Evaluation of Total Homocysteine Levels in Relation to Abdominal Fat Mass and Traditional Cardiovascular Risk Factors in Overweight and Obese Adolescents
Abstract
1. Introduction
2. Materials and Methods
2.1. Anthropometric Measurements
2.2. Laboratory Tests
2.3. Blood Pressure
2.4. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Hcy | Homocysteine |
tHcy | Total Homocysteine |
HHcy | Hyperhomocysteinemia |
ROS | Reactive oxygen species |
NO | Nitric oxide |
DNA | Deoxyribonucleic acid |
RNA | Ribonucleic acid |
CVD | Cardiovascular disorders |
IR | Insulin resistance |
BMI | Body Mass Index |
SDS | Standard Deviation Score |
MCV | Mean corpuscular volume |
WC | Waist circumference, |
HC | Hip circumference, |
WHR | Waist-to-hip ratio |
WHtR | Waist-to-height ratio |
BFM | Body fat mass |
TC | Total cholesterol |
HDL-C | High-density lipoprotein cholesterol |
TG | Triglycerides |
LDL-C | Low-density lipoprotein cholesterol |
CRP | C-reactive protein |
OGTT | Oral glucose tolerance test (OGTT) |
FGIR | Fasting glucose-to-insulin ratio |
QUICKI | Quantitative Insulin Sensitivity Check Index |
HOMA-IR | Homeostasis Model Assessment-Insulin Resistance |
TG/HDL-C | Triglyceride-to-high-density lipoprotein cholesterol ratio |
BP | Blood pressure |
WBC | White Blood Cells |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
AMPK | Adenosine monophosphate-activated protein kinase |
IRS-1 | Insulin receptor substrate-1 |
PI3K/Akt | Phosphoinositide-3-kinase/protein kinase B |
MAPK | Mitogen-activated protein kinase |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
IL | Interleukin |
TNF-α | Tumor necrosis factor alpha |
CBS | Cystathionine β-synthase |
5-MTHF | 5-methyltetrahydrofolate |
THF | Tetrahydrofolate |
DMG | N,N-dimethylglycine |
LBM | Baseline lean body mass |
GFR | Glomerular Filtration Rate |
HbA1c | Glycated hemoglobin |
CKD | Chronic kidney disease |
ESRD | End-stage renal disease |
References
- Koklesova, L.; Mazurakova, A.; Samec, M.; Biringer, K.; Samuel, S.M.; Büsselberg, D.; Kubatka, P.; Golubnitschaja, O. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J. 2021, 12, 477–505. [Google Scholar] [CrossRef]
- Paganelli, F.; Mottola, G.; Fromonot, J.; Marlinge, M.; Deharo, P.; Guieu, R.; Ruf, J. Hyperhomocysteinemia and Cardiovascular Disease: Is the Adenosinergic System the Missing Link? Int. J. Mol. Sci. 2021, 22, 1690. [Google Scholar] [CrossRef]
- González-Lamuño, D.; Jesús Arrieta-Blanco, F.; Fuentes, E.D.; Forga-Visa, M.T.; Morales-Conejo, M.; Peña-Quintana, L.; Vitoria-Miñana, I. Hyperhomocysteinemia in Adult Patients: A Treatable Metabolic Condition. Nutrients 2024, 16, 135. [Google Scholar] [CrossRef]
- Schwaninger, M.; Ringleb, P.; Winter, R.; Kohl, B.; Fiehn, W.; Rieser, P.A.; Walter-Sack, I. Elevated plasma concentrations of homocysteine in antiepileptic drug treatment. Epilepsia 1999, 40, 345–350. [Google Scholar] [CrossRef]
- Yuan, D.; Chu, J.; Lin, H.; Zhu, G.; Qian, J.; Yu, Y.; Yao, T.; Ping, F.; Chen, F.; Liu, X. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Front. Cardiovasc. Med. 2023, 9, 1109445. [Google Scholar] [CrossRef]
