Causal Association of Free Triiodothyronine Level with Ischemic Stroke Outcome: A Mendelian Randomization Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Genetic Variants Associated with Exposure
2.2. Data Sources for Stroke Outcome
2.3. Statistical Analysis
2.4. Data Availability
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ullrich, D.; Führer, D.; Heuer, H.; Mayerl, S.; Haupeltshofer, S.; Schmitt, L.I.; Leo, M.; Szepanowski, R.D.; Hagenacker, T.; Schwaninger, M.; et al. Triiodothyronine treatment in mice improves stroke outcome and reduces blood-brain barrier damage. Eur. Thyroid. J. 2025, 14, e240143. [Google Scholar] [CrossRef] [PubMed]
- Rust, R.; Nih, L.R.; Liberale, L.; Yin, H.; El Amki, M.; Ong, L.K.; Zlokovic, B.V. Brain repair mechanisms after cell therapy for stroke. Brain 2024, 147, 3286–3305. [Google Scholar] [CrossRef] [PubMed]
- Karisik, A.; Moelgg, K.; Buergi, L.; Scherer, L.; Schneider, T.; Dejakum, B.; Komarek, S.; Boehme, C.; Toell, T.; Pechlaner, R.; et al. Dysphagia increases the risk of post-stroke fatigue. Eur. J. Neurol. 2025, 32, e16570. [Google Scholar] [CrossRef]
- LeCouffe, N.E.; Kappelhof, M.; Treurniet, K.M.; Rinkel, L.A.; Bruggeman, A.E.; Berkhemer, O.A.; Wolff, L.; Voorst, H.v.; Tolhuisen, M.L.; Dippel, D.W.J.; et al. A Randomized Trial of Intravenous Alteplase before Endovascular Treatment for Stroke. N. Engl. J. Med. 2021, 385, 1833–1844. [Google Scholar] [CrossRef]
- Suzuki, K.; Matsumaru, Y.; Takeuchi, M.; Morimoto, M.; Kanazawa, R.; Takayama, Y.; Kamiya, Y.; Shigeta, K.; Okubo, S.; Hayakawa, M.; et al. Effect of Mechanical Thrombectomy Without vs With Intravenous Thrombolysis on Functional Outcome Among Patients With Acute Ischemic Stroke: The SKIP Randomized Clinical Trial. JAMA 2021, 325, 244–253. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, Y.; Zhang, L.; Zhang, Y.; Treurniet, K.M.; Chen, W.; Peng, Y.; Han, H.; Wang, J.; Wang, S.; et al. Endovascular Thrombectomy with or without Intravenous Alteplase in Acute Stroke. N. Engl. J. Med. 2020, 382, 1981–1993. [Google Scholar] [CrossRef]
- Bhaskar, S.; Stanwell, P.; Cordato, D.; Attia, J.; Levi, C. Reperfusion therapy in acute ischemic stroke: Dawn of a new era? BMC Neurol. 2018, 18, 8. [Google Scholar] [CrossRef]
- Hassan, B.D.; Dabas, M.M.; Kanemitsu, K.; Faran, N.; Abbas, T. Evaluating the Effectiveness of Neuroprotective Strategies in Enhancing Post-stroke Recovery: A Systematic Review of Meta-Analyses and Clinical Trials. Cureus 2024, 16, e71343. [Google Scholar] [CrossRef]
- Marmolejo-Martínez-Artesero, S.; Casas, C.; Romeo-Guitart, D. Endogenous Mechanisms of Neuroprotection: To Boost or Not to Be. Cells 2021, 10, 370. [Google Scholar] [CrossRef]
- Sepúlveda, P.; Ferreira, A.F.; Sandoval, C.; Bergoc, G.; Moreno, A.C.; Nunes, M.T.; Torrão, A.D. Thyroid Hormone Supplementation Restores Cognitive Deficit, Insulin Signaling, and Neuroinflammation in the Hippocampus of a Sporadic Alzheimer’s-like Disease Rat Model. Cells 2024, 13, 1793. [Google Scholar] [CrossRef]
- Flamant, F.; Gauthier, K.; Richard, S. Chapter Eleven—Genetic Investigation of Thyroid Hormone Receptor Function in the Developing and Adult Brain. In Current Topics in Developmental Biology; Forrest, D., Tsai, S., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 125, pp. 303–335. [Google Scholar]
