Gender-Dependent Modulation of Alzheimer’s Disease by Brain Ischemia. Comment on Lohkamp et al. Sex-Specific Adaptations in Alzheimer’s Disease and Ischemic Stroke: A Longitudinal Study in Male and Female APPswe/PS1dE9 Mice. Life 2025, 15, 333
Abstract
Conflicts of Interest
References
- Elman-Shina, K.; Efrati, S. Ischemia as a common trigger for Alzheimer’s disease. Front. Aging Neurosci. 2022, 14, 1012779. [Google Scholar] [CrossRef] [PubMed]
- Lecordier, S.; Pons, V.; Rivest, S.; ElAli, A. Multifocal Cerebral Microinfarcts Modulate Early Alzheimer’s Disease Pathology in a Sex-Dependent Manner. Front. Immunol. 2022, 12, 813536. [Google Scholar] [CrossRef] [PubMed]
- Das, T.K.; Ganesh, B.P.; Fatima-Shad, K. Common signaling pathways involved in Alzheimer’s disease and stroke: Two faces of the same coin. J. Alzheimers Dis. Rep. 2023, 7, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Pluta, R. A Look at the Etiology of Alzheimer’s Disease based on the Brain Ischemia Model. Curr. Alzheimer Res. 2024, 21, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Traylor, M.; Adib-Samii, P.; Harold, D.; Alzheimer’s Disease Neuroimaging Initiative; International Stroke Genetics Consortium (ISGC); UK Young Lacunar Stroke DNA resource; Dichgans, M.; Williams, J.; Lewis, C.M.; Markus, H.S.; et al. Shared genetic contribution to Ischaemic Stroke and Alzheimer’s Disease. Ann. Neurol. 2016, 79, 739–747. [Google Scholar] [CrossRef] [PubMed]
- van Groen, T.; Puurunen, K.; Mäki, H.M.; Sivenius, J.; Jolkkonen, J. Transformation of diffuse β-amyloid precursor protein and β-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats. Stroke 2005, 36, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.P.; Wu, H.; Yang, Y.; Wang, D.D.; Chen, Y.X.; Gu, Y.H.; Liu, T. Cerebral ischemia and Alzheimer’s disease: The expression of amyloid-beta and apolipoprotein E in human hippocampus. J. Alzheimers Dis. 2007, 12, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Pluta, R.; Ułamek, M.; Jabłoński, M. Alzheimer’s mechanisms in ischemic brain degeneration. Anat. Rec. 2009, 292, 1863–1881. [Google Scholar] [CrossRef] [PubMed]
- Hatsuta, H.; Takao, M.; Nogami, A.; Uchino, A.; Sumikura, H.; Takata, T.; Morimoto, S.; Kanemaru, K.; Adachi, T.; Arai THasegawa, M.; et al. Tau and TDP-43 accumulation of the basal nucleus of Meynert in individuals with cerebral lobar infarcts or hemorrhage. Acta Neuropathol. Commun. 2019, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Rost, N.S.; Brodtmann, A.; Pase, M.P.; van Veluw, S.J.; Biffi, A.; Duering, M.; Hinman, J.D.; Dichgans, M. Post-stroke cognitive impairment and dementia. Circ. Res. 2022, 130, 1252–1271. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Meng, Z.; Hu, Y.; Jiang, B.; Yang, J.; Chen, Y.; Zhou, J.; Li, M.; Wang, H. Mechanisms of mitophagy and oxidative stress in cerebral ischemia-reperfusion, vascular dementia, and Alzheimer’s disease. Front. Mol. Neurosci. 2024, 17, 1394932. [Google Scholar]
- Gallée, J. A call for globally responsive screening materials to account for heterogeneity in dementia syndromes. J. Alzheimer’s Dis. 2024, 102, 642–645. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, R.N. The role of cerebral ischemia in Alzheimer’s disease. Neurobiol. Aging 2000, 21, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Toledo, J.B.; Arnold, S.E.; Raible, K.; Brettschneider, J.; Xie, S.X.; Grossman, M.; Monsell, S.E.; Kukull, W.A.; Trojanowski, J.Q. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 2013, 136, 2697–2706. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A.; Miners, J.S.; Love, S. Pathological changes within the cerebral vasculature in Alzheimer’s disease: New perspectives. Brain Pathol. 2022, 32, e13061. [Google Scholar] [CrossRef] [PubMed]