- Fu, L.; Li, Y.; Luo, D.; Deng, S.; Hu, Y.-Q. Plausible relationship between homocysteine and obesity risk via MTHFR gene: A meta-analysis of 38,317 individuals implementing Mendelian randomization. Diabetes Metab. Syndr. Obes. 2019, 12, 1201–1212. [Google Scholar] [CrossRef]
- Gąsiorowska, D.; Korzeniowska, K.; Jabłecka, J. Homocysteina. Farm. Współcz. 2008, 1, 169–175. [Google Scholar]
- Kumar, A.; Palfrey, H.A.; Pathak, R.; Kadowitz, P.J.; Gettys, T.W.; Murthy, S.N. The metabolism and significance of homocysteine in nutrition and health. Nutr. Metab. 2017, 14, 78. [Google Scholar] [CrossRef]
- Al Hageh, C.; Alefishata, E.; Ghassibe-Sabbaghd, M.; Platte, D.E.; Hamdana, H.; Tcheroyanf, R.; Chammasg, E.; O’Sullivana, S.; Abcheeh, A.; Wangi, B.; et al. Homocysteine levels, H-Hypertension, and the MTHFR C677T genotypes: A complex interaction. Heliyon 2023, 9, e16444. [Google Scholar] [CrossRef]
- Unadkat, S.V.; Padhi, B.; Bhongir, A.V.; Gandhi, A.P.; Shamim, M.A.; Dahiya, N.; Satapathy, P.; Rustagi, S.; Khatib, M.N.; Gaidhane, A.; et al. Association between homocysteine and coronary artery disease-trend over time and across the regions: A systematic review and meta-analysis. Egypt. Heart J. 2024, 76, 29. [Google Scholar] [CrossRef]
- Hirata, A. Is renal function the key to disease risk management in elevated homocysteine levels? Hypertens. Res. 2024, 47, 1976–1977. [Google Scholar] [CrossRef]
- Long, Y.; Nie, J. Homocysteine in Renal Injury. Kidney Dis. 2016, 2, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Golbahar, J.; Aminzadeh, M.A.; Kassab, S.E.; Omrani, G.R. Hyperhomocysteinemia induces insulin resistance in male Sprague-Dawley rats. Diabetes Res. Clin. Pract. 2007, 76, 1–5. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Jiang, C.; Xu, M.; Pang, Y.; Feng, J.; Xiang, X.; Kong, W.; Xu, G.; Li, Y.; et al. Hyperhomocysteinemia Promotes Insulin Resistance by Inducing Endoplasmic Reticulum Stress in Adipose Tissue. J. Biol. Chem. 2013, 288, 9583–9592. [Google Scholar] [CrossRef]
- Wang, J.; You, D.; Wang, H.; Yang, Y.; Zhang, D.; Lv, J.; Luo, S.; Liao, R.; Ma, L. Association between homocysteine and obesity: A meta-analysis. J. Evid. Based Med. 2020, 14, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Leite, L.O.; Pitangueira, J.C.D.; Damascena, N.F.; Farias, P.R. Homocysteine levels and cardiovascular risk factors in children and adolescents: Systematic review and meta-analysis. Nutr. Rev. 2021, 79, 1067–1078. [Google Scholar] [CrossRef]
- Ulloque-Badaracco, J.R.; Alarcon-Braga, E.A.; Hernandez-Bustamante, E.A.; Von-Koeller-Jones, B.M.; Huayta-Cortez, M.; Saavedra-Custodio, E.; Herrera-Añazco, P.; Benites-Zapata, V.A. Vitamin B12, folate, and homocysteine levels in children and adolescents with obesity: A systematic review and meta-analysis. Front. Public Health 2025, 13, 1481002. [Google Scholar] [CrossRef]
- Abaci, A.; Akelma, A.Z.; Özdemir, O.; Hizli, S.; Razi, C.H.; Akin, K.O. Relation of total homocysteine level with metabolic and anthropometric variables in obese children and adolescents anthropometric variables in obese children and adolescents. Turk. J. Med. Sci. 2012, 42, 69–76. [Google Scholar]
