepatic Steatosis by Activating AMPK Signaling Pathway. Front. Pharmacol. 2018, 9, 537. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, S.H.; Kwon, C.; Kim, S.Y.; Yang, Y.J.; Kim, J.S.; Ali, M.; Ahmad, A. New Chemical Constituents from the Bark of Dendropanax morbifera Leveille and Their Evaluation of Antioxidant Activities. Molecules 2019, 24, 3967. [Google Scholar] [CrossRef]
- Kim, W.; Kim, D.W.; Yoo, D.Y.; Jung, H.Y.; Nam, S.M.; Kim, J.W.; Hong, S.M.; Kim, D.W.; Choi, J.H.; Moon, S.M.; et al. Dendropanax morbifera Léveille extract facilitates cadmium excretion and prevents oxidative damage in the hippocampus by increasing antioxidant levels in cadmium-exposed rats. BMC Complement. Altern. Med. 2014, 14, 428. [Google Scholar] [CrossRef]
- Kundu, A.; Gali, S.; Sharma, S.; Kacew, S.; Yoon, S.; Jeong, H.G.; Kwak, J.H.; Kim, H.S. Dendropanoxide Alleviates Thioacetamide-induced Hepatic Fibrosis via Inhibition of ROS Production and Inflammation in BALB/(C) Mice. Int. J. Biol. Sci. 2023, 19, 2630–2647. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, K.S.; An, H.K.; Kim, C.H.; Moon, H.I.; Lee, Y.C. Dendropanoxide induces autophagy through ERK1/2 activation in MG-63 human osteosarcoma cells and autophagy inhibition enhances dendropanoxide-induced apoptosis. PLoS ONE 2013, 8, e83611. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Kim, D.M.; Choi, H.B.; Jeong, M.H.; Kwon, S.H.; Kim, H.R.; Kwak, J.H.; Chung, K.H. Dendropanoxide, a Triterpenoid from Dendropanax morbifera, Ameliorates Hepatic Fibrosis by Inhibiting Activation of Hepatic Stellate Cells through Autophagy Inhibition. Nutrients 2021, 14, 98. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kang, Y.-J.; Lee, D.-E.; Kim, S.; Lim, S.-H.; Lee, H.-J. Anti-diabetic effects of aqueous extract of Dendropanax morbifera Lev. leaves in streptozotocin-induced diabetic Sprague-Dawley rats. Korean J. Vet. Res. 2021, 61, e38. [Google Scholar] [CrossRef]
- Park, S.E.; Sapkota, K.; Choi, J.H.; Kim, M.K.; Kim, Y.H.; Kim, K.M.; Kim, K.J.; Oh, H.N.; Kim, S.J.; Kim, S. Rutin from Dendropanax morbifera Leveille protects human dopaminergic cells against rotenone induced cell injury through inhibiting JNK and p38 MAPK signaling. Neurochem. Res. 2014, 39, 707–718. [Google Scholar] [CrossRef]
- Choi, H.J.; Park, D.H.; Song, S.H.; Yoon, I.S.; Cho, S.S. Development and Validation of a HPLC-UV Method for Extraction Optimization and Biological Evaluation of Hot-Water and Ethanolic Extracts of Dendropanax morbifera Leaves. Molecules 2018, 23, 650. [Google Scholar] [CrossRef]
- Zhang, M.; Bu, T.; Liu, S.; Kim, S. Optimization of Caffeic Acid Extraction from Dendropanax morbifera Leaves Using Response Surface Methodology and Determination of Polyphenols and Antioxidant Properties. Horticulturae 2021, 7, 491. [Google Scholar] [CrossRef]
- Kim, M.J.; Son, J.D.; Yang, Y.J.; Heo, J.W.; Lee, H.J.; Park, K.I. LC-MS/MS analysis and antioxidant activity of Dendropanax morbiferus extract. Herb. Formula Sci. Korea 2024, 32, 235–245. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, C.; Han, M.H.; Hong, S.H.; Lee, T.K.; Lee, S.H.; Kim, G.Y.; Choi, Y.H. Induction of human leukemia U937 cell apoptosis by an ethanol extract of Dendropanax morbifera Lev. through the caspase-dependent pathway. Oncol. Rep. 2013, 30, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, S.G.; Song, Y.J.; Park, J.K.; Choi, C.H.; Lee, S.; Hoffman, R.M. Analysis of Anticancer Activity and Chemical Sensitization Effects of Dendropanax morbifera and Commersonia bartramia Extracts. Anticancer Res. 2018, 38, 3853–3861. [Google Scholar] [CrossRef]
