New Perspectives of Underlying Cardiomyopathy in Pediatric SMA Patients—An Age Matched Control Study
Abstract
1. Introduction
- SMA Type 0: The congenital and most severe form. It is characterized by early-onset muscular hypotonia in the neonatal period and is often accompanied by respiratory failure and feeding difficulties. The mortality rate is high during the first month of life, and most affected individuals do not survive beyond six months of age [4].
- SMA Type 2 (chronic SMA): Typically manifests between 6 and 18 months of age. It is characterized by muscle weakness in the lower limbs, delayed motor skill acquisition, and the inability to stand independently. As muscle weakness progresses in childhood, affected individuals may require assistance while sitting. Life expectancy varies, but many live into their twenties or thirties [5].
- SMA Type 3 (Kugelberg–Welander disease): Typically appears after 18 months of age. It presents with an unstable gait, frequent falls, and difficulty rising from a seated or lying position. All individuals with this condition can achieve independent walking. However, many patients require wheelchair assistance later in life. Life expectancy is generally normal [7].
- SMA Type 4: Typically manifests after the age of 10 years. It is rare and is associated with mild to moderate muscle weakness, tremors, and mild respiratory difficulties. Normal life expectancy is observed [7].
2. Cardiac Manifestations of the Disease
3. Materials and Methods
4. Results
4.1. Electrocardiographic (ECG) Findings
4.2. Echocardiographic Findings
4.3. Binomial Regression
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AP2 | apical two chamber view |
AP4 | apical four chamber |
ASD | atrial septal defect |
BPM | beats per minute |
BSA | body surface area |
CI | Confidence interval |
CUS | cardiac ultrasound |
DCM | dilated cardiomyopathy |
DMT | disease modifying therapy |
ECG | Electrocardiography |
EF | left ventricular ejection fraction |
FS | fractional shortening |
HCM | hypertrophic cardiomyopathy |
IVSd | interventricular septal thickness in diastole |
LV | left ventricle |
LVEDD | left ventricular end-diastolic diameter |
LVM | left ventricular myocardial mass |
LVMI | left ventricular myocardial mass index |
MRI | magnetic resonance imaging |
mRNA | messenger ribonucleic acid |
NT-proBNP | N-terminal pro b-type natriuretic peptide |
PFO | patent foramen ovale |
PLAX | parasternal long axis view |
PSAX | parasternal short axis view |
PWd | posterior wall thickness in diastole |
RBBB | right bundle branch block |
SMA | Spinal muscular atrophy |
SMN1 | Survival Motor Neuron 1 |
References
- Prior, T.W. Spinal Muscular Atrophy—GeneReviews®—NCBI Bookshelf. 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1352/ (accessed on 9 February 2025).
- Hjartarson, H.T.; Nathorst-Böös, K.; Sejersen, T. Disease Modifying Therapies for the Management of Children with Spinal Muscular Atrophy (5q SMA): An Update on the Emerging Evidence. Drug Des. Devel. Ther. 2022, 16, 1865. [Google Scholar] [CrossRef] [PubMed]
- Spinal Muscular Atrophy|National Institute of Neurological Disorders and Stroke. Available online: https://www.ninds.nih.gov/health-information/disorders/spinal-muscular-atrophy (accessed on 9 February 2025).
- Dubowitz, V. Very Severe Spinal Muscular Atrophy (SMA Type 0): An Expanding Clinical Phenotype. Eur. J. Paediatr. Neurol. 1999, 3, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.H.; Dubowitz, V. The Natural History of Type I (Severe) Spinal Muscular Atrophy. Neuromuscul. Disord. 1994, 4, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Pera, M.C.; Coratti, G.; Berti, B.; D’Amico, A.; Sframeli, M.; Albamonte, E.; Frosini, S.; Mazzone, E.S.; Pane, M.; Bruno, C.; et al. Diagnostic Journey in Spinal Muscular Atrophy: Is It Still an Odyssey? PLoS ONE 2020, 15, e0230677. [Google Scholar] [CrossRef]
- Childhood Spinal Muscular Atrophy: Controversies and Challenges—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/22516079/ (accessed on 9 February 2025).