- Kuzma, E.; Lourida, I.; Moore, S.F.; Levine, D.A.; Ukoumunne, O.C.; Llewellyn, D.J. Stroke and dementia risk: A systematic review and meta-analysis. Alzheimer’s Dement. 2018, 14, 1416–1426. [Google Scholar] [CrossRef] [PubMed]
- Lohkamp, K.J.; Timmer, N.; Solé Guardia, G.; Shenk, J.; Verweij, V.; Geenen, B.; Dederen, P.J.; Bakker, L.; Egitimci, C.; Yoldas, R.; et al. Sex-Specific Adaptations in Alzheimer’s Disease and Ischemic Stroke: A Longitudinal Study in Male and Female APPswe/PS1dE9 Mice. Life 2025, 15, 333. [Google Scholar] [CrossRef] [PubMed]
- Altunova, M.; Demir, Y.; Gulmez, R.; Evsen, A.; Aktemur, T.; Anil Sahin, A.; Arslan, E.; Celik, O. Hematological predictors of silent new cerebral ischemic lesions in carotid artery stenting: A retrospective study. J. Clin. Neurosci. 2024, 124, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.C.; von Rennenberg, R.; Nolte, C.H.; Jensen, M.; Bustamante, A.; Katan, M. Role of Cardiac Biomarkers in Stroke and Cognitive Impairment. Stroke 2024, 55, 2376–2384. [Google Scholar] [CrossRef] [PubMed]
- de la Tremblaye, P.B.; Plamondon, H. Impaired conditioned emotional response and object recognition are concomitant to neuronal damage in the amygdala and perirhinal cortex in middle-aged ischemic rats. Behav. Brain Res. 2011, 219, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Kiryk, A.; Pluta, R.; Figiel, I.; Mikosz, M.; Ulamek, M.; Niewiadomska, G.; Jablonski, M.; Kaczmarek, L. Transient brain ischemia due to cardiac arrest causes irreversible long-lasting cognitive injury. Behav. Brain Res. 2011, 219, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.J.; Zhang, M.; Fang, C.Q.; Zhou, H.D. Cerebral ischemia aggravates cognitive impairment in a rat model of Alzheimer’s disease. Life Sci. 2011, 89, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Cohan, C.H.; Neumann, J.T.; Dave, K.R.; Alekseyenko, A.; Binkert, M.; Stransky, K.; Lin, H.W.; Barnes CAWright, C.B.; Perez Pinzon, M.A. Effect of cardiac arrest on cognitive impairment and hippocampal plasticity in middle-aged rats. PLoS ONE 2015, 10, e0124918. [Google Scholar] [CrossRef] [PubMed]
- Yoon, C.W.; Bushnell, C.D. Stroke in women: A review focused on epidemiology, risk factors, and outcomes. J. Stroke 2023, 25, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Burguete, M.C.; Jover-Mengual, T.; Castelló-Ruiz, M.; López-Morales, M.A.; Centeno, J.M.; Aliena-Valero, A.; Alborch, E.; Torregrosa, G.; Salom, J.B. Cerebroprotective Effect of 17β-Estradiol Replacement Therapy in Ovariectomy-Induced Post-Menopausal Rats Subjected to Ischemic Stroke: Role of MAPK/ERK1/2 Pathway and PI3K-Independent Akt Activation. Int. J. Mol. Sci. 2023, 24, 14303. [Google Scholar] [CrossRef] [PubMed]
- Altaee, R.; Gibson, C.L. Sexual dimorphism following in vitro ischemia in the response to neurosteroids and mechanisms of injury. BMC Neurosci. 2020, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Montagne, A.; Zhao, Z. Alzheimer’s pathogenic mechanisms and underlying sex difference. Cell. Mol. Life Sci. 2021, 78, 4907–4920. [Google Scholar] [CrossRef] [PubMed]
- Kolahchi, Z.; Henkel, N.; Eladawi, M.A.; Villarreal, E.C.; Kandimalla, P.; Lundh, A.; McCullumsmith, R.E.; Cuevas, E. Sex and Gender Differences in Alzheimer’s Disease: Genetic, Hormonal, and Inflammation Impacts. Int. J. Mol. Sci. 2024, 25, 8485. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.W.; Arias, E.; Geller, A.C.; Miller, D.R.; Kochanek, K.D.; Koh, H.K. Widening gender gap in life expectancy in the US, 2010–2021. JAMA Intern. Med. 2023, 184, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Barber, A.J.; Del Genio, C.L.; Swain, A.B.; Pizzi, E.M.; Watson, S.C.; Tapiavala, V.N.; Zanazzi, G.J.; Gaur, A.B. Age, sex and Alzheimer’s disease: A longitudinal study of 3xTg-AD mice reveals sex-specific disease trajectories and inflammatory responses mirrored in postmortem brains from Alzheimer’s patients. Alzheimers Res. Ther. 2024, 16, 134. [Google Scholar] [CrossRef] [PubMed]
