Impact of Functional Therapy on Skeletal Structures and Airways in Patients with Class II Malocclusion: Comparison of Treatment in Prepubertal and Pubertal Phases
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Sample and Study Design
2.3. Treatment Protocol
2.4. Cephalometric Analysis
2.5. Statistical Analysis
3. Results
3.1. Results for the Whole Sample
3.2. Results by Growth Stage Subgroups
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
T0 | Beginning of treatment |
T1 | End of treatment |
CVM | Cervical Vertebral Maturation |
SNB | Sella-Nasion-B point |
Co-Gn | Condylion-Gnation |
N-Me | Nasion-Menton |
Ans-Me | Anterior Nasal Spine-Menton |
S-Pns | Sella-Posterior Nasal Spine |
p-pp | Soft palate lenght |
tt-eb | Tongue tip to epiglottis base |
th | Tongue height |
H-C3a1 | Hyoid bone to C3 anterior point |
Ad1-Pns | Adenoid 1 to Posterior nasal spine |
AA-Pns | Anterior atlas to Posterior nasal spine |
Ans^Pns^P | Soft palate angulation |
eb-peb | epiglottis base to posterior epiglottis base |
CS1-CS3 | Cervical stage 1 to 3 |
IBM SPSS | International business Machines Statistical Package for the social sciences |
M-DEAP | Measurement and data evaluation analysis program |
DeltaDent | Dental Cephalometric analysis software |
References
- AlKawari, H.M.; AlBalbeesi, H.O.; Alhendi, A.A.; Alhuwaish, H.A.; Al Jobair, A.; Baidas, L. Pharyngeal Airway Dimensional Changes after Premolar Extraction in Skeletal Class II and Class III Orthodontic Patients. J. Orthod. Sci. 2018, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Ardeshna, A.; Bogdan, F.; Jiang, S. Class II Correction in Orthodontic Patients Utilizing the Mandibular Anterior Repositioning Appliance (MARA). Angle Orthod. 2019, 89, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Armalaite, J.; Lopatiene, K. Lateral Teleradiography of the Head as a Diagnostic Tool Used to Predict Obstructive Sleep Apnea. Dentomaxillofac Radiol. 2016, 45, 20150085. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.; Lustmann, J.; Shteyer, A. Cleidocranial Dysplasia: Part 1--General Principles of the Orthodontic and Surgical Treatment Modality. Am. J. Orthod. Dentofac. Orthop. 1997, 111, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Behlfelt, K. Enlarged Tonsils and the Effect of Tonsillectomy. Characteristics of the Dentition and Facial Skeleton. Posture of the Head, Hyoid Bone and Tongue. Mode of Breathing. Swed. Dent. J. Suppl. 1990, 72, 1–35. [Google Scholar] [PubMed]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.-L.; et al. Estimation of the Global Prevalence and Burden of Obstructive Sleep Apnoea: A Literature-Based Analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Predictors of Sleep-Disordered Breathing in Community-Dwelling Adults: The Sleep Heart Health Study—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/11966340/ (accessed on 24 May 2025).
- Sleep-Disordered Breathing in Pregnancy—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/30098752/ (accessed on 24 May 2025).
- Treatment of Obstructive Sleep Apnea in Children: Handling the Unknown with Precision—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32213932/ (accessed on 24 May 2025).
- Cozza, P.; Gatto, R.; Ballanti, F.; Prete, L. Management of Obstructive Sleep Apnoea in Children with Modified Monobloc Appliances. Eur. J. Paediatr. Dent. 2004, 5, 24–29. [Google Scholar] [PubMed]
- Cozza, P.; Baccetti, T.; Franchi, L.; De Toffol, L.; McNamara, J.A. Mandibular Changes Produced by Functional Appliances in Class II Malocclusion: A Systematic Review. Am. J. Orthod. Dentofacial Orthop. 2006, 129, 599.e1–599.e12, discussion e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Cozza, P.; Polimeni, A.; Ballanti, F. A Modified Monobloc for the Treatment of Obstructive Sleep Apnoea in Paediatric Patients. Eur. J. Orthod. 2004, 26, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Xia, W.; Li, X.; Zhang, F.; Wang, F.; Chen, M.; Chen, Q.; Wang, B.; Li, B. Airway Morphology, Hyoid Position, and Serum Inflammatory Markers of Obstructive Sleep Apnea in Children Treated with Modified Twin-Block Appliances. BMC Oral. Health 2025, 25, 162. [Google Scholar] [CrossRef] [PubMed]
- A Four Year Follow-up of Sleep and Respiratory Measures in Elementary School-Aged Children with Sleep Disordered Breathing—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/23499429/ (accessed on 24 May 2025).