- Hwang, C.E.; Kim, S.C.; Cho, C.S.; Song, W.Y.; Joo, O.S.; Cho, K.M. Comparison of chlorogenic acid and rutin contents and antioxidant activity of Dendropanax morbiferus extracts according to ethanol concentration. Korean J. Food Preserv. 2020, 27, 880–887. [Google Scholar] [CrossRef]
- Xu, F.; Valappil, A.K.; Zheng, S.; Zheng, B.; Yang, D.; Wang, Q. 3,5-DCQA as a Major Molecule in MeJA-Treated Dendropanax morbifera Adventitious Root to Promote Anti-Lung Cancer and Anti-Inflammatory Activities. Biomolecules 2024, 14, 705. [Google Scholar] [CrossRef]
- Chung, I.M.; Song, H.K.; Kim, S.J.; Moon, H.I. Anticomplement activity of polyacetylenes from leaves of Dendropanax morbifera Leveille. Phytother. Res. 2011, 25, 784–786. [Google Scholar] [CrossRef]
- Lee, K.H.; Na, H.J.; Song, C.K.; Kang, S.Y.; Kim, S. Quercetin quantification in a Jeju Dendropanax morbifera Lev. extract by varying different parts, harvest times, and extraction solvents. Korean J. Food Preserv. 2018, 25, 344–350. [Google Scholar] [CrossRef]
- Li, H.X.; Kang, S.; Yang, S.Y.; Kim, Y.H.; Li, W. Chemical constituents from Dendropanax morbiferus H. Lév. Stems and leaves and their chemotaxonomic significance. Biochem. Syst. Ecol. 2019, 87, 103936. [Google Scholar] [CrossRef]
- Kim, W.; Yoo, D.Y.; Jung, H.Y.; Kim, J.W.; Hahn, K.R.; Kwon, H.J.; Yoo, M.; Lee, S.; Nam, S.M.; Yoon, Y.S.; et al. Leaf extracts from Dendropanax morbifera Leveille mitigate mercury-induced reduction of spatial memory, as well as cell proliferation, and neuroblast differentiation in rat dentate gyrus. BMC Complement. Altern. Med. 2019, 19, 94. [Google Scholar] [CrossRef]
- Nguyen, V.; Taine, E.G.; Meng, D.; Cui, T.; Tan, W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024, 16, 924. [Google Scholar] [CrossRef]
- Hyun, T.K.; Ko, Y.-J.; Kim, E.-H.; Chung, I.-M.; Kim, J.-S. Anti-inflammatory activity and phenolic composition of Dendropanax morbifera leaf extracts. Ind. Crops Prod. 2015, 74, 263–270. [Google Scholar] [CrossRef]
- Kim, W.; Kim, D.W.; Yoo, D.Y.; Jung, H.Y.; Kim, J.W.; Kim, D.W.; Choi, J.H.; Moon, S.M.; Yoon, Y.S.; Hwang, I.K. Antioxidant effects of Dendropanax morbifera Leveille extract in the hippocampus of mercury-exposed rats. BMC Complement. Altern. Med. 2015, 15, 247. [Google Scholar] [CrossRef]
- Hoang, H.T.; Park, J.S.; Kim, S.H.; Moon, J.Y.; Lee, Y.C. Microwave-Assisted Dendropanax morbifera Extract for Cosmetic Applications. Antioxidants 2022, 11, 998. [Google Scholar] [CrossRef]
- Kim, S.B.; Ryu, H.Y.; Nam, W.; Lee, S.M.; Jang, M.R.; Kwak, Y.G.; Kang, G.I.; Song, K.S.; Lee, J.W. The Neuroprotective Effects of Dendropanax morbifera Water Extract on Scopolamine-Induced Memory Impairment in Mice. Int. J. Mol. Sci. 2023, 24, 16444. [Google Scholar] [CrossRef]
- Park, S.Y.; Karthivashan, G.; Ko, H.M.; Cho, D.Y.; Kim, J.; Cho, D.J.; Ganesan, P.; Su-Kim, I.; Choi, D.K. Aqueous Extract of Dendropanax morbiferus Leaves Effectively Alleviated Neuroinflammation and Behavioral Impediments in MPTP-Induced Parkinson’s Mouse Model. Oxidative Med. Cell. Longev. 2018, 2018, 3175214. [Google Scholar] [CrossRef]
- Yang, Y.J.; Song, J.H.; Yang, J.H.; Kim, M.J.; Kim, K.Y.; Kim, J.K.; Jin, Y.B.; Kim, W.H.; Kim, S.; Kim, K.R.; et al. Anti-Periodontitis Effects of Dendropanax morbiferus H.Lev Leaf Extract on Ligature-Induced Periodontitis in Rats. Molecules 2023, 28, 849. [Google Scholar] [CrossRef]