- Haaksma, M.L.; Eriksdotter, M.; Rizzuto, D.; Leoutsakos, J.-M.S.; Rikkert, M.G.O.; Melis, R.J.; Garcia-Ptacek, S. Survival time tool to guide care planning in people with dementia. Neurology 2020, 94, e538–e548. [Google Scholar] [CrossRef] [PubMed]
- Oveisgharan, S.; Arvanitakis, Z.; Yu, L.; Farfel, J.; Schneider, J.A.; Bennett, D.A. Sex differences in Alzheimer’s disease and common neuropathologies of aging. Acta Neuropathol. 2018, 136, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Laws, K.R.; Irvine, K.; Gale, T.M. Sex differences in cognitive impairment in Alzheimer’s disease. World J. Psychiatry 2016, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- Merrick, R.; Brayne, C. Sex Differences in Dementia, Cognition, and Health in the Cognitive Function and Ageing Studies (CFAS). J. Alzheimers Dis. 2024, 100, S3–S12. [Google Scholar] [CrossRef] [PubMed]
- Pluta, R.; Kocki, J.; Bogucki, J.; Bogucka-Kocka, A.; Czuczwar, S.J. LRP1 and RAGE Genes Transporting Amyloid and Tau Protein in the Hippocampal CA3 Area in an Ischemic Model of Alzheimer’s Disease with 2-Year Survival. Cells 2023, 12, 2763. [Google Scholar] [CrossRef] [PubMed]
- Sekeljic, V.; Bataveljic, D.; Stamenkovic, S.; Ułamek, M.; Jabłoński, M.; Radenovic, L.; Pluta, R.; Andjus, P.R. Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model. Brain Struct. Funct. 2012, 217, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Drudis, L.; Bérard, M.; Musiol, D.; Rivest, S.; Oueslati, A. Pharmacological inhibition of PLK2 kinase activity mitigates cognitive decline but aggravates APP pathology in a sex-dependent manner in APP/PS1 mouse model of Alzheimer’s disease. Heliyon 2024, 10, e39571. [Google Scholar] [CrossRef] [PubMed]
- Stoccoro, A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. Biology 2025, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- Pluta, R. Editorial: Alzheimer’s disease. Explor. Neurosci. 2025, 4, 100694. [Google Scholar] [CrossRef]
- Panos, L.D. Alzheimer’s Disease Drug Development. Curr. Alzheimer Res. 2024, 21, 691–692. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pluta, R. Gender-Dependent Modulation of Alzheimer’s Disease by Brain Ischemia. Comment on Lohkamp et al. Sex-Specific Adaptations in Alzheimer’s Disease and Ischemic Stroke: A Longitudinal Study in Male and Female APPswe/PS1dE9 Mice. Life 2025, 15, 333. Life 2025, 15, 1146. https://doi.org/10.3390/life15071146
Pluta R. Gender-Dependent Modulation of Alzheimer’s Disease by Brain Ischemia. Comment on Lohkamp et al. Sex-Specific Adaptations in Alzheimer’s Disease and Ischemic Stroke: A Longitudinal Study in Male and Female APPswe/PS1dE9 Mice. Life 2025, 15, 333. Life. 2025; 15(7):1146. https://doi.org/10.3390/life15071146
Chicago/Turabian StylePluta, Ryszard. 2025. "Gender-Dependent Modulation of Alzheimer’s Disease by Brain Ischemia. Comment on Lohkamp et al. Sex-Specific Adaptations in Alzheimer’s Disease and Ischemic Stroke: A Longitudinal Study in Male and Female APPswe/PS1dE9 Mice. Life 2025, 15, 333" Life 15, no. 7: 1146. https://doi.org/10.3390/life15071146
APA StylePluta, R. (2025). Gender-Dependent Modulation of Alzheimer’s Disease by Brain Ischemia. Comment on Lohkamp et al. Sex-Specific Adaptations in Alzheimer’s Disease and Ischemic Stroke: A Longitudinal Study in Male and Female APPswe/PS1dE9 Mice. Life 2025, 15, 333. Life, 15(7), 1146. https://doi.org/10.3390/life15071146