- Kumar, K.J.; Saldanha, K.; Sushma, K.; Murthy, D.S.; Vishwanath, P. A prospective study of homocysteine and its relation to body mass index and lipid profile in school children. Indian Pediatr. 2017, 54, 935–937. [Google Scholar] [CrossRef] [PubMed]
- Atabek, M.E.; Bağcı, Z.; Pirgon, O.; Erkul, I. Plasma Total Homocysteine Levels in Childhood Obesity. Turk. J. Endocrinol. Metab. 2004, 8, 107–111. [Google Scholar]
- Narin, F.; Atabek, M.E.; Karakukcu, M.; Narin, N.; Kurtoglu, S.; Gumus, H.; Çoksevim, B.; Erez, R. The association of plasma homocysteine levels with serum leptin and apolipoprotein B levels in childhood obesity. Ann. Saudi Med. 2005, 25, 209–214. [Google Scholar] [CrossRef]
- Fonseca, V.A.; Fink, L.M.; Kern, P.A. Insulin sensitivity and plasma homocysteine concentrations in non-diabetic obese and normal weight subjects. Atherosclerosis 2003, 167, 105–109. [Google Scholar] [CrossRef]
- Brasileiro, R.S.; Escrivão, M.A.M.S.; Taddei, J.A.A.C.; D’Almeida, V.; Ancona-Lopez, F.; Carvalhaes, J.T.A. Plasma total homocysteine in Brazilian overweight and non-overweight adolescents: A case-control study. Nutr. Hosp. 2005, 20, 313–319. [Google Scholar]
- Santos, J.D.G.D.; Sawamura, L.S.; Souza, F.I.S.; Gessullo, A.D.V.; Faria, J.C.P.; Sarni, R.O.S. Homocysteine concentrations in overweight children and adolescents. Rev. Assoc. Med. Bras. 2023, 69, 285–290. [Google Scholar] [CrossRef]
- Kandil, M.E.; Anwar, G.M.; Fatouh, A.; Salama, N.; Ahmed, A.; Elabd, E.; Aly, E. Relation between serum homocysteine and carotid intima-media thickness in obese Egyptian children. J. Clin. Basic Cardiol. 2010, 13, 8–11. [Google Scholar]
- Martos, R.; Valle, M.; Morales, R.; Cañete, R.; Gavilan, M.I.; Sánchez-Margalet, V. Hyperhomocysteinemia correlates with insulin resistance and low-grade systemic inflammation in obese prepubertal children. Metabolism 2006, 55, 72–77. [Google Scholar] [CrossRef]
- Silva, N.P.; de Souza, F.I.S.; Pendezza, A.I.; Fonseca, F.L.A.; Hix, S.; Oliveira, A.C.; Sarni, R.O.; D’Almeida, V. Homocysteine and cysteine levels in prepubertal children: Association with waist circumference and lipid profile. Nutrition 2013, 29, 166–171. [Google Scholar] [CrossRef]
- de Farias Lea, A.A.; da Silva Simões, M.O.; Teixeira, A.; Medeiros, C.C.M.; Palmeira, A.C.; de Castro, G.M.A.; de Assis, M.L.G.; de Oliveira, M.S. Homocysteine and Cardiovascular Risk Factors in Overweight or Obese Children and Adolescents. Health 2015, 7, 381–389. [Google Scholar] [CrossRef]
- Atabek, M.E.; Pirgon, O.; Kivrak, A.S. Evidence for association between insulin resistance and premature carotid atherosclerosis in childhood obesity. Pediatr. Res. 2007, 61, 345–349. [Google Scholar] [CrossRef]
- Ustundag, B.; Gungor, S.; Aygu, A.D.; Turgut, M.; Yilmaz, E. Oxidative status and serum leptin levels in obese prepubertal children. Cell Biochem. Funct. 2007, 25, 479–483. [Google Scholar] [CrossRef]
- Ezgü, F.; Tümer, L.; Ozbay, F.; Hasanoglu, A.; Biberoğlu, G.; Aybay, C. Homocysteine, fibrinogen and anti-ox-LDL antibody levels as markers of atherosclerosis in prepubertal obese children. J. Pediatr. Endocrinol. Metab. 2009, 22, 915–920. [Google Scholar] [CrossRef]