- Ko, Y.C.; Liu, R.; Sun, H.N.; Yun, B.S.; Choi, H.S.; Lee, D.S. Dihydroconiferyl Ferulate Isolated from Dendropanax morbiferus H.Lev. Suppresses Stemness of Breast Cancer Cells via Nuclear EGFR/c-Myc Signaling. Pharmaceuticals 2022, 15, 664. [Google Scholar] [CrossRef] [PubMed]
- Im, K.-J.; Jang, S.-B.; Yoo, D.-Y. Anti-cancer Effects of Dendropanax morbifera Extract in MCF-7 and MDA-MB-231 Cells. J. Orient. Obstet. Gynecol. 2015, 28, 26–39. [Google Scholar] [CrossRef]
- Hyun, T.K.; Kim, M.O.; Lee, H.; Kim, Y.; Kim, E.; Kim, J.S. Evaluation of anti-oxidant and anti-cancer properties of Dendropanax morbifera Leveille. Food Chem. 2013, 141, 1947–1955. [Google Scholar] [CrossRef]
- Park, Y.J.; Kim, K.S.; Park, J.H.; Lee, S.H.; Kim, H.R.; Lee, S.H.; Choi, H.B.; Cao, S.; Kumar, V.; Kwak, J.H.; et al. Protective effects of dendropanoxide isolated from Dendropanax morbifera against cisplatin-induced acute kidney injury via the AMPK/mTOR signaling pathway. Food Chem. Toxicol. 2020, 145, 111605. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Youn, J.S.; Kim, Y.-J.; Kim, J.Y. Comparisons of the Anti-Inflammatory Activity of Dendropanax morbifera LEV Leaf Extract Contents Based on the Collection Season and Concentration of Ethanol as an Extraction Solvent. Appl. Sci. 2020, 10, 8756. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, H.N.; Kim, C.Y.; Seo, M.D.; Baek, S.H. Synergistic Protection by Isoquercitrin and Quercetin against Glutamate-Induced Oxidative Cell Death in HT22 Cells via Activating Nrf2 and HO-1 Signaling Pathway: Neuroprotective Principles and Mechanisms of Dendropanax morbifera Leaves. Antioxidants 2021, 10, 554. [Google Scholar] [CrossRef]
- Kim, M.-O.; Kang, M.-J.; Lee, S.-U.; Kim, D.-Y.; Jang, H.-J.; An, J.H.; Lee, H.-S.; Ryu, H.W.; Oh, S.-R. Polyacetylene (9Z,16S)-16-hydroxy-9,17-octadecadiene-12,14-diynoic acid in Dendropanax morbifera leaves. Food Biosci. 2021, 40, 100878. [Google Scholar] [CrossRef]
- Song, J.H.; Kim, H.; Jeong, M.; Kong, M.J.; Choi, H.K.; Jun, W.; Kim, Y.; Choi, K.C. In Vivo Evaluation of Dendropanax morbifera Leaf Extract for Anti-Obesity and Cholesterol-Lowering Activity in Mice. Nutrients 2021, 13, 1424. [Google Scholar] [CrossRef]
- Awais, M.; Akter, R.; Boopathi, V.; Ahn, J.C.; Lee, J.H.; Mathiyalagan, R.; Kwak, G.Y.; Rauf, M.; Yang, D.C.; Lee, G.S.; et al. Discrimination of Dendropanax morbifera via HPLC fingerprinting and SNP analysis and its impact on obesity by modulating adipogenesis- and thermogenesis-related genes. Front. Nutr. 2023, 10, 1168095. [Google Scholar] [CrossRef]
- Palos-Hernandez, A.; Gonzalez-Paramas, A.M.; Santos-Buelga, C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2024, 30, 55. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Siddiqui, A.J.; Ramzan, M.; Uddin, J.; Asmari, M.; El-Seedi, H.R.; Musharraf, S.G. Investigation of Pharmacologically Important Polyphenolic Secondary Metabolites in Plant-based Food Samples Using HPLC-DAD. Plants 2024, 13, 1311. [Google Scholar] [CrossRef] [PubMed]
- Tori, M.; Matsuda, R.; Sono, M.; Asakawa, Y. 13C NMR assignment of dammarane triterpenes and dendropanoxide Application of 2D long-range 13C—1H correlation spectra. Magn. Reson. Chem. 1988, 26, 581–590. [Google Scholar] [CrossRef]
- Chiriac, E.R.; Chitescu, C.L.; Geana, E.I.; Gird, C.E.; Socoteanu, R.P.; Boscencu, R. Advanced Analytical Approaches for the Analysis of Polyphenols in Plants Matrices-A Review. Separations 2021, 8, 65. [Google Scholar] [CrossRef]