- A Consideration of Factors Affecting Palliative Oral Appliance Effectiveness for Obstructive Sleep Apnea: A Scoping Review—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/33196434/ (accessed on 24 May 2025).
- White, L.H.; Bradley, T.D. Role of Nocturnal Rostral Fluid Shift in the Pathogenesis of Obstructive and Central Sleep Apnoea. J. Physiol. 2013, 591, 1179–1193. [Google Scholar] [CrossRef] [PubMed]
- Weiner, O.M.; Dang-Vu, T.T. Spindle Oscillations in Sleep Disorders: A Systematic Review. Neural Plast. 2016, 2016, 7328725. [Google Scholar] [CrossRef] [PubMed]
- Azarbarzin, A.; Sands, S.A.; Younes, M.; Taranto-Montemurro, L.; Sofer, T.; Vena, D.; Alex, R.M.; Kim, S.-W.; Gottlieb, D.J.; White, D.P.; et al. The Sleep Apnea-Specific Pulse-Rate Response Predicts Cardiovascular Morbidity and Mortality. Am. J. Respir. Crit. Care Med. 2021, 203, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Austro, M.D.; González, E.; Peñalver, M.A.; Pérez, D.; Alarcón, J.A. Short-Term Dentoskeletal Changes Following Class II Treatment Using a Fixed Functional Appliance: The Austro Repositioner: A Pilot Study. J. Orofac. Orthop. 2018, 79, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.J.; Bishara, S.E.; Steinbock, K.L.; Yonezu, T.; Nowak, A.J. Effects of Oral Habits’ Duration on Dental Characteristics in the Primary Dentition. J. Am. Dent. Assoc. 2001, 132, 1685–1693, quiz 1726. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.P.; Durazo-Arvizu, R.; Wachter, B.; Gopalsami, C. Preoperative Differences between Male and Female Patients with Sleep Apnea. Laryngoscope 2001, 111, 1501–1505. [Google Scholar] [CrossRef] [PubMed]
- Van de Perck, E.; Dieltjens, M.; Vroegop, A.V.; Verbraecken, J.; Braem, M.; Vanderveken, O.M. Mandibular Advancement Device Therapy in Patients with Epiglottic Collapse. Sleep Breath 2022, 26, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Shaik, Y.; Sabatino, G.; Maccauro, G.; Varvara, G.; Murmura, G.; Saggini, A.; Rosati, M.; Conti, F.; Cianchetti, E.; Caraffa, A.; et al. IL-36 Receptor Antagonist with Special Emphasis on IL-38. Int. J. Immunopathol. Pharmacol. 2013, 26, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Horner, R.L.; Mohiaddin, R.H.; Lowell, D.G.; Shea, S.A.; Burman, E.D.; Longmore, D.B.; Guz, A. Sites and Sizes of Fat Deposits around the Pharynx in Obese Patients with Obstructive Sleep Apnoea and Weight Matched Controls. Eur. Respir. J. 1989, 2, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Hussien, H.M.; Altaee, Z.H.; Nahidh, M.; Al-Mayahi, S.C.A. The Use and Preference of Functional Appliances among a Sample of Iraqi Orthodontists: A Web-Based Survey. Int. J. Dent. 2022, 2022, 8919830. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.K.; Duggal, R.; Parkash, H. Skeletal and Dentoalveolar Effects of Twin-Block and Bionator Appliances in the Treatment of Class II Malocclusion: A Comparative Study. Am. J. Orthod. Dentofacial Orthop. 2006, 130, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Sawant, H.R.; Jawdekar, A.M.; Gangurde, P.V.; Dhone, S.A. Esthetic Twin Block Approach for Correction of Developing Class II Division 1 Malocclusion of an 11-Year-Old Female Patient: A Case Report. Int. J. Clin. Pediatr. Dent. 2024, 17, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Santos-Silva, R.; Bittencourt, L.R.A.; Pires, M.L.N.; de Mello, M.T.; Taddei, J.A.; Benedito-Silva, A.A.; Pompeia, C.; Tufik, S. Increasing Trends of Sleep Complaints in the City of Sao Paulo, Brazil. Sleep. Med. 2010, 11, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Salas, R.E.; Chakravarthy, R.; Sher, A.; Gamaldo, C.E. Management of Sleep Apnea in the Neurology Patient: Five New Things. Neurol. Clin. Pract. 