Identification of Hyalomma Ticks on Migratory Birds in Poland During the 2023 and 2024 Spring Seasons
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Ticks
2.2. Nucleic Acid Isolation
2.3. Molecular Identification of Species and Sequence Analysis
2.4. Detection of Pathogens in Ticks
2.4.1. Rickettsia Species
2.4.2. Detection of CCHFV
3. Results
3.1. Collection of Hyalomma Ticks
3.2. Computational Analyses
3.3. Detection of Pathogens in Ticks
3.3.1. Identification of Rickettsia Species
3.3.2. CCHFV Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Estrada-Peña, A. Ticks as vectors: Taxonomy, biology, and ecology. Rev. Sci. Tech. 2015, 34, 53–65. [Google Scholar] [CrossRef]
- Labuda, M.; Nuttall, P.A. Tick-borne viruses. Parasitology 2004, 129, S221–S245. [Google Scholar] [CrossRef]
- Perumalsamy, N.; Sharma, R.; Subramanian, M.; Nagarajan, S.A. Hard ticks as vectors: The emerging threat of tick-borne diseases in India. Pathogens 2024, 13, 556. [Google Scholar] [CrossRef]
- Parthiban, A.B.R.; Palavesam, A.; Srinivasan, S.; Mohanan, A.; Ghosh, S.; Gopalan, T.K. Molecular characterization of Ehrlichia canis from naturally infected dogs reveals a novel Asiatic-lineage and co-circulation of multiple lineages in India. Res. Vet. Sci. 2024, 175, 105311. [Google Scholar] [CrossRef]
- Sullivan, M.D.; Glose, K.; Sward, D. Tick-borne illnesses in emergency and wilderness medicine. Emerg. Med. Clin. N. Am. 2024, 42, 597–611. [Google Scholar] [CrossRef] [PubMed]
- Afrasiabian, S.; Esmaeili, S.; Hajibagheri, K.; Hadizadeh, N.; Lotfi, G.; Veysi, A. Endocarditis caused by Coxiella burnetii: A case report in Western Iran. J. Arthropod Borne Dis. 2024, 18, 78–83. [Google Scholar] [CrossRef]
- Zygner, W.; Baska, P.; Wiśniewski, M.; Wedrychowicz, H. The molecular evidence of Babesia microti in hard ticks removed from dogs in Warsaw (central Poland). Pol. J. Microbiol. 2010, 59, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, O.; Xuan, X.; Sevinc, F. Primary tick-borne protozoan and rickettsial infections of animals in Turkey. Pathogens 2021, 10, 231. [Google Scholar] [CrossRef]
- Noll, M.; Wall, R.; Makepeace, B.L.; Vineer, H.R. Distribution of ticks in the Western Palearctic: An updated systematic review (2015–2021). Parasites Vectors 2023, 16, 141. [Google Scholar] [CrossRef] [PubMed]
- Capek, M.; Literak, I.; Kocianova, E.; Sychra, O.; Najer, T.; Trnka, A.; Kverek, P. Ticks of the Hyalomma marginatum complex transported by migratory birds into Central Europe. Ticks Tick Borne Dis. 2014, 5, 489–493. [Google Scholar] [CrossRef] [PubMed]
- McGinley, L.; Hansford, K.M.; Cull, B.; Gillingham, E.L.; Carter, D.P.; Chamberlain, J.F.; Hernandez-Trianae, L.M.; Phipps, L.P.; Medlock, J.M. First report of human exposure to Hyalomma marginatum in England: Further evidence of a Hyalomma moulting event in north-western Europe? Ticks Tick Borne Dis. 2021, 12, 101541. [Google Scholar] [CrossRef]
- Chitimia-Dobler, L.; Springer, A.; Lang, D.; Lindau, A.; Fachet, K.; Dobler, G.; Nijhof, A.M.; Strube, C.; Mackenstedt, U. Molting incidents of Hyalomma spp. carrying human pathogens in Germany under different weather conditions. Parasit. Vectors 2024, 17, 70. [Google Scholar] [CrossRef] [PubMed]