- Eom, T.; Kim, K.C.; Kim, J.S. Dendropanax morbifera Leaf Polyphenolic Compounds: Optimal Extraction Using the Response Surface Method and Their Protective Effects against Alcohol-Induced Liver Damage. Antioxidants 2020, 9, 120. [Google Scholar] [CrossRef]
- Brighenti, V.; Marani, M.; Caroli, C.; Bertarini, L.; Gaggiotti, A.; Pollastro, F.; Durante, C.; Cannazza, G.; Pellati, F. A new HPLC method with multiple detection systems for impurity analysis and discrimination of natural versus synthetic cannabidiol. Anal. Bioanal. Chem. 2024, 416, 4555–4569. [Google Scholar] [CrossRef]
- Wang, C.; Mathiyalagan, R.; Kim, Y.J.; Castro-Aceituno, V.; Singh, P.; Ahn, S.; Wang, D.; Yang, D.C. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int. J. Nanomed. 2016, 11, 3691–3701. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, W32–W38. [Google Scholar] [CrossRef]
- Chen, S.; Li, B.; Chen, L.; Jiang, H. Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation. J. Transl. Med. 2023, 21, 380. [Google Scholar] [CrossRef]
- Dhakal, S.; Kushairi, N.; Phan, C.W.; Adhikari, B.; Sabaratnam, V.; Macreadie, I. Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 5090. [Google Scholar] [CrossRef] [PubMed]
- Piao, D.; Youn, I.; Huynh, T.H.; Kim, H.W.; Noh, S.G.; Chung, H.Y.; Oh, D.C.; Seo, E.K. Identification of New Polyacetylenes from Dendropanax morbifera with PPAR-alpha Activity Study. Molecules 2024, 29, 5942. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.J.; In, M.H. Antioxidants and Acetyl-cholinesterase Inhibitory Activity of Solvent Fractions Extracts from Dendropanax morbiferus. Korean J. Plant Res. 2018, 31, 10–15. [Google Scholar] [CrossRef]
- Dong, Q.; Ren, G.; Li, Y.; Hao, D. Network pharmacology analysis and experimental validation to explore the mechanism of kaempferol in the treatment of osteoporosis. Sci. Rep. 2024, 14, 7088. [Google Scholar] [CrossRef]
- Suhail, M.; Tarique, M.; Tabrez, S.; Zughaibi, T.A.; Rehan, M. Synergistic inhibition of glioblastoma multiforme through an in-silico analysis of luteolin and ferulic acid derived from Angelica sinensis and Cannabis sativa: Advancements in computational therapeutics. PLoS ONE 2023, 18, e0293666. [Google Scholar] [CrossRef]
- Rauf, A.; Ajaj, R.; Akram, Z.; Hafeez, N.; Rebezov, M.; Shariati, M.A.; Aljohani, A.S.M.; Imran, M.; Tanveer, F.; Hemeg, H.A.; et al. Ferulic acid as a promising candidate for developing selective and effective anti-cancer therapies. Discov. Oncol. 2025, 16, 1214. [Google Scholar] [CrossRef]
- Kim, J.Y.; Yoon, J.Y.; Sugiura, Y.; Lee, S.K.; Park, J.D.; Song, G.J.; Yang, H.J. Dendropanax morbiferus leaf extract facilitates oligodendrocyte development. R. Soc. Open Sci. 2019, 6, 190266. [Google Scholar] [CrossRef]
- Jung, H.Y.; Kwon, H.J.; Hahn, K.R.; Yoo, D.Y.; Kim, W.; Kim, J.W.; Kim, Y.J.; Yoon, Y.S.; Kim, D.W.; Hwang, I.K. Dendropanax morbifera Léveille extract ameliorates cesium-induced inflammation in the kidney and decreases antioxidant enzyme levels in the hippocampus. Mol. Cell. Toxicol. 2018, 14, 193–199. [Google Scholar] [CrossRef]
- Jung, H.Y.; Kwon, H.J.; Kim, W.; Yoo, D.Y.; Kang, M.S.; Choi, J.H.; Moon, S.M.; Kim, D.W.; Hwang, I.K. Extracts from Dendropanax morbifera leaves ameliorates cerebral ischemia-induced hippocampal damage by reducing oxidative damage in gerbil. J. Stroke Cerebrovasc. Dis. 2024, 33, 107483. [Google Scholar] [CrossRef]