2014, 4, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Romero-Corral, A.; Caples, S.M.; Lopez-Jimenez, F.; Somers, V.K. Interactions between Obesity and Obstructive Sleep Apnea: Implications for Treatment. Chest 2010, 137, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Tufik, S.; Santos-Silva, R.; Taddei, J.A.; Bittencourt, L.R.A. Obstructive Sleep Apnea Syndrome in the Sao Paulo Epidemiologic Sleep Study. Sleep. Med. 2010, 11, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Trindade, S.H.K.; Trindade, I.E.K.; da Silva, A.S.C.; Araújo, B.M.A.M.; Trindade-Suedam, I.K.; Sampaio-Teixeira, A.C.M.; Weber, S.A.T. Are Reduced Internal Nasal Dimensions a Risk Factor for Obstructive Sleep Apnea Syndrome? Braz. J. Otorhinolaryngol. 2022, 88, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Tomblyn, T.; Rogers, M.; Andrews, L.; Martin, C.; Tremont, T.; Gunel, E.; Ngan, P. Cephalometric Study of Class II Division 1 Patients Treated with an Extended-Duration, Reinforced, Banded Herbst Appliance Followed by Fixed Appliances. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 818–830. [Google Scholar] [CrossRef] [PubMed]
- Tishler, P.V.; Larkin, E.K.; Schluchter, M.D.; Redline, S. Incidence of Sleep-Disordered Breathing in an Urban Adult Population: The Relative Importance of Risk Factors in the Development of Sleep-Disordered Breathing. JAMA 2003, 289, 2230–2237. [Google Scholar] [CrossRef] [PubMed]
- Tangugsorn, V.; Krogstad, O.; Espeland, L.; Lyberg, T. Obstructive Sleep Apnoea: Multiple Comparisons of Cephalometric Variables of Obese and Non-Obese Patients. J. Craniomaxillofac Surg. 2000, 28, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Szemraj-Folmer, A.; Wojtaszek-Słomińska, A.; Racka-Pilszak, B.; Kuc-Michalska, M. Duration of the Pubertal Growth Spurt in Patients with Increased Craniofacial Growth Component in Sagittal and Vertical Planes-Retrospective and Cross-Sectional Study. Clin. Oral. Investig. 2021, 25, 4907–4914. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-H.; Kim, H.J.; Song, S.I. Obstructive Sleep Apnea and Anatomical Structures of the Nasomaxillary Complex in Adolescents. PLoS ONE 2022, 17, e0272262. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Kim, J.; Kim, S.A. Factors Related to Obstructive Sleep Apnea According to Age: A Descriptive Study. Healthcare 2023, 11, 3049. [Google Scholar] [CrossRef] [PubMed]
- Lam, B.; Ip, M.S.M.; Tench, E.; Ryan, C.F. Craniofacial Profile in Asian and White Subjects with Obstructive Sleep Apnoea. Thorax 2005, 60, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Svanborg, E. Obstructive sleep apnea syndrome. Current literature on diagnostic methods. Lakartidningen 1994, 91, 2840–2844. [Google Scholar] [PubMed]
- Southard, T.E.; Behrents, R.G.; Tolley, E.A. The Anterior Component of Occlusal Force. Part 1. Measurement and Distribution. Am. J. Orthod. Dentofac. Orthop. 1989, 96, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Jia, Y.; Wang, S.; Xu, C.; Qu, Y.; Hu, M.; Jiang, H. Effectiveness of Mandibular Advancement Orthodontic Appliances with Maxillary Expansion Device in Children with Obstructive Sleep Apnea: A Systematic Review. BMC Oral. Health 2024, 24, 1303. [Google Scholar] [CrossRef] [PubMed]
- Elastodontic Therapy of Hyperdivergent Class II Patients Using AMCOP® Devices: A Retrospective Study. Available online: https://www.mdpi.com/2076-3417/12/7/3259 (accessed on 28 May 2025).