- Uiterwijk, M.; Ibáñez-Justicia, A.; van de Vossenberg, B.; Jacobs, F.; Overgaauw, P.; Nijsse, R.; Dabekaussen, C.; Stroo, A.; Spronget, H. Imported Hyalomma ticks in the Netherlands 2018–2020. Parasit. Vectors 2021, 14, 244. [Google Scholar] [CrossRef]
- Grandi, G.; Chitimia-Dobler, L.; Choklikitumnuey, P.; Strube, C.; Springer, A.; Albihn, A.; Jaenson, T.G.T.; Omazic, A. First records of adult Hyalomma marginatum and H. rufipes ticks (Acari: Ixodidae) in Sweden. Ticks Tick Borne Dis. 2020, 11, 101403. [Google Scholar] [CrossRef]
- Mancuso, E.; Toma, L.; Polci, A.; d’Alessio, S.G.; Di Luca, M.; Orsini, M.; Di Domenico, M.; Marcacci, M.; Mancini, G.; Spina, F.; et al. Crimean-Congo hemorrhagic fever virus genome in tick from migratory bird, Italy. Emerg. Infect. Dis. 2019, 25, 1418–1420. [Google Scholar] [CrossRef] [PubMed]
- Bělková, T.; Bártová, E.; Řičařová, D.; Jahn, P.; Jandová, V.; Modrý, D.; Hrazdilová, K.; Sedlák, K. Theileria equi and Babesia caballi in horses in the Czech Republic. Acta Trop. 2021, 221, 105993. [Google Scholar] [CrossRef] [PubMed]
- Axt, C.W.; Springer, A.; von Luckner, J.; Naucke, T.J.; Müller, E.; Strube, C.; Schäfer, I. Die equine Piroplasmose: Fallberichte und epidemiologische Situation in Europa mit Fokus auf Deutschland. Tierarztl. Prax. Ausg. G Grosstiere Nutztiere 2025, 53, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Kloc, A.; Sawczyn-Domańska, A.; Zając, V.; Wojcik-Fatla, A. Absence of Theileria spp. in ixodid ticks collected from vegetation and animals in eastern Poland. Ann. Agric. Environ. Med. 2024, 31, 631–634. [Google Scholar] [CrossRef]
- Siuda, K. Kleszcze Polski (Acari: Ixodida), Część II Systematyka i Rozmieszczenie. Pol. Towar. Parazytol. Warszawa 1993, 12, 1–375. [Google Scholar]
- Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988, 16, 10881–10890. [Google Scholar] [CrossRef]
- Troshin, P.V.; Procter, J.B.; Barton, G.J. Java bioinformatics analysis web services for multiple sequence alignment—JABAWS: MSA. Bioinformatics 2011, 27, 2001–2002. [Google Scholar] [CrossRef]
- Madeira, F.; Madhusoodanan, N.; Lee, J.; Eusebi, A.; Niewielska, A.; Tivey, A.R.; Lopez, R.; Butcher, S. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 2024, 52, W521–W525. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- Wagner, E.; Tukhanova, N.; Shin, A.; Turebekov, N.; Shapiyeva, Z.; Shevtsov, A.; Nurmakhanov, T.; Sutyagin, V.; Berdibekov, A.; Maikanov, N.; et al. Incidence of tick-borne spotted fever group Rickettsia species in rodents in two regions in Kazakhstan. Sci. Rep. 2022, 12, 14872. [Google Scholar] [CrossRef] [PubMed]
- Sas, M.A.; Vina-Rodriguez, A.; Mertens, M.; Eiden, M.; Emmerich, P.; Chaintoutis, S.C.; Mirazimi, A.; Groschup, M.H. A one-step multiplex real-time RT-PCR for the universal detection of all currently known CCHFV genotypes. J. Virol. Methods 2018, 255, 38–43. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Pfäffle, M.; Baneth, G.; Kleinerman, G.; Petney, T.N. Ixodoidea of the Western Palaearctic: A review of available literature for identification of species. Ticks Tick Borne Dis. 2017, 8, 512–525. [Google Scholar] [CrossRef]
- Johnson, N. The Tick Life Cycle. In Ticks Biology, Ecology and Diseases; Johnson, N., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 25–44. [Google Scholar] [CrossRef]