- Kolb, S.J.; Coffey, C.S.; Yankey, J.W.; Krosschell, K.; Arnold, W.D.; Rutkove, S.B.; D’Anjou, G.; Gooch, C.L.; Swoboda, K.J.; Reyna, S.P.; et al. Natural History of Infantile-Onset Spinal Muscular Atrophy. Ann. Neurol. 2017, 82, 883–891. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef]
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef]
- Chiriboga, C.A.; Swoboda, K.J.; Darras, B.T.; Iannaccone, S.T.; Montes, J.; De Vivo, D.C.; Norris, D.A.; Bennett, C.F.; Bishop, K.M. The Results from a Phase 1 Study of Nusinersen (ISIS-SMN(Rx)) in Children with Spinal Muscular Atrophy. Neurology 2016, 86, 890–897. [Google Scholar] [CrossRef]
- Yeo, C.J.J.; Darras, B.T. Overturning the Paradigm of Spinal Muscular Atrophy as Just a Motor Neuron Disease. Pediatr Neurol. 2020, 109, 12–19. [Google Scholar] [CrossRef]
- Gregoretti, C.; Ottonello, G.; Chiarini Testa, M.B.; Mastella, C.; Ravà, L.; Bignamini, E.; Cutrera, R.; Fagioli, F.; Ferrero, F.; Biban, P.; et al. Survival of Patients with Spinal Muscular Atrophy Type 1. Pediatrics 2013, 131, e1509–e1514. [Google Scholar] [CrossRef]
- Wijngaarde, C.A.; Blank, A.C.; Stam, M.; Wadman, R.I.; van den Berg, L.H.; van der Pol, W.L. Cardiac Pathology in Spinal Muscular Atrophy: A Systematic Review. Orphanet. J. Rare Dis. 2017, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Macleod, M.J.; Taylor, J.E.; Lunt, P.W.; Mathew, C.G.; Robb, S.A. Prenatal Onset Spinal Muscular Atrophy. Eur. J. Paediatr. Neurol. 1999, 3, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Devriendt, K.; Lammens, M.; Schollen, E.; Van Hole, C.; Dom, R.; Devlieger, H.; Matthijs, G.; Fryns, J.P. Clinical and Molecular Genetic Features of Congenital Spinal Muscular Atrophy. Ann. Neurol. 1996, 40, 731–738. [Google Scholar] [CrossRef]
- Rudnik-Schöneborn, S.; Heller, R.; Berg, C.; Betzler, C.; Grimm, T.; Eggermann, T.; Wiegand, G.; Zerres, K. Congenital Heart Disease Is a Feature of Severe Infantile Spinal Muscular Atrophy. J. Med. Genet. 2008, 45, 635–638. [Google Scholar] [CrossRef]
- Dawood, A.A.; Moosa, A. Hand and ECG Tremor in Spinal Muscular Atrophy. Arch. Dis. Child. 1983, 58, 376–378. [Google Scholar] [CrossRef] [PubMed]
- Russman, B.S.; Fredericks, E.J. Use of the ECG in the Diagnosis of Childhood Spinal Muscular Atrophy. Arch. Neurol. 1979, 36, 317–318. [Google Scholar] [CrossRef]
- Bianco, F.; Pane, M.; Vasco, G.; Tiziano, D.; Mongini, T.; Angelini, C.; Vita, G.; Bruno, C.; Bertini, E.; Mercuri, E.; et al. S.P.24 24-Hour Holter ECG in Type II and III SMA. Neuromuscul. Disord. 2012, 22, 894. [Google Scholar] [CrossRef]
- Bevan, A.K.; Hutchinson, K.R.; Foust, K.D.; Braun, L.; McGovern, V.L.; Schmelzer, L.; Ward, J.G.; Petruska, J.C.; Lucchesi, P.A.; Burghes, A.H.M.; et al. Early Heart Failure in the SMNΔ7 Model of Spinal Muscular Atrophy and Correction by Postnatal scAAV9-SMN Delivery. Hum. Mol. Genet. 2010, 19, 3895–3905. [Google Scholar] [CrossRef]