- Patano, A.; Inchingolo, A.M.; Cardarelli, F.; Inchingolo, A.D.; Viapiano, F.; Giotta, M.; Bartolomeo, N.; Di Venere, D.; Malcangi, G.; Minetti, E.; et al. Effects of Elastodontic Appliance on the Pharyngeal Airway Space in Class II Malocclusion. J. Clin. Med. 2023, 12, 4280. [Google Scholar] [CrossRef] [PubMed]
- Pelo, S.; Correra, P.; Gasparini, G.; Marianetti, T.M.; Cervelli, D.; Grippaudo, C.; Boniello, R.; Azzuni, C.; Deli, R.; Moro, A. Three-Dimensional Analysis and Treatment Planning of Hemimandibular Hyperplasia. J. Craniofac. Surg. 2011, 22, 2227–2234. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, N.M. The Epidemiology of Adult Obstructive Sleep Apnea. Proc. Am. Thorac. Soc. 2008, 5, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Perillo, L.; Cannavale, R.; Ferro, F.; Franchi, L.; Masucci, C.; Chiodini, P.; Baccetti, T. Meta-Analysis of Skeletal Mandibular Changes during Frankel Appliance Treatment. Eur. J. Orthod. 2011, 33, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Peppard, P.E.; Young, T.; Palta, M.; Dempsey, J.; Skatrud, J. Longitudinal Study of Moderate Weight Change and Sleep-Disordered Breathing. JAMA 2000, 284, 3015–3021. [Google Scholar] [CrossRef] [PubMed]
- Minervini, G.; Nucci, L.; Lanza, A.; Femiano, F.; Contaldo, M.; Grassia, V. Temporomandibular Disc Displacement with Reduction Treated with Anterior Repositioning Splint: A 2-Year Clinical and Magnetic Resonance Imaging (MRI) Follow-Up. J. Biol. Regul. Homeost. Agents 2020, 34, 151–160. [Google Scholar] [PubMed]
- Minervini, G.; Marrapodi, M.M.; Cicciù, M. Online Bruxism-Related Information: Can People Understand What They Read? A Cross-Sectional Study. J. Oral. Rehabil. 2023, 50, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Uzunçıbuk, H.; Marrapodi, M.M.; Meto, A.; Ronsivalle, V.; Cicciù, M.; Minervini, G. Prevalence of Temporomandibular Disorders in Clear Aligner Patients Using Orthodontic Intermaxillary Elastics Assessed with Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) Axis II Evaluation: A Cross-Sectional Study. J. Oral. Rehabil. 2024, 51, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Investigation on the Application of Artificial Intelligence in Prosthodontics. Available online: https://www.mdpi.com/2076-3417/13/8/5004 (accessed on 28 May 2025).
- Determinants of Slow-Wave Activity in Overweight and Obese Adults: Roles of Sex, Obstructive Sleep Apnea and Testosterone Levels—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/30050500/ (accessed on 24 May 2025).
- Heart Rate Responses to Autonomic Challenges in Obstructive Sleep Apnea—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/24194842/ (accessed on 24 May 2025).
- Improved Real-Time Tagged MRI Using REALTAG—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/31872918/ (accessed on 24 May 2025).
- Mandibular Advancement Devices in 630 Men and Women with Obstructive Sleep Apnea and Snoring: Tolerability and Predictors of Treatment Success—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/15078734/ (accessed on 24 May 2025).
- Neck and Total Body Fat Deposition in Nonobese and Obese Patients with Sleep Apnea Compared with That in Control Subjects—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/9445310/ (accessed on 24 May 2025).