- Xia, H.; Beck, A.S.; Gargili, A.; Forrester, N.; Barrett, A.D.; Bente, D.A. Transstadial transmission and long-term association of Crimean-Congo hemorrhagic fever virus in ticks shapes genome plasticity. Sci. Rep. 2016, 6, 35819. [Google Scholar] [CrossRef] [PubMed]
- Rees, D.J.; Dioli, M.; Kirkendall, L.R. Molecules and morphology: Evidence for cryptic hybridization in African Hyalomma (Acari: Ixodidae). Mol. Phylogenet. Evol. 2003, 27, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Cuber, P.K. Ticks (Ixodida) from the collection of the Natural History Department, Museum of Upper Silesia in Bytom, Poland—A contribution to knowledge on tick fauna and the first record of Hyalomma marginatum presence in Poland. Ann. Agric. Environ. Med. 2016, 23, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Siuda, K.; Dutkiewicz, J. Hyalomma marginatum Koch, 1844 (Acarina: Ixodidae) w Polsce—Przykład zawleczenia południowego kleszcza przez ptaki wędrowne. Wiadmości Parazytol. 1979, 25, 333–338. [Google Scholar]
- Siuda, K. Badania nad fauną kleszczy (Acari: Ixodida) Polski. Wiadmości Parazytol. 1987, 33, 9–24. [Google Scholar]
- Nowak, M. The international trade in reptiles (Reptilia)-the cause of the transfer of exotic ticks (Acari: Ixodida) to Poland. Vet. Parasitol. 2010, 169, 373–381. [Google Scholar] [CrossRef]
- Shahhosseini, N.; Wong, G.; Babuadze, G.; Camp, J.V.; Ergonul, O.; Kobinger, G.P.; Chinikar, S.; Nowotny, N. Crimean-Congo Hemorrhagic Fever Virus in Asia, Africa and Europe. Microorganisms 2021, 9, 1907. [Google Scholar] [CrossRef]
- Rumer, L.; Graser, E.; Hillebrand, T.; Talaska, T.; Dautel, H.; Mediannikov, O.; Roy-Chowdhury, P.; Sheshukova, O.; Donoso Mantke, O.; Niedrig, M. Rickettsia aeschlimannii in Hyalomma marginatum ticks, Germany. Emerg. Infect. Dis. 2011, 17, 325–326. [Google Scholar] [CrossRef] [PubMed]
- Spina, F.; Baillie, S.R.; Bairlein, F.; Fiedler, W.; Thorup, K. The Eurasian African Bird Migration Atlas, 1st ed.; EURING/CMS: Bonn, Germany, 2022. [Google Scholar]
- Wallménius, K.; Barboutis, C.; Fransson, T.; Jaenson, T.G.; Lindgren, P.E.; Nyström, F.; Björn, O.; Salaneck, E.; Nilsson, K. Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area. Parasites Vectors 2014, 7, 318. [Google Scholar] [CrossRef] [PubMed]
- Leblebicioglu, H.; Ozaras, R.; Sunbul, M. Crimean-Congo hemorrhagic fever: A neglected infectious disease with potential nosocomial infection threat. Am. J. Infect. Control 2017, 45, 815–816. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, Y.; Liu, Z.; Yang, J.; Yin, H. The life cycle of Hyalomma rufipes (Acari: Ixodidae) under laboratory conditions. Exp. Appl. Acarol. 2012, 56, 85–92. [Google Scholar] [CrossRef]
- Buczek, A.M.; Buczek, W.; Buczek, A.; Bartosik, K. The Potential Role of Migratory Birds in the Rapid Spread of Ticks and Tick-Borne Pathogens in the Changing Climatic and Environmental Conditions in Europe. Int. J. Environ. Res. Public Health 2020, 17, 2117. [Google Scholar] [CrossRef]
- Heylen, D.; Fonville, M.; Docters van Leeuwen, A.; Stroo, A.; Duisterwinkel, M.; Van Wieren, S.; Diuk-Wasser, M.; de Bruin, A.; Sprong, H. Pathogen communities of songbird-derived ticks in Europe’s low countries. Parasites Vectors 2017, 10, 497. [Google Scholar] [CrossRef]