- Russo, E.B.; Burnett, A.; Hall, B.; Parker, K.K. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem. Res. 2005, 30, 1037–1043. [Google Scholar] [CrossRef]
- Jakowiecki, J.; Abel, R.; Orzel, U.; Pasznik, P.; Preissner, R.; Filipek, S. Allosteric Modulation of the CB1 Cannabinoid Receptor by Cannabidiol-A Molecular Modeling Study of the N-Terminal Domain and the Allosteric-Orthosteric Coupling. Molecules 2021, 26, 2456. [Google Scholar] [CrossRef]
- Laprairie, R.B.; Bagher, A.M.; Kelly, M.E.; Denovan-Wright, E.M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 2015, 172, 4790–4805. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Kumar, A.; Kumar, P.; Song, Z.H. Involvement of a non-CB1/CB2 cannabinoid receptor in the aqueous humor outflow-enhancing effects of abnormal-cannabidiol. Exp. Eye Res. 2012, 100, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Ibeas Bih, C.; Chen, T.; Nunn, A.V.; Bazelot, M.; Dallas, M.; Whalley, B.J. Molecular Targets of Cannabidiol in Neurological Disorders. Neurotherapeutics 2015, 12, 699–730. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, B.; Milbrandt, J. Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA 2007, 104, 7217–7222. [Google Scholar] [CrossRef]
- Boo, H.J.; Yoon, D.; Choi, Y.; Kim, Y.; Cha, J.S.; Yoo, J. Quercetin: Molecular Insights into Its Biological Roles. Biomolecules 2025, 15, 313. [Google Scholar] [CrossRef]
- Khan, F.; Niaz, K.; Maqbool, F.; Ismail Hassan, F.; Abdollahi, M.; Nagulapalli Venkata, K.C.; Nabavi, S.M.; Bishayee, A. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update. Nutrients 2016, 8, 529. [Google Scholar] [CrossRef]
- Ho, W.Y.; Shen, Z.H.; Chen, Y.; Chen, T.H.; Lu, X.; Fu, Y.S. Therapeutic implications of quercetin and its derived-products in COVID-19 protection and prophylactic. Heliyon 2024, 10, e30080. [Google Scholar] [CrossRef]
- Wang, H.; Quan, J.; Deng, Y.; Chen, J.; Zhang, K.; Qu, Z. Utilizing network pharmacological analysis to investigate the key targets and mechanisms of kaempferol against oxaliplatin-induced neurotoxicity. Toxicol. Mech. Methods 2023, 33, 38–46. [Google Scholar] [CrossRef]
- Sun, Y.; Tao, Q.; Cao, Y.; Yang, T.; Zhang, L.; Luo, Y.; Wang, L. Kaempferol has potential anti-coronavirus disease 2019 (COVID-19) targets based on bioinformatics analyses and pharmacological effects on endotoxin-induced cytokine storm. Phytother. Res. 2023, 37, 2290–2304. [Google Scholar] [CrossRef]
- Kim, K.; Park, J.; Sohn, Y.; Oh, C.E.; Park, J.H.; Yuk, J.M.; Yeon, J.H. Stability of Plant Leaf-Derived Extracellular Vesicles According to Preservative and Storage Temperature. Pharmaceutics 2022, 14, 457. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.I.; Jung, H.N.; Choi, Y.J. Antioxidant, Alcohol Metabolizing Enzyme, and Hepatoprotective Activities of Dendropanax morbifera Water Extract. J. Life Sci. Korea 2022, 32, 348–354. [Google Scholar] [CrossRef]
- Lee, K.D.; Shim, S.Y. Anti-Inflammatory Food in Asthma Prepared from Combination of Raphanus sativus L., Allium hookeri, Acanthopanax sessiliflorum, and Dendropanax morbiferus Extracts via Bioassay-Guided Selection. Foods 2022, 11, 1910. [Google Scholar] [CrossRef] [PubMed]
- Birhanu, B.T.; Kim, J.Y.; Hossain, M.A.; Choi, J.W.; Lee, S.P.; Park, S.C. An in vivo immunomodulatory and anti-inflammatory study of fermented Dendropanax morbifera Leveille leaf extract. BMC Complement. Altern. Med. 2018, 18, 222. [Google Scholar] [CrossRef]