- Jungbauer, R.; Bock, N.C.; Schmid, A.; Proff, P.; Rudzki, I. Twenty-Year Follow-up of Functional Treatment with a Bionator Appliance (Part 2): A Retrospective Cephalometric Analysis of Skeletal and Dentoskeletal Changes. Angle Orthod. 2023, 93, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Jugé, L.; Yeung, J.; Knapman, F.L.; Burke, P.G.R.; Lowth, A.B.; Gan, K.Z.C.; Brown, E.C.; Butler, J.E.; Eckert, D.J.; Ngiam, J.; et al. Influence of Mandibular Advancement on Tongue Dilatory Movement during Wakefulness and How This Is Related to Oral Appliance Therapy Outcome for Obstructive Sleep Apnea. Sleep 2021, 44, zsaa196. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, D.R.; McNamara, J.A.; Baccetti, T. Maxillary Molar Distalization or Mandibular Enhancement: A Cephalometric Comparison of Comprehensive Orthodontic Treatment Including the Pendulum and the Herbst Appliances. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Yamaura, E.M.; Gill, K.; Reist, C. Acute Effects of Paroxetine on Genioglossus Activity in Obstructive Sleep Apnea. Sleep 1999, 22, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Maspero, C.; Fama, A.; Cavagnetto, D.; Abate, A.; Farronato, M. Treatment of Dental Dilacerations. J. Biol. Regul. Homeost. Agents 2019, 33, 1623–1627. [Google Scholar] [PubMed]
- Maspero, C.; Cenzato, N.; Inchingolo, F.; Cagetti, M.G.; Isola, G.; Sozzi, D.; Del Fabbro, M.; Tartaglia, G.M. The Maxilla-Mandibular Discrepancies through Soft-Tissue References: Reliability and Validation of the Anteroposterior Measurement. Children 2023, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- Incidental Finding in Pre-Orthodontic Treatment Radiographs of an Aural Foreign Body: A Case Report—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35327793/ (accessed on 28 May 2025).
- Variation in Symptoms of Sleep-Disordered Breathing with Race and Ethnicity: The Sleep Heart Health Study—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/12627736/ (accessed on 24 May 2025).
- Upper Airway Characteristics and Morphological Changes by Different MADs in OSA Adult Subjects Assessed by CBCT 3D Imaging—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/37629359/ (accessed on 24 May 2025).
- The Gender Bias in Sleep Apnea Diagnosis. Are Women Missed Because They Have Different Symptoms?—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/8944737/ (accessed on 24 May 2025).
- Inchingolo, F.; Inchingolo, A.M.; Ferrante, L.; de Ruvo, E.; Di Noia, A.; Palermo, A.; Inchingolo, A.D.; Dipalma, G. Pharmacological Sedation in Paediatric Dentistry. Eur. J. Paediatr. Dent. 2024, 25, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Inchingolo, A.D.; Riccaldo, L.; Costa, S.; Palermo, A.; Inchingolo, A.M.; Dipalma, G. Weight and Dental Eruption: The Correlation between BMI and Eruption. Eur. J. Paediatr. Dent. 2025, 1. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.M.; Latini, G.; Pezzolla, C.; Trilli, I.; Sardano, R.; Palermo, A.; Inchingolo, A.D.; Dipalma, G. Analysis of Microbiota in Black Stain of Children and Its Impact on Caries Risk. A Systematic Review. Eur. J. Paediatr. Dent. 2024, 1. [Google Scholar] [CrossRef]
Measure | Definition |
---|---|
Nosepharynx | |
S-PNS | Distance from the saddle (S) to the posterior nasal spine (PNS). |
AD1-PNS | Distance from AD1 to posterior nasal spine (PNS). AD1 is the point of intersection of the posterior pharyngeal wall with the line joining posterior nasal spine (PNS) and basion (Ba). |
AD2-PNS | Distance from AD2 to the posterior nasal spine (PNS). AD2 is the point of intersection of the posterior pharyngeal wall with the line from the midpoint of the line from the saddle (S) to the basion (Ba) to the posterior nasal spine (PNS). |
Oropharynx | |
AA-PNS | Distance from the most anterior point of the atlas (AA) to the posterior nasal spine (PNS). |
VE-PVE | Distance from the soft palate point closest to the posterior pharyngeal wall (velum palatinum, VE) to the corresponding horizontal point on the posterior pharyngeal wall (PVE). |
P-PP | Distance from the tip of the soft palate (P) to the corresponding horizontal point on the wall posterior pharyngeal (PP). |
PAS | Distance from the points of intersection on the anterior and posterior pharyngeal wall to the line joining the supramental (B) to the gonion (Go). |