- Norman, F.F.; Arce, O.A.; Diaz-Menendez, M.; Belhassen-Garcia, M.; Gonzalez-Sanz, M. Changes in the epidemiology of Crimean-Congo Hemorrhagic Fever: Impact of travel and a OneHealth approach in the European region. Travel Med. Infect. Dis. 2025, 64, 102806. [Google Scholar] [CrossRef]
- Hahn, S.; Bauer, S.; Liechti, F. The natural link between Europe and Africa—2.1 billion birds on migration. Oikos 2009, 118, 624–625. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on the role of tick vectors in the epidemiology of Crimean-Congo hemorrhagic fever and African swine fever in Eurasia. EFSA J. 2010, 8, 156. [Google Scholar] [CrossRef]
- Cuadrado-Matías, R.; Moraga-Fernández, A.; Peralbo-Moreno, A.; Negredo, A.I.; Sánchez-Seco, M.P.; Ruiz-Fons, F. Crimean-Congo haemorrhagic fever virus in questing non-Hyalomma spp. ticks in Northwest Spain, 2021. Zoonoses Public Health 2024, 71, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Duscher, G.G.; Hodžić, A.; Hufnag, P.; Wille-Piazzai, W.; Schötta, A.M.; Markowicz, M.A.; Estrada-Peña, A.; Stanek, G.; Allerberger, F. Adult Hyalomma marginatum tick positive for Rickettsia aeschlimannii in Austria, October 2018. Eurosurveillance 2018, 23, 1800595. [Google Scholar] [CrossRef]
- Kummerfeldt, C.E.; Huggins, J.T.; Sahn, S.A. Unusual bacterial infections and the pleura. Open Respir. Med. J. 2012, 6, 75–81. [Google Scholar] [CrossRef]
- Snowden, J.; Simonsen, K.A. Rocky Mountain Spotted Fever (Rickettsia rickettsii). In StatPearls; [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430881/ (accessed on 8 November 2024).
- CDC. Rocky Mountain Spotted Fever. 2024. Available online: https://www.cdc.gov/rocky-mountain-spotted-fever/hcp/clinical-care/index.html (accessed on 24 April 2025).
- Beati, L.; Meskini, M.; Thiers, B.; Raoult, D. Rickettsia aeschlimannii sp. nov., a new spotted fever group rickettsia associated with Hyalomma marginatum ticks. Int. J. Syst. Bacteriol. 1997, 47, 548–554. [Google Scholar] [CrossRef]
- Amoah, S.; Unicorn, N.M.; Kyeremateng, E.T.; Desewu, G.; Obuam, P.K.; Malm, R.O.; Osei-Frempong, E.; Torto, F.A.; Accorlor, S.K.; Boampong, K.; et al. Ticks and tick-borne pathogens in selected abattoirs and a slaughter slab in Kumasi, Ghana. Vet. Med. Sci. 2024, 10, e70030. [Google Scholar] [CrossRef]
- Bitam, I.; Kernif, T.; Harrat, Z.; Parola, P.; Raoult, D. First detection of Rickettsia aeschlimannii in Hyalomma aegyptium from Algeria. Clin. Microbiol. Infect. 2009, 15, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Soto, P.; Encinas-Grandes, A.; Pérez-Sánchez, R. Rickettsia aeschlimannii in Spain: Molecular evidence in Hyalomma marginatum and five other tick species that feed on humans. Emerg. Infect. Dis. 2003, 9, 889–890. [Google Scholar] [CrossRef]
- Koczwarska, J.; Pawełczyk, A.; Dunaj-Małyszko, J.; Polaczyk, J.; Welc-Falęciak, R. Rickettsia species in Dermacentor reticulatus ticks feeding on human skin and clinical manifestations of tick-borne infections after tick bite. Sci. Rep. 2023, 13, 9930. [Google Scholar] [CrossRef]
- Raoult, D.; Fournier, P.E.; Abboud, P.; Caron, F. First documented human Rickettsia aeschlimannii infection. Emerg. Infect. Dis. 2002, 8, 748–749. [Google Scholar] [CrossRef] [PubMed]