- WHO. WHO Expert Committee: Physical Status: The Use and Interpretation of Anthropometry; WHO Technical Report Series 854; WHO: Geneva, Switzerland, 1995; pp. 1–350. [Google Scholar]
- Slaughter, M.H.; Lohman, T.G.; Christ, C.B.; Boileau, R.A. Skinfold equations for estimation of body fitness in children and youth. Hum. Biol. 1998, 60, 709–723. [Google Scholar]
- Cole, T.J. The LMS method for constructing normalized growth standards. Eur. J. Clin. Nutr. 1990, 44, 45–60. [Google Scholar] [PubMed]
- Kułaga, Z.; Litwin, M.; Tkaczyk, M.; Palczewska, I.; Zajączkowska, M.; Zwolińska, D.; Krynicki, T.; Wasilewska, A.; Moczulska, A.; Morawiec-Knysak, A.; et al. Polish 2010 growth references for school-aged children and adolescents. Eur. J. Pediatr. 2011, 170, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Krishnaveni, P.; Gowda, V.M.N. Assessing the Validity of Friedewald’s Formula and Anandraja’s Formula for Serum LDL-Cholesterol Calculation. J. Clin. Diagn. Res. 2015, 9, BC01–BC04. [Google Scholar] [CrossRef]
- Ten, S.; Maclaren, N. Insulin resistance syndrome in children. J. Clin. Endocrinol. Metab. 2004, 89, 2526–2539. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- Krawczyk, M.; Rumińska, M.; Witkowska-Sędek, E.; Majcher, A.; Pyrżak, B. Usefulness of the Triglycerides to High-Density Lipoprotein Cholesterol ratio (TG/HDL-C) in prediction of metabolic syndrome in Polish obese children and adolescents. Acta Biochim. Pol. 2018, 65, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.R.; Myers, L.; Berenson, G.S. Distribution and correlates of non-high-density lipoprotein cholesterol in children: The Bogalusa Heart Study. Pediatrics 2002, 110, e29. [Google Scholar] [CrossRef]
- Must, A.; Jacques, P.F.; Rogers, G.; Rosenberg, I.H.; Selhub, J. Serum total homocysteine concentrations in children and adolescents: Results from the third National Health and Nutrition Examination Survey (NHANES III). J. Nutr. 2003, 133, 2643–2649. [Google Scholar] [CrossRef]
- Gande, N.; Hochmayr, C.; Staudt, A.; Bernar, B.; Stock, K.; Kiechl, S.J.; Geiger, R.; Griesmacher, A.; Scholl-Bürgi, S.; Knoflach, M.; et al. Plasma homocysteine levels and associated factors in community-dwelling adolescents: The EVA-TYROL study. Front. Cardiovasc. Med. 2023, 10, 1140990. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Huang, F.; Wang, Y.; Liu, Q.; Lv, Y.; Zhang, Q. Gender- and age-related differences in homocysteine concentration: A cross-sectional study of the general population of China. Sci. Rep. 2020, 10, 17401. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Pini, M.; Yao, T.; Zhou, Z.; Sun, C.; Fantuzzi, G.; Song, Z. Homocysteine suppresses lipolysis in adipocytes by activating the AMPK pathway. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E703–E712. [Google Scholar] [CrossRef] [PubMed]
- Berbudi, A.; Khairani, S.; Tjahjadi, A.M. Interplay Between Insulin Resistance and Immune Dysregulation in Type 2 Diabetes Mellitus: Implications for Therapeutic Interventions. ImmunoTargets Ther. 2025, 14, 359–382. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, C.; Xu, G.; Wang, N.; Zhu, Y.; Tang, C.; Wang, X. Homocysteine Upregulates Resistin Production from Adipocytes In Vivo and In Vitro. Diabetes 2008, 57, 817–827. [Google Scholar] [CrossRef]