- Liu, Y.-Y.; Brent, G.A. The Role of Thyroid Hormone in Neuronal Protection. Compr. Physiol. 2021, 11, 2075–2095. [Google Scholar] [CrossRef]
- Prezioso, G.; Giannini, C.; Chiarelli, F. Effect of Thyroid Hormones on Neurons and Neurodevelopment. Horm. Res. Paediatr. 2018, 90, 73–81. [Google Scholar] [CrossRef]
- Dhital, R.; Poudel, D.R.; Tachamo, N.; Gyawali, B.; Basnet, S.; Shrestha, P.; Karmacharya, P. Ischemic Stroke and Impact of Thyroid Profile at Presentation: A Systematic Review and Meta-analysis of Observational Studies. J. Stroke Cerebrovasc. Dis. 2017, 26, 2926–2934. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xing, H.; Wu, J.; Du, R.; Liu, H.; Chen, J.; Wang, J.; Wang, C.; Wu, Y. Prognostic value of thyroid hormones in acute ischemic stroke—A meta analysis. Sci. Rep. 2017, 7, 16256. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Vansteelandt, S. Mendelian randomization analysis of case-control data using structural mean models. Stat. Med. 2011, 30, 678–694. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int. J. Epidemiol. 2014, 43, 922–929. [Google Scholar] [CrossRef]
- Marouli, E.; Kus, A.; Del Greco, M.F.; Chaker, L.; Peeters, R.; Teumer, A.; Deloukas, P.; Medici, M. Thyroid Function Affects the Risk of Stroke via Atrial Fibrillation: A Mendelian Randomization Study. J. Clin. Endocrinol. Metab. 2020, 105, 2634–2641. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, H.; Zhao, Y.; Gong, A.; Guan, C.; Chen, S.; Xiao, B.; Lu, J. Genetically predicted hypothyroidism, thyroid hormone treatment, and the risk of cardiovascular diseases: A mendelian randomization study. BMC Cardiovasc. Disord. 2024, 24, 479. [Google Scholar] [CrossRef]
- Li, C.; Tu, Y.; Rong, R.; Zhang, Z.; Chen, W.; Long, L.; Zhang, Y.; Wang, C.; Pan, B.; Wu, X.; et al. Association of thyroid hormone with osteoarthritis: From mendelian randomization and RNA sequencing analysis. J. Orthop. Surg. Res. 2024, 19, 429. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.J.; Spiller, W.; Jung, K.J.; Lee, J.-Y.; Kimm, H.; Back, J.H.; Lee, S.; Jee, S.H. Causal Associations Between Serum Bilirubin Levels and Decreased Stroke Risk. Arter. Thromb. Vasc. Biol. 2020, 40, 437–445. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects. Am. J. Epidemiol. 2015, 181, 251–260. [Google Scholar] [CrossRef]
- Grover, S.; Del Greco, M.F.; Stein, C.M.; Ziegler, A. Mendelian Randomization. In Statistical Human Genetics: Methods and Protocols; Elston, R.C., Ed.; Springer: New York, NY, USA, 2017; pp. 581–628. [Google Scholar]
- Sterenborg, R.B.T.M.; Steinbrenner, I.; Li, Y.; Bujnis, M.N.; Naito, T.; Marouli, E.; Galesloot, T.E.; Babajide, O.; Andreasen, L.; Astrup, A.; et al. Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications. Nat. Commun. 2024, 15, 888. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Thompson, S.G. Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat. Med. 2011, 30, 1312–1323. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Thompson, S.G. Improving bias and coverage in instrumental variable analysis with weak instruments for continuous and binary outcomes. Stat. Med. 2012, 31, 1582–1600. [Google Scholar] [CrossRef] [PubMed]