- Shababi, M.; Habibi, J.; Yang, H.T.; Vale, S.M.; Sewell, W.A.; Lorson, C.L. Cardiac Defects Contribute to the Pathology of Spinal Muscular Atrophy Models. Hum. Mol. Genet. 2010, 19, 4059–4071. [Google Scholar] [CrossRef]
- Sheng, L.; Wan, B.; Feng, P.; Sun, J.; Rigo, F.; Bennett, C.F.; Hua, Y.; Li, H.; Li, Y.; Luo, H.; et al. Downregulation of Survivin Contributes to Cell-Cycle Arrest during Postnatal Cardiac Development in a Severe Spinal Muscular Atrophy Mouse Model. Hum. Mol. Genet. 2018, 27, 486–498. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Markousis-Mavrogenis, G.; Papavasiliou, A.; Kolovou, G. Cardiac Involvement in Duchenne and Becker Muscular Dystrophy. World J. Cardiol. 2015, 7, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Salazar, P.; Indorkar, R.; Dietrich, M.; Farzaneh-Far, A. Cardiomyopathy in Friedreich’s Ataxia. Eur. Heart J. 2018, 39, 631. [Google Scholar] [CrossRef] [PubMed]
- Meyers, D.E.; Basha, H.I.; Koenig, M.K. Mitochondrial Cardiomyopathy. Tex. Heart Inst. J. 2013, 40, 385–394. [Google Scholar]
- Sixtus, R.P.; Dyson, R.M.; Gray, C.L. Impact of Prematurity on Lifelong Cardiovascular Health: Structural and Functional Considerations. NPJ Cardiovasc. Health 2024, 1, 2. [Google Scholar] [CrossRef]
- Vrselja, A.; Pillow, J.J.; Black, M.J. Effect of Preterm Birth on Cardiac and Cardiomyocyte Growth and the Consequences of Antenatal and Postnatal Glucocorticoid Treatment. J. Clin. Med. 2021, 10, 3896. [Google Scholar] [CrossRef]
- Mohlkert, L.; Hallberg, J.; Broberg, O.; Rydberg, A.; Halvorsen, C.P.; Liuba, P.; Åström-Olsson, K.; Persson, P.B.; Norman, M.; Brodin, L.-Å.; et al. The Preterm Heart in Childhood: Left Ventricular Structure, Geometry, and Function Assessed by Echocardiography in 6-Year-Old Survivors of Periviable Births. J. Am. Heart Assoc. 2018, 7, e007742. [Google Scholar] [CrossRef]
- Robel-Tillig, E.; Knüpfer, M.; Pulzer, F.; Vogtmann, C. Blood Flow Parameters of the Superior Mesenteric Artery as an Early Predictor of Intestinal Dysmotility in Preterm Infants. Pediatr. Radiol. 2004, 34, 958–962. [Google Scholar] [CrossRef]
- He, X.; Li, X.; Yan, M.; Peng, H.; Zhang, L.; Liang, Y.; Tang, W.; Li, S. Cardiac function evaluation in children with spinal muscular atrophy: A case-control study. Pediatr. Int. 2024, 66, e15769. [Google Scholar] [CrossRef]
AMS | |
---|---|
Type I | 37 |
Type II | 21 |
Type III | 5 |
Treatment | |
Nusinersen | 51 |
Onasemnogene abeparvovec | 6 |
Risdiplam | 6 |
SMN gene copies | |
2 copies | 34 |
3 copies | 25 |
4 copies | 4 |
Parameter | Overall (n = 126) |
---|---|
Male gender (%) | 53 (42.1) |
Age (months) | 46 [17.9; 103.2] |
Age (years) | 3.5 [1; 8] |
Weight (kg) | 14 [10; 25] |
Weight (p%) | 37 [9; 70] |
Height (cm) | 99 [82.9; 128] |
BSA | 0.62 [0.48; 0.89] |
ECG | |
Tremor present | 32 (25.4%) |
Rhythm | |
Sinus | 108 (85.7%) |
Sinus tachycardia | 16 (12.7%) |
Sinus bradycardia | 2 (1.6%) |
QRS axis (degrees) | 70 [60; 90] |
BPM | 114 [95; 130] |
BPM percentile | 75 [50; 90] |
PR Length (ms) | 120 [100; 140] |