- Codoñer-Franch, P.; Tavárez-Alonso, S.; Porcar-Almela, M.; Navarro-Solera, M.; Codoñer, Á.; Alonso-Iglesias, E. Plasma resistin levels are associated with homocysteine, endothelial activation, and nitrosative stress in obese youths. Clin. Biochem. 2014, 47, 44–48. [Google Scholar] [CrossRef]
- Gallistl, S.; Sudi, K.M.; Erwa, W.; Aigner, R.; Borkenstein, M. Determinants of homocysteine during weight reduction in obese children and adolescents. Metabolism 2001, 50, 1220–1223. [Google Scholar] [CrossRef]
- Caldeira-Araújo, H.; Ramos, R.; Florindo, C.; Rivera, I.; Castro, R.; Tavares de Almeida, I. Homocysteine Metabolism in Children and Adolescents: Influence of Age on Plasma Biomarkers and Correspondent Genotype Interactions. Nutrients 2019, 11, 646. [Google Scholar] [CrossRef]
- Gara, S.; Ochi, H.; Chango, A.; Najjar, L.; Feki, M.; B’chir, F.; Kaabachi, N.; Becher, S.B.; Boukthir, S.; Abdennebi, M. C677t polymorphism of MTHFR and G80A polymorphism of RFC genes and their relation with homocysteine levels in obese Tunisian children. Tunis. Med. 2011, 89, 565–568. [Google Scholar]
Variable | Control Children (n = 25) | Overweight Children (n = 14) | Obese Children (n = 42) |
---|---|---|---|
Age (years) | 14.98 ± 1.84 | 13.00 ± 2.21 # | 13.86 ± 2.19 * |
Height (cm) | 163.66 ± 10.96 | 159.54 ± 13.13 | 166.26 ± 9.76 |
Body weight (kg) | 55.50 (45.70–61.60) | 61.30 (54.20–70.60) | 89.85 (75.80–98.40) *^ |
BMI (kg/m2) | 20.20 (17.80–22.50) | 24.55 (24.10–27.30) # | 30.75 (29.10–33.70) *^ |
BMI SDS | 0.00 (−0.60–0.80) | 1.55 (1.40–1.80) # | 2.30 (2.10–2.60) *^ |
WC (cm) | 65.43 ± 5.92 | 81.75 ± 6.24 # | 92.50 ± 7.63 *^ |
HC (cm) | 85.57 ± 9.45 | 94.42 ± 9.81# | 109.46 ± 9.27 *^ |
WHR | 0.78 (0.75–0.80) | 0.86 (0.82–0.90) # | 0.84 (0.80–0.90) * |
WHtR | 0.41 ± 0.03 | 0.51 ± 0.04 # | 0.55 ± 0.04 *^ |
% BFM | 23.89 ± 7.03 | 31.62 ± 3.38 # | 37.39 ± 5.61 *^ |
tHcy (µmol/L) | 12.45 (10.88–14.44) | 10.71 (9.79–13.50) | 11.09 (9.04–12.81) |
Glucose (mg/dL) | 83.08 ± 7.25 | 85 ± 7.22 | 86.63 ± 6.53 |
Insulin (µIU/mL) | 8.67 (2.72–11.20) | 12.74 (9.48–21.00) | 15.50 (10.20–22.90) * |
FGIR | 9.24 (6.94–34.93) | 6.60 (4.56–9.21) | 5.85 (3.97–8.56) * |
HOMA-IR | 1.79 (0.94–2.55) | 2.56 (1.97–4.77) | 3.17 (2.13–4.98) * |
QUICKI | 0.35 (0.34–0.41) | 0.33 (0.30–0.34) | 0.32 (0.30–0.34) * |
MATSUDA | - | 3.15 (2.54–4.38) | 2.58 (2.00–3.70) |
TC (mg/dL) | 148.48 ± 21.12 | 166.14 ± 22.49 | 163.07 ± 26.62 |
HDL-C (mg/dL) | 58.68 ± 11.98 | 51.50 ± 12.26 | 44.07 ± 11.23 * |
LDL-C (mg/dL) | 77.45 ± 19.84 | 95.06 ± 21.40 | 93.92 ± 25.48 |
TG (mg/dL) | 60.00 (43.00–69.00) | 97.93 (79.00–105.00) | 108.00 (93.00–157.00) * |
TG/HDL-C | 1.09 (0.72–1.36) | 1.79 (1.41–2.32) # | 2.35 (1.66–4.16) * |
non HDL | 93.00 (72.00–106.00) | 115.50 (98.00–131.00) | 115.00 (99.00–133.00) |
CRP (mg/dL) | 0.50 (0.50–0.50) | 0.50 (0.50–0.50) | 0.50 (0.50–0.65) |
Creatinine (mg/dL) | 0.70 (0.60–0.70) | 0.60 (0.50–0.70) | 0.60 (0.50–0.60) |