- Söderholm, M.; Pedersen, A.; Lorentzen, E.; Stanne, T.M.; Bevan, S.; Olsson, M.; Cole, J.W.; Fernandez-Cadenas, I.; Hankey, G.J.; Jimenez-Conde, J.; et al. Genome-wide association meta-analysis of functional outcome after ischemic stroke. Neurology 2019, 92, e1271–e1283. [Google Scholar] [CrossRef]
- Bowden, J.; Spiller, W.; Del Greco, M.F.; Sheehan, N.; Thompson, J.; Minelli, C.; Davey Smith, G. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int. J. Epidemiol. 2018, 47, 1264–1278. [Google Scholar] [CrossRef]
- Lichtenberger-Geslin, L.; Dos Santos, S.; Hassani, Y.; Ecosse, E.; Van Den Abbeele, T.; Léger, J. Factors Associated With Hearing Impairment in Patients With Congenital Hypothyroidism Treated Since the Neonatal Period: A National Population-Based Study. J. Clin. Endocrinol. Metab. 2013, 98, 3644–3652. [Google Scholar] [CrossRef]
- van Trotsenburg, P.; Stoupa, A.; Léger, J.; Rohrer, T.; Peters, C.; Fugazzola, L.; Cassio, A.; Heinrichs, C.; Beauloye, V.; Pohlenz, J.; et al. Congenital Hypothyroidism: A 2020–2021 Consensus Guidelines Update—An ENDO-European Reference Network Initiative Endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid® 2020, 31, 387–419. [Google Scholar] [CrossRef]
- Lamba, N.; Liu, C.; Zaidi, H.; Broekman, M.L.D.; Simjian, T.; Shi, C.; Doucette, J.; Ren, S.; Smith, T.R.; Mekary, R.A.; et al. A prognostic role for Low tri-iodothyronine syndrome in acute stroke patients: A systematic review and meta-analysis. Clin. Neurol. Neurosurg. 2018, 169, 55–63. [Google Scholar] [CrossRef]
- Li, L.-Q.; Xu, X.-Y.; Li, W.-Y.; Hu, X.-Y.; Lv, W. The prognostic value of total T3 after acute cerebral infarction is age-dependent: A retrospective study on 768 patients. BMC Neurol. 2019, 19, 54. [Google Scholar] [CrossRef]
- Zhang, S.; Su, Z.; Wen, X. Association of T3/T4 ratio with inflammatory indicators and all-cause mortality in stroke survivors. Front. Endocrinol. 2025, 15, 1509501. [Google Scholar] [CrossRef] [PubMed]
- Incerpi, S.; Davis, P.; Pedersen, J.; Lanni, A. Nongenomic Actions of Thyroid Hormones. In Principles of Endocrinology and Hormone Action; Belfiore, A., LeRoith, D., Eds.; Springer: Cham, Switzerland, 2018; pp. 259–284. [Google Scholar]
- De Vitis, C.; Capalbo, C.; Torsello, A.; Napoli, C.; Salvati, V.; Loffredo, C.; Blandino, G.; Piaggio, G.; Auciello, F.R.; Pelliccia, F.; et al. Opposite Effect of Thyroid Hormones on Oxidative Stress and on Mitochondrial Respiration in COVID-19 Patients. Antioxidants 2022, 11, 1998. [Google Scholar] [CrossRef] [PubMed]
- Dobrzyńska, M.M.; Baumgartner, A.; Anderson, D. Antioxidants modulate thyroid hormone- and noradrenaline-induced DNA damage in human sperm. Mutagenesis 2004, 19, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.K.; Roy, A.; Bhanja, S.; Chainy, G.B.N. Hypothyroidism impairs antioxidant defence system and testicular physiology during development and maturation. Gen. Comp. Endocrinol. 2008, 156, 63–70. [Google Scholar] [CrossRef]
- Araujo, A.S.R.; Seibel, F.E.R.; Oliveira, U.O.; Fernandes, T.; Llesuy, S.; Kucharski, L.; Belló-Klein, A. Thyroid hormone—Induced haemoglobin changes and antioxidant enzymes response in erythrocytes. Cell Biochem. Funct. 2011, 29, 408–413. [Google Scholar] [CrossRef]