- Akram, M.; Kim, K.-A.; Kim, E.-S.; Syed, A.S.; Kim, C.Y.; Lee, J.S.; Bae, O.-N. Potent Anti-inflammatory and Analgesic Actions of the Chloroform Extract of Dendropanax morbifera Mediated by the Nrf2 HO-1 Pathway. Biol. Pharm. Bull. 2016, 39, 728–736. [Google Scholar] [CrossRef]
- Alipour, Z.; Zarezadeh, S.; Ghotbi-Ravandi, A.A. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. Planta Med. 2024, 90, 172–203. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Jo, C.S.; Ryu, S.Y.; Kim, S.H.; Lee, J.Y. Anti-osteoclastogenic diacetylenic components of Dendropanax morbifera. Arch. Pharm. Res. 2018, 41, 506–512. [Google Scholar] [CrossRef]
- Bu, T.; Kim, D.; Kim, S. Dendropanax morbifera Leveille Extract-Induced Alteration of Metabolic Profile in Whitening Effects. Horticulturae 2024, 10, 219. [Google Scholar] [CrossRef]
- Castro Aceituno, V.; Ahn, S.; Simu, S.Y.; Wang, C.; Mathiyalagan, R.; Yang, D.C. Silver nanoparticles from Dendropanax morbifera Leveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells. In Vitro Cell. Dev. Biol. Anim. 2016, 52, 1012–1019. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Cho, Y.-J.; Kim, B.-L.; Han, M.-H.; Lee, H.-S.; Jeong, Y.-G. Functional Cosmetic Effects of Dendropanax, Sea Salt, and Other Extracts to Alleviate Hair Loss Symptoms. Asian J. Beauty Cosmetol. 2021, 19, 1–11. [Google Scholar] [CrossRef]
- Chung, I.-M.; Seo, S.-H.; Kang, E.-Y.; Park, S.-D.; Park, W.-H.; Moon, H.-I. Chemical composition and larvicidal effects of essential oil of Dendropanax morbifera against Aedes aegypti L. Biochem. Syst. Ecol. 2009, 37, 470–473. [Google Scholar] [CrossRef]
- Chung, I.M.; Kim, M.Y.; Park, S.D.; Park, W.H.; Moon, H.I. In vitro evaluation of the antiplasmodial activity of Dendropanax morbifera against chloroquine-sensitive strains of Plasmodium falciparum. Phytother. Res. 2009, 23, 1634–1637. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.S.; Kim, M.S.; Na, H.J.; Jung, H.R.; Song, C.K.; Kang, S.Y.; Kim, J.Y. Screening test for Dendropanax morbifera Leveille extracts: In vitro comparison to ox-LDL-induced lipid accumulation, ethanol-induced fatty liver and HMG-CoA reductase inhibition. J. Appl. Biol. Chem. Korea 2018, 61, 1–8. [Google Scholar] [CrossRef]
- Kim, J.-S.; Hwa, L.H. Analysis of Antioxidant, Anti-aging Activities and Marker Components in Dendropanax morbifera Leveille from Different Areas. J. Investig. Cosmetol. Korea 2021, 17, 435–445. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.K.; Han, Y.; Park, K.I. Antihyperuricemic Effect of Dendropanax morbifera Leaf Extract in Rodent Models. Evid. Based Complement. Altern. Med. 2021, 2021, 3732317. [Google Scholar] [CrossRef]
- Lim, L.; Yun, J.J.; Jeong, J.E.; Wi, A.J.; Song, H. Inhibitory Effects of Nano-Extract from Dendropanax morbifera on Proliferation and Migration of Vascular Smooth Muscle Cells. J. Nanosci. Nanotechnol. 2015, 15, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.H.; Oh, S.J. Tyrosinase Inhibitory Activity and Melanin Production Inhibitory Activity of the Methanol Extract and Fractions from Dendropanax morbifera Lev. Korean J. Aesthet. Cosmetol. 2013, 11, 275–280. [Google Scholar]
- Reynolds, C.M.E.; Purdy, J.; Rodriguez, L.; McAvoy, H. Factors associated with changes in consumption among smokers and alcohol drinkers during the COVID-19 ‘lockdown’ period. Eur. J. Public Health 2021, 31, 1084–1089. [Google Scholar] [CrossRef]