Q max amp (mm) | 3 [2; 5] |
RBBB (%) | 54 (43.5) |
QRS length (ms) | 80 [67.8; 80] |
QTc length (ms) | 420 [400; 433] |
Cardiac ultrasound | |
LVM (g) | 33.9 [21.44; 54.09] |
LVM percentile | 6.49 [1.24; 19.49] |
LVMI | 53 [46.36; 61.46] |
Parameter | SMA (n = 63) | Control (n = 63) | p Value |
---|---|---|---|
Male gender (%) | 25 (39.7) | 28 (44.4) | 0.58 |
Age (months) | 44 [20.2; 97.8] | 48 [17; 108.3] | 0.95 |
Weight (kg) | 12.5 [9.58; 22] | 16.2 [10.17; 29.67] | 0.13 |
Weight (p%) | 11 [1; 52] | 57 [30; 77] | <0.01 |
Height (cm) | 98 [82.2; 121.8] | 102 [84; 139.3] | 0.44 |
BSA | 0.59 [0.45; 0.88] | 0.67 [0.5; 1.06] | 0.2 |
ECG | |||
Tremor present | 31 (49.2%) | 1 (1.6%) | <0.01 |
Rhythm | <0.01 | ||
Sinus | 46 (73%) | 62 (98.4%) | |
Sinus tachycardia | 15 (23.8%) | 1 (1.6%) | |
Sinus bradycardia | 2 (3.2%) | 0 (0%) | |
QRS axis (degrees) | 73 [60; 89.2] | 70 [60; 90] | 0.82 |
BPM | 120 [100; 140] | 103 [86.2; 124.8] | <0.01 |
BPM percentile | 78.5 [50; 90] | 50 [25; 73.7] | <0.01 |
PR Length (ms) | 120 [100; 130] | 120 [100; 140] | 0.23 |
Q max amp (mm) | 4 [2.02; 5] | 3 [2; 3] | 0.01 |
RBBB | 18 (28.57%) | 36 (57.14%) | <0.01 |
QRS length (ms) | 80 [70; 80] | 80 [60; 80] | 0.89 |
QTc length (ms) | 425 [406; 439] | 413 [395; 426] | 0.02 |
Cardiac ultrasound | |||
LVM (g) | 32.76 [19.45; 47.88] | 36.23 [25.26; 62.82] | 0.05 |
LVM percentile | 1.98 [0.32; 9.94] | 13.57 [5.48; 25.08] | <0.01 |
LVMI | 50.54 [43.04; 55.68] | 56.27 [47.46; 64.82] | <0.01 |
Sig. | Exp(B) | 95% CI for Exp(B) | |||
---|---|---|---|---|---|
Lower | Upper | ||||
Final Step | Age (months) | 0.000 | 1.027 | 1.016 | 1.038 |
SMA | 0.001 | 0.227 | 0.094 | 0.552 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolae, G.; Capitanescu, A.; Leanca, M.C.; Neagu, E.; Vasile, D.; Filip, C.; Cinteza, E.; Aria, A.; Pavlov, B.M.; Uscoiu, G.; et al. New Perspectives of Underlying Cardiomyopathy in Pediatric SMA Patients—An Age Matched Control Study. Life 2025, 15, 1091. https://doi.org/10.3390/life15071091
Nicolae G, Capitanescu A, Leanca MC, Neagu E, Vasile D, Filip C, Cinteza E, Aria A, Pavlov BM, Uscoiu G, et al. New Perspectives of Underlying Cardiomyopathy in Pediatric SMA Patients—An Age Matched Control Study. Life. 2025; 15(7):1091. https://doi.org/10.3390/life15071091
Chicago/Turabian StyleNicolae, Georgiana, Andrei Capitanescu, Madalina Cristina Leanca, Elena Neagu, Daniela Vasile, Cristina Filip, Eliza Cinteza, Amelia Aria, Bianka Maria Pavlov, Gabriela Uscoiu, and et al. 2025. "New Perspectives of Underlying Cardiomyopathy in Pediatric SMA Patients—An Age Matched Control Study" Life 15, no. 7: 1091. https://doi.org/10.3390/life15071091
APA StyleNicolae, G., Capitanescu, A., Leanca, M. C., Neagu, E., Vasile, D., Filip, C., Cinteza, E., Aria, A., Pavlov, B. M., Uscoiu, G., Raita, C. I., & Mirea, A. (2025). New Perspectives of Underlying Cardiomyopathy in Pediatric SMA Patients—An Age Matched Control Study. Life, 15(7), 1091. https://doi.org/10.3390/life15071091