- Venditti, P.; Meo, S.D. Thyroid hormone-induced oxidative stress. Cell Mol. Life Sci. 2006, 63, 414–434. [Google Scholar] [CrossRef]
- Tawfik, I.; Gottschalk, B.; Jarc, A.; Bresilla, D.; Rost, R.; Obermayer-Pietsch, B.; Graier, W.F.; Madreiter-Sokolowski, C.T. T3-induced enhancement of mitochondrial Ca2+ uptake as a boost for mitochondrial metabolism. Free. Radic. Biol. Med. 2022, 181, 197–208. [Google Scholar] [CrossRef]
- Venditti, P.; Balestrieri, M.; Di Meo, S.; De Leo, T. Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues. J. Endocrinol. 1997, 155, 151–157. [Google Scholar] [CrossRef]
- Katyare, S.S.; Rajan, R.R. Influence of thyroid hormone treatment on the respiratory activity of cerebral mitochondria from hypothyroid rats. A critical re-assessment. Exp. Neurol. 2005, 195, 416–422. [Google Scholar] [CrossRef]
- Wrutniak-Cabello, C.; Casas, F.; Cabello, G. Thyroid hormone action in mitochondria. J. Mol. Endocrinol. 2001, 26, 67–77. [Google Scholar] [CrossRef]
- Zhuravliova, E.; Barbakadze, T.; Jojua, N.; Zaalishvili, E.; Shanshiashvili, L.; Natsvlishvili, N.; Kalandadze, I.; Narmania, N.; Chogovadze, I.; Mikeladze, D. Synaptic and Non-Synaptic Mitochondria in Hippocampus of Adult Rats Differ in Their Sensitivity to Hypothyroidism. Cell. Mol. Neurobiol. 2012, 32, 1311–1321. [Google Scholar] [CrossRef]
- Singh, R.; Upadhyay, G.; Godbole, M. Hypothyroidism alters mitochondrial morphology and induces release of apoptogenic proteins during rat cerebellar development. J. Endocrinol. 2003, 176, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Sadana, P.; Coughlin, L.; Burke, J.; Woods, R.; Mdzinarishvili, A. Anti-edema action of thyroid hormone in MCAO model of ischemic brain stroke: Possible association with AQP4 modulation. J. Neurol. Sci. 2015, 354, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Sayre, N.L.; Sifuentes, M.; Holstein, D.; Cheng, S.-y.; Zhu, X.; Lechleiter, J.D. Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J. Cereb. Blood Flow Metab. 2017, 37, 514–527. [Google Scholar] [CrossRef]
- Sun, D.; Wang, W.; Wang, X.; Wang, Y.; Xu, X.; Ping, F.; Du, Y.; Jiang, W.; Cui, D. bFGF plays a neuroprotective role by suppressing excessive autophagy and apoptosis after transient global cerebral ischemia in rats. Cell Death Dis. 2018, 9, 172. [Google Scholar] [CrossRef]
- Ackermans, M.T.; Klieverik, L.P.; Ringeling, P.; Endert, E.; Kalsbeek, A.; Fliers, E. An online solid-phase extraction–liquid chromatography–tandem mass spectrometry method to study the presence of thyronamines in plasma and tissue and their putative conversion from 13C6-thyroxine. J. Endocrinol. 2010, 206, 327–334. [Google Scholar] [CrossRef]
- Genovese, T.; Impellizzeri, D.; Ahmad, A.; Cornelius, C.; Campolo, M.; Cuzzocrea, S.; Esposito, E. Post-ischaemic thyroid hormone treatment in a rat model of acute stroke. Brain Res. 2013, 1513, 92–102. [Google Scholar] [CrossRef]
- Schwartz, H.L.; Oppenheimer, J.H. Ontogenesis of 3,5,3′-Triiodothyronine Receptors in Neonatal Rat Brain: Dissociation between Receptor Concentration and Stimulation of Oxygen Consumption by 3,5,3′-Triiodothyronine*. Endocrinology 1978, 103, 943–948. [Google Scholar] [CrossRef]