WBC (cells × 103/µL) | 6.21 ± 1.74 | 6.21 ± 1.52 | 6.94 ± 1.42 |
Neutrophil (cells × 103/µL) | 3.02 ± 1.40 | 3.06 ± 1.02 | 3.73 ± 1.13 |
Lymphocyte (cells × 103/µL) | 2.46 ± 0.70 | 2.29 ± 0.64 | 2.39 ± 0.50 |
Monocyte (cells × 103/µL) | 0.46 (0.42–0.56) | 0.55 (0.49–0.60) | 0.51 (0.48–0.63) |
Eosinophil (cells × 103/µL) | 0.16 (0.11–0.30) | 0.20 (0.16–0.36) | 0.20 (0.10–0.30) |
Basophil (cells × 103/µL) | 0.03 (0.02–0.05) | 0.01 (0.00–0.03) | 0.02 (0.00–0.03) * |
SBP (mmHg) | 110.09 ± 12.47 | 116.83 ± 9.24 | 124.42 ± 5.50 * |
DBP (mmHg) | 70.00 (63.00–76.00) | 75.00 (63.00–78.00) | 74.00(67.00–77.00) |
Variable | Girls (n = 27) | Boys (n = 29) |
---|---|---|
Age (years) | 14.33 ± 2.22 | 13.00 ± 2.14 |
Height (cm) | 163.78 ± 7.85 | 165.33 ± 13.35 |
Body Weight (kg) | 83.61 ± 16.29 | 80.33 ± 18.99 |
BMI (kg/m2) | 30.30 (27.30–34.40) | 29.70 (26.60–30.90) |
BMI SDS | 2.40 (2.00–2.70) | 2.10 (1.8–2.30) * |
WC (cm) | 88.48 ± 8.76 | 91.04 ± 8.51 |
HC (cm) | 109.74 ± 10.81 | 101.98 ± 10.83 * |
WHR | 0.81 (0.78–0.83) | 0.89 (0.84–0.93) * |
WHtR | 0.54 ± 0.05 | 0.55 ± 0.05 |
% BFM | 37.54 ± 4.38 | 40.64 ± 4.93 (0.062) |
tHcy (µmol/L) | 10.34 (8.59–12.74) | 11.26 (9.79–13.89) |
Glucose (mg/dL) | 86.17 ± 6.59 | 86.57 ± 6.82 |
Insulin (µIU/mL) | 15.50 (9.97–22.90) | 13.65 (9.18–21.45) |
FGIR | 5.38 (3.97–8.56) | 6.44 (4.25–9.60) |
HOMA-IR | 3.17 (2.04–5.15) | 2.81 (1.99–4.88) |
QUICKI | 0.32 (0.30–0.34) | 0.33 (0.30–0.34) |
MATSUDA | 2.56 (2.01–4.30) | 2.95 (1.91–3.93) |
TC (mg/dL) | 164.78 ± 28.15 | 162.96 ± 23.21 |
HDL-C (mg/dL) | 46.41 ± 12.46 | 45.48 ± 11.43 |
LDL-C (mg/dL) | 92.44 ± 25.93 | 95.85 ± 23.10 |
TG (mg/dL) | 116.00 (97.00–168.00) | 95.20 (79.00–115.00) * |
TG/HDL-C | 2.31 (1.51–4.16) | 2.06 (1.57–3.12) |
non HDL | 115.00 (98.00–138.00) | 115.00 (105.00–131.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumińska, M.; Witkowska-Sędek, E.; Krajewska, M.; Stelmaszczyk-Emmel, A.; Sobol, M.; Pyrżak, B. Evaluation of Total Homocysteine Levels in Relation to Abdominal Fat Mass and Traditional Cardiovascular Risk Factors in Overweight and Obese Adolescents. Life 2025, 15, 1329. https://doi.org/10.3390/life15081329
Rumińska M, Witkowska-Sędek E, Krajewska M, Stelmaszczyk-Emmel A, Sobol M, Pyrżak B. Evaluation of Total Homocysteine Levels in Relation to Abdominal Fat Mass and Traditional Cardiovascular Risk Factors in Overweight and Obese Adolescents. Life. 2025; 15(8):1329. https://doi.org/10.3390/life15081329
Chicago/Turabian StyleRumińska, Małgorzata, Ewelina Witkowska-Sędek, Maria Krajewska, Anna Stelmaszczyk-Emmel, Maria Sobol, and Beata Pyrżak. 2025. "Evaluation of Total Homocysteine Levels in Relation to Abdominal Fat Mass and Traditional Cardiovascular Risk Factors in Overweight and Obese Adolescents" Life 15, no. 8: 1329. https://doi.org/10.3390/life15081329
APA StyleRumińska, M., Witkowska-Sędek, E., Krajewska, M., Stelmaszczyk-Emmel, A., Sobol, M., & Pyrżak, B. (2025). Evaluation of Total Homocysteine Levels in Relation to Abdominal Fat Mass and Traditional Cardiovascular Risk Factors in Overweight and Obese Adolescents. Life, 15(8), 1329. https://doi.org/10.3390/life15081329