- Rupa, E.J.; Arunkumar, L.; Han, Y.; Kang, J.P.; Ahn, J.C.; Jung, S.K.; Kim, M.; Kim, J.Y.; Yang, D.C.; Lee, G.J. Dendropanax morbifera Extract-Mediated ZnO Nanoparticles Loaded with Indole-3-Carbinol for Enhancement of Anticancer Efficacy in the A549 Human Lung Carcinoma Cell Line. Materials 2020, 13, 3197. [Google Scholar] [CrossRef]
- Seo, J.S.; Yoo, D.Y.; Jung, H.Y.; Kim, D.W.; Hwang, I.K.; Lee, J.Y.; Moon, S.M. Effects of Dendropanax morbifera Leveille extracts on cadmium and mercury secretion as well as oxidative capacity: A randomized, double-blind, placebo-controlled trial. Biomed. Rep. 2016, 4, 623–627. [Google Scholar] [CrossRef]
- Song, J.H.; Kang, H.B.; Kim, J.H.; Kwak, S.; Sung, G.J.; Park, S.H.; Jeong, J.H.; Kim, H.; Lee, J.; Jun, W.; et al. Antiobesity and Cholesterol-Lowering Effects of Dendropanax morbifera Water Extracts in Mouse 3T3-L1 Cells. J. Med. Food 2018, 21, 793–800. [Google Scholar] [CrossRef]
- Iida, M.; Kuniki, Y.; Yagi, K.; Goda, M.; Namba, S.; Takeshita, J.I.; Sawada, R.; Iwata, M.; Zamami, Y.; Ishizawa, K.; et al. A network-based trans-omics approach for predicting synergistic drug combinations. Commun. Med. 2024, 4, 154. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.; Ahn, Y.; Cheon, G.Y.; Suh, H.J.; Cho, Y.J.; Park, S.; Hong, K. Effects of Dendropanax morbiferus Leaf Extract on Sleep Parameters in Invertebrate and Vertebrate Models. Antioxidants 2023, 12, 1890. [Google Scholar] [CrossRef]
- Park, J.U.; Kang, B.Y.; Kim, Y.R. Ethyl Acetate Fraction from Dendropanax morbifera Leaves Increases T Cell Growth by Upregulating NF-AT-Mediated IL-2 Secretion. Am. J. Chin. Med. 2018, 46, 453. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Kim, S.; Kim, Y.; Choi, E.J.; You, J.; Cho, E.; Yoon, J.; Kwon, E.; Kim, H.; Jang, J.; et al. Preclinical study of safety of Dendropanax morbifera Leveille leaf extract: General and genetic toxicology. J. Ethnopharmacol. 2019, 238, 111874. [Google Scholar] [CrossRef] [PubMed]



| Bioactivity | Compound | Experimental Model | Reference |
|---|---|---|---|
| Anti-cancer | 3,5-Dicaffeolyquinic acid | In vitro (A549 cell) | [40] |
| Dihydroconiferyl Ferulate | In vitro (MDA-MB-231 cell, MCF-7 cell) | [52,53] | |
| Rosmarinic acid | In vitro (Huh-7 cell) | [54] | |
| Antioxidation | Schaftoside | In vitro (DPPH assay) | [36] |
| Syringin | |||
| 6-Hydroxyluteolin 7-O-laminaribioside | |||
| Kaempferol-3-O-rutinoside | In vitro (DPPH assay) | [16] | |
| cis-6-Oxogeran-4-enyl-10-oxy-O-β-arabinopyranosyl-4′-O-β-arabinopyranosyl-2″-octadec-9″′,12″′,15″′-trienoate | In vitro (DPPH assay) | [7] | |
| Geran-3(10)-enyl-1-oxy-O-β-arabinopyranosyl-4′-O-β-arabinopyranosyl-2″-octadec-9″′,12″′,15″′-trienoate | |||
| Caffeic acid | In vitro (DPPH assay) | [35] | |
| Isoquercitrin | In vitro (HT22 cell) | [19] | |
| Quercetin | In vitro (HaCaT keratinocytes) | ||
| Anti-inflammatory | 3,5-dicaffeolyquinic acid | In vitro (RAW 264.7 cell) | [40] |
| Dendropanoxide | In vivo (rats) | [55] | |
| Quercetin | In vitro (RAW 264.7 cell) | [19] | |
| (+)-Catechin | In vitro (RAW 264.7 cell) | [46] | |
| Ferulic acid | |||
| Myricetin | |||
| α-Amyrin | In vitro (RAW 264.7 cell) | [56] | |
| β-Amyrin | |||
| Anticomplement | (3S)-Falcarinol | In vitro (Complement pathway assay) | [41] |
| (3S,8S)-Falcarindiol | |||
| (3S)-Diynene | |||
| Cognitive Enhancement | Orientin | In vivo (mouse) | [16] |
| Isoorientin | |||
| Luteolin-7-O-rutinoside | |||
| Antidiabetic | Dendropanoxide | In vivo (rats) | [8] |
| Neuroprotective | Quercetin | In vitro (HT22 cell) | [57] |