- Mokrani, N.; Parola, P.; Tebbal, S.; Dalichaouche, M.; Aouati, A.; Raoult, D. Rickettsia aeschlimannii infection, Algeria. Emerg. Infect Dis. 2008, 14, 1814–1815. [Google Scholar] [CrossRef] [PubMed]
- Erol, U.; Sahin, O.F.; Urhan, O.F.; Genc, M.G.; Altay, K. Primarily molecular detection and phylogenetic analyses of spotted fever group Rickettsia species in cats in Türkiye: With new host reports of Rickettsia aeschlimannii, Rickettsia slovaca, and Candidatus Rickettsia barbariae. Comp. Immunol. Microbiol. Infect. Dis. 2025, 118, 102319. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence |
---|---|
CCHF-I-f | CAAGAGGCACTAAAAAAATGAAGAAGGC |
CCHF-I-r | GCAACAGGGATGGTTCCAAAGCAAAC |
CCHF-II-f | CAAGGGGYACCAARAAAATGAAGAAGGC |
CCHF-II-r | GCYACRGGGATGGTTCCRAAGCAGAC |
CCHF-III-f | CAAGAGGTACCAAGAAAATGAAGAAGGC |
CCHF-III-r | GCCACGGGGATTGTCCCAAAGCAGAC |
CCHF-IV-f | CAAGGGGTACCAAGAAAATGAAGAARGC |
CCHF-IV-r | GCCACAGGGATTGTTCCAAAGCAGAC |
CCHF-V-f | CAAGGGGGACCAARAAAATGAAAAAGGC |
CCHF-V-r | GCAACAGGGATTGTTCCAAAGCAGAC |
CCHF-VI-f | CAAGGGGCACCAAGAAAATGAAGAAAGC |
CCHF-VI-r | GCTACAGGAATTGTCCCAAAGCAGAC |
CCHF-deg-f | CAAGGGGKACCAAGAAAATGAARAAGGC |
CCHF-deg-r | GCMACAGGGATTGTYCCAAAGCAGAC |
Probe | Sequence |
CCHF-probe-1 | 6-FAM-ATCTACATGCACCCTGCYGTGYTGACA-TAMRA |
CCHF-probe-2 | 6-FAM-TTCTTCCCCCACTTCATTGGRGTGCTCA-TAMRA |
Standard | CAAGGGGTACCAAGAAAATGAAGAAGGCACTCTTGAGCACCCCAATGAAGTGGGGGAAGAAGCTTTTGGGTGTCTGCTTTGGAACAATCCCTGTGGC |
Examined Site | 2023 | 2024 | |||||
---|---|---|---|---|---|---|---|
Name and Coordinates | Number of Birds | Number of Ticks | Hyalomma Tick; Bird Species; Date; Isolate | Number of Birds | Number of Ticks | Hyalomma Tick; Bird Species; Date; Isolate | |
Góra Kalwawia | 51.96° N 21.26° E | 1156 | 342 | 3 H. icterina * 24 May 2023 GK_1, GK_2 A. palustris 25 May 2023 GK_3 | 1554 | 118 | 1 A. palustris 25 May 2025 GK_5 |
Nowa Dęba | 50.5° N 21.28° E | n.a. | n.a. | n.a. | 106 | 10 | 1 A. schoenobaenous 14 May 2024 ND_4 |
Wicie | 54.5° N 16.46° E | n.a. | n.a. | n.a. | 167 | 53 | 1 A. arudinaceus 24 May 2024 W_6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bylińska, K.; Rapczyński, J.; Górski, P.; Obuch-Woszczatyńska, O.; Pietrzak, D.; Korzekwa, K.; Krzyżowska, M.; Bąska, P. Identification of Hyalomma Ticks on Migratory Birds in Poland During the 2023 and 2024 Spring Seasons. Life 2025, 15, 1311. https://doi.org/10.3390/life15081311
Bylińska K, Rapczyński J, Górski P, Obuch-Woszczatyńska O, Pietrzak D, Korzekwa K, Krzyżowska M, Bąska P. Identification of Hyalomma Ticks on Migratory Birds in Poland During the 2023 and 2024 Spring Seasons. Life. 2025; 15(8):1311. https://doi.org/10.3390/life15081311
Chicago/Turabian StyleBylińska, Klaudia, Jan Rapczyński, Paweł Górski, Oliwia Obuch-Woszczatyńska, Damian Pietrzak, Karol Korzekwa, Małgorzata Krzyżowska, and Piotr Bąska. 2025. "Identification of Hyalomma Ticks on Migratory Birds in Poland During the 2023 and 2024 Spring Seasons" Life 15, no. 8: 1311. https://doi.org/10.3390/life15081311
APA StyleBylińska, K., Rapczyński, J., Górski, P., Obuch-Woszczatyńska, O., Pietrzak, D., Korzekwa, K., Krzyżowska, M., & Bąska, P. (2025). Identification of Hyalomma Ticks on Migratory Birds in Poland During the 2023 and 2024 Spring Seasons. Life, 15(8), 1311. https://doi.org/10.3390/life15081311