PH-PPH | Distance of the corresponding horizontal points on the anterior and posterior pharyngeal wall at level of the oropharynx in its narrowest area. |
Soft Palate | |
ANS-PNS-P | Angle from anterior nasal spine (ANS) to posterior nasal spine (PNS) to palatal point (P). |
PNS-P | Distance from the posterior nasal spine (PNS) to the tip of the soft palate (P). |
SP1-SP2 | Cross section of the thickest part of the soft palate. |
Hypopharynx | |
EB-PEB | Distance from the vallecula of the epiglottis (EB) to the corresponding horizontal point on the posterior pharyngeal wall (PEB). |
Maxilla | |
SNA | Angle from saddle (S) to nasion (N) to subspinal (A). |
ANS-PNS | Palatal plane length from anterior nasal spine (ANS) to posterior nasal spine (PNS). |
Jaw | |
SNB | Angle from saddle (S) to nasion (N) to supramental (B). |
ANB | Angle from subspinal (A) to nasion (N) to supramental (B). |
NS-MP | Angle from nasion (N) to saddle (S) to mandibular plane (MP). The mandibular plane is the line joining the point of the mandibular base (MBP) to the chin (ME). |
CO-GN | Mandibular length. The length from the most posterior and superior point of the head condylar (CO) to the most anterior and inferior point of the mandibular symphysis (GN). |
C3AI-HPT-RGN | Sum of two distances: (1) the perpendicular distance between the most anterior and lowest point of the body of the third cervical vertebra (C3AI) and HPT. HPT is the vertical line from the most anterior and superior point of the hyoid bone perpendicular to the line from the nasion (N) to the saddle (S) with an upward correction of 7°. (2) The distance from the most posterior point of the mandibular symphysis (retrognation, RGN) perpendicular to HPT. |
Facial Heights | |
N-ME | Distance from nasion (N) to chin (ME). |
ANS-ME | Distance from anterior nasal spine (ANS) to chin (ME). |
Tongue | |
LENGTH (TT-EB) | Tongue length. The distance from the anterior point of the tip of the tongue (TT) to the base of the epiglottis (EB). |
HEIGHT (TH) | Tongue height. The perpendicular distance from the highest point of the tongue (TH) located below the posterior nasal spine (PNS) to the line joining the tip of the tongue (TT) to the point of intersection of the tongue and mandibular border (TG). |
Hyoid Bone | |
H-H’ | Distance from the most anterior and superior point of the hyoid bone (H) perpendicular to the plane mandibular (MP). |
H-C3AI1 | Hyoid (H). The perpendicular distance from the most anterior and superior point of the bone hyoid to the perpendicular line joining C3AI to HPT. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dipalma, G.; Marinelli, G.; Bassi, P.; Lagioia, R.; Calò, F.; Cavino, M.; Inchingolo, F.; Vinjolli, F.; Bordea, I.R.; Minervini, G.; et al. Impact of Functional Therapy on Skeletal Structures and Airways in Patients with Class II Malocclusion: Comparison of Treatment in Prepubertal and Pubertal Phases. Life 2025, 15, 1144. https://doi.org/10.3390/life15071144
Dipalma G, Marinelli G, Bassi P, Lagioia R, Calò F, Cavino M, Inchingolo F, Vinjolli F, Bordea IR, Minervini G, et al. Impact of Functional Therapy on Skeletal Structures and Airways in Patients with Class II Malocclusion: Comparison of Treatment in Prepubertal and Pubertal Phases. Life. 2025; 15(7):1144. https://doi.org/10.3390/life15071144
Chicago/Turabian StyleDipalma, Gianna, Grazia Marinelli, Paola Bassi, Rosalba Lagioia, Francesca Calò, Mirka Cavino, Francesco Inchingolo, Franceska Vinjolli, Ioana Roxana Bordea, Giuseppe Minervini, and et al. 2025. "Impact of Functional Therapy on Skeletal Structures and Airways in Patients with Class II Malocclusion: Comparison of Treatment in Prepubertal and Pubertal Phases" Life 15, no. 7: 1144. https://doi.org/10.3390/life15071144
APA StyleDipalma, G., Marinelli, G., Bassi, P., Lagioia, R., Calò, F., Cavino, M., Inchingolo, F., Vinjolli, F., Bordea, I. R., Minervini, G., Saccomanno, S., Palermo, A., Maspero, C. M. N., Inchingolo, A. D., & Inchingolo, A. M. (2025). Impact of Functional Therapy on Skeletal Structures and Airways in Patients with Class II Malocclusion: Comparison of Treatment in Prepubertal and Pubertal Phases. Life, 15(7), 1144. https://doi.org/10.3390/life15071144