| Isoquercitrin | |||
| Syringin | In vivo (mouse) | [49] | |
| Anti-fibrotic | Syringin | In vivo (rats) | [18] |
| Hepatoprotective | (9Z,16S)-16-hydroxy-9,17-octadecadiene-12,14-diynoic acid | In vitro (HepG2 cell) | [58] |
| Nephroprotective | Dendropanoxide | In vitro (NRK-52E cell) | [55] |
| Phytochemical Class | Solvent | Method | Plant Part | Key Notes |
|---|---|---|---|---|
| Phenolic acids (e.g., chlorogenic acid, caffeic acid) | 70–80% EtOH | 24 h shaking; vacuum concentration | Leaves | Major antioxidant constituents |
| Flavonoids (e.g., rutin, quercetin, kaempferol) | 80% EtOH | Ultrasonic extraction (30 min); filtration | Leaves, stems | Anti-inflammatory and immunomodulatory activities |
| Diterpenoids/Triterpenoids (e.g., dendropanoxide, α-/β-amyrin) | 80% MeOH | Ultrasonic or reflux extraction | Bark, roots | MS detection due to low UV absorbance |
| Polyacetylenes (falcarinol derivatives) | 80% MeOH → liquid–liquid partitioning (hexane, CHCl3, ethyl acetate (EtOAc)) | Maceration (48 h); vacuum concentration | Bark | Charged aerosol detector (CAD) or MS detection |
| Water-soluble compounds (e.g., syringin) | Water | Hot-water extraction (100 °C, 2 h) | Leaves, stems | Suitable for food/pharmaceutical applications |
| Phytochemical Class | Representative Compounds | Mobile Phase | Gradient Program | Detection λ (nm) | Notes |
|---|---|---|---|---|---|
| Phenolic acids | Chlorogenic acid, caffeic acid, ferulic acid, etc. | H2O (0.1% FA)/ACN | 10–80% ACN over 30–40 min | 320–330 | Validated for chlorogenic and caffeic acids |
| Flavonoids | Rutin, quercetin, kaempferol, etc. | H2O (0.1% FA)/ACN | 10–80% ACN over 30–40 min | 254–280 | Suitable for rutin and quercetin; UV or photodiode array (PDA) |
| Diterpenoids Triterpenoids | Dendropanoxide, α-amyrin, β-amyrin, friedelin, β-sitosterol | H2O (0.1% FA)/ACN | 20–90% ACN over 40 min | 210–254 | Dendropanoxide typically detected at 254 nm; many diterpenoids have weak UV absorbance |
| Polyacetylenes | (3S)-Falcarinol, (3S,8S)-falcarindiol, (3S)-diynene, (9Z,16S)-16-hydroxy-9,17-octadecadiene-12,14-diynoic acid | H2O (0.1% FA)/MeOH | 30–90% MeOH over 40 min | 220 | CAD or MS often used for confirmation due to low UV sensitivity |
| Others | Syringin, saponins, rosmarinic acid | H2O (0.1% FA)/ACN | 10–80% CAN over 30 min | Variable (UV or MS) | Syringin and saponins frequently require MS detection for adequate sensitivity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kim, S.; Lee, D.; Won, K.; Lee, J.; Lee, W.; Roh, W.; Kim, Y. Unifying Phytochemistry, Analytics, and Target Prediction to Advance Dendropanax morbifera Bioactive Discovery. Life 2026, 16, 100. https://doi.org/10.3390/life16010100
Kim S, Lee D, Won K, Lee J, Lee W, Roh W, Kim Y. Unifying Phytochemistry, Analytics, and Target Prediction to Advance Dendropanax morbifera Bioactive Discovery. Life. 2026; 16(1):100. https://doi.org/10.3390/life16010100
Chicago/Turabian StyleKim, SuHyun, Damhee Lee, Kyujeong Won, Jinseop Lee, Wooseop Lee, Woohyeon Roh, and Youngjun Kim. 2026. "Unifying Phytochemistry, Analytics, and Target Prediction to Advance Dendropanax morbifera Bioactive Discovery" Life 16, no. 1: 100. https://doi.org/10.3390/life16010100
APA StyleKim, S., Lee, D., Won, K., Lee, J., Lee, W., Roh, W., & Kim, Y. (2026). Unifying Phytochemistry, Analytics, and Target Prediction to Advance Dendropanax morbifera Bioactive Discovery. Life, 16(1), 100. https://doi.org/10.3390/life16010100