- Talhada, D.; Santos, C.R.A.; Gonçalves, I.; Ruscher, K. Thyroid Hormones in the Brain and Their Impact in Recovery Mechanisms After Stroke. Front. Neurol. 2019, 10, 1103. [Google Scholar] [CrossRef]
- Davis, P.; Lin, H.-Y.; Davis, F.B.; Luidens, M.; Mousa, S.; Cao, J.; Zhou, M. Molecular Basis for Certain Neuroprotective Effects of Thyroid Hormone. Front. Mol. Neurosci. 2011, 4, 29. [Google Scholar] [CrossRef]
- Bjerkreim, B.A.; Hammerstad, S.S.; Gulseth, H.L.; Berg, T.J.; Omdal, L.J.; Lee-Ødegård, S.; Eriksen, E.F. Effect of Liothyronine Treatment on Quality of Life in Female Hypothyroid Patients With Residual Symptoms on Levothyroxine Therapy: A Randomized Crossover Study. Front. Endocrinol. 2022, 13, 816566. [Google Scholar] [CrossRef]
SNP | Chr | Gene | EA | OA | FREQ | BETA | SE | p-Value |
---|---|---|---|---|---|---|---|---|
rs1169288 | 12 | HNF1A | A | C | 0.6786 | −0.0323 | 0.0062 | 2.205 × 10−7 |
rs4149115 | 12 | SLCO1B3 | A | G | 0.1488 | 0.0442 | 0.0083 | 8.87 × 10−8 |
rs150816132 | 14 | A | G | 0.012 | 0.1563 | 0.029 | 6.832 × 10−8 | |
rs12085757 | 1 | YIPF1 | T | C | 0.3789 | 0.0296 | 0.0059 | 4.488 × 10−7 |
rs2235544 | 1 | DIO1 | A | C | 0.5227 | −0.0698 | 0.0057 | 1.865 × 10−34 |
rs1275965 | 2 | T | C | 0.3852 | 0.0307 | 0.006 | 3.022 × 10−7 | |
rs784743 | 3 | T | C | 0.9455 | 0.0664 | 0.0128 | 2.006 × 10−7 | |
rs17628883 | 4 | AADAT | A | G | 0.1027 | −0.0571 | 0.0097 | 3.89 × 10−9 |
rs1521985 | 5 | T | C | 0.4854 | −0.0354 | 0.0059 | 2.711 × 10−9 | |
rs78677597 | 6 | LOC105377911 | A | C | 0.7704 | −0.0517 | 0.0069 | 8.487 × 10−14 |
rs4721388 | 7 | DGKB | A | C | 0.695 | 0.0332 | 0.0064 | 2.254 × 10−7 |
rs1588635 | 9 | PTCSC2 | A | C | 0.3431 | 0.069 | 0.0062 | 1.435 × 10−28 |
rs7033661 | 9 | ZNF462 | A | G | 0.6435 | −0.0395 | 0.0061 | 1.375 × 10−10 |
rs4842131 | 9 | LHX3 | T | C | 0.4353 | −0.0597 | 0.0062 | 4.608 × 10−22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filimonov, D.A.; Morozov, V.V.; Ishchenko, R.V.; Eresko, A.B.; Trubnikova, N.N.; Belotserkovskaya, M.A.; Solopov, M.V.; Kisilenko, I.A.; Nosova, I.N.; Kudlay, D.A. Causal Association of Free Triiodothyronine Level with Ischemic Stroke Outcome: A Mendelian Randomization Study. Life 2025, 15, 1303. https://doi.org/10.3390/life15081303
Filimonov DA, Morozov VV, Ishchenko RV, Eresko AB, Trubnikova NN, Belotserkovskaya MA, Solopov MV, Kisilenko IA, Nosova IN, Kudlay DA. Causal Association of Free Triiodothyronine Level with Ischemic Stroke Outcome: A Mendelian Randomization Study. Life. 2025; 15(8):1303. https://doi.org/10.3390/life15081303
Chicago/Turabian StyleFilimonov, Dmitry A., Vitaly V. Morozov, Roman V. Ishchenko, Alexander B. Eresko, Nadezhda N. Trubnikova, Margarita A. Belotserkovskaya, Maksim V. Solopov, Irina A. Kisilenko, Inna N. Nosova, and Dmitry A. Kudlay. 2025. "Causal Association of Free Triiodothyronine Level with Ischemic Stroke Outcome: A Mendelian Randomization Study" Life 15, no. 8: 1303. https://doi.org/10.3390/life15081303
APA StyleFilimonov, D. A., Morozov, V. V., Ishchenko, R. V., Eresko, A. B., Trubnikova, N. N., Belotserkovskaya, M. A., Solopov, M. V., Kisilenko, I. A., Nosova, I. N., & Kudlay, D. A. (2025). Causal Association of Free Triiodothyronine Level with Ischemic Stroke Outcome: A Mendelian Randomization Study. Life, 15(8), 1303. https://doi.org/10.3390/life15081303