Exploring the Anticancer Activity of Artocarpus heterophyllus Leaves: Selective Effects on Triple-Negative Breast Cancer and HPV16-Positive Tumorigenic Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of AHEE
2.2. Phytochemical Characterization and Antioxidant Activity Assessment of AHEE
2.3. Thin-Layer Chromatography (TLC) and Spectroscopic Profile
2.4. Evaluation of Anti-Browning Effects on Fresh-Cut Apple Slices
2.5. Preparation of Cell Treatments
2.6. Cell Culture
2.7. Cell Viability Assay
2.8. Clonogenic Assay
2.9. Wound Healing Assay
2.10. Anchorage-Independent Growth Assay (Spheroid Formation Inhibition Assay)
2.11. Three-Dimensional Culture Formation and Reversion to Two-Dimensional Culture
2.12. Interaction Assays Between AHEE and Chemotherapeutics
2.13. Statistical Analysis
3. Results
3.1. AHEE Is Rich in Flavones and Exhibits a Moderate Antioxidant Capacity
3.2. Chromatographic and Spectroscopic Analysis of AHEE
3.3. AHEE Antioxidant Potential
3.4. AHEE Induces Changes in the Morphology of MDA-MB-231 and TC-1 Cells, Decreases Their Viability, and Inhibits Their Ability to Proliferate
3.5. AHEE Impacts the Migration of MDA-MB-231 and TC-1 Cells
3.6. Exposure of MDA-MB-231 and TC-1 Cells to AHEE Impacts Their Ability of Anchorage-Independent Growth
3.7. Exposure of TC-1 and MDA-MB-231 Cells’ 3D Cultures to AHEE Impacts Their Ability to Proliferate and Migrate
3.8. The Combination of AHEE and Low Doses of Chemotherapeutics Decreased MDA-MB-231 and TC-1 Cell Viability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filho, A.M.; Laversanne, M.; Ferlay, J.; Colombet, M.; Piñeros, M.; Znaor, A.; Parkin, D.M.; Soerjomataram, I.; Bray, F. The GLOBOCAN 2022 Cancer Estimates: Data Sources, Methods, and a Snapshot of the Cancer Burden Worldwide. Int. J. Cancer 2025, 156, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global Patterns and Trends in Breast Cancer Incidence and Mortality across 185 Countries. Nat. Med. 2025; 30, in press. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Cancer Tomorrow. Available online: https://gco.iarc.fr/tomorrow/en/dataviz/isotype?sexes=2&single_unit=50000&cancers=20&years=2050&multiple_populations=0&types=1 (accessed on 5 April 2025).
- Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S. Triple-Negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef]
- Jie, H.; Ma, W.; Huang, C. Diagnosis, Prognosis, and Treatment of Triple-Negative Breast Cancer: A Review. Breast Cancer 2025, 17, 265. [Google Scholar] [CrossRef]
- Bisht, A.; Avinash, D.; Sahu, K.K.; Patel, P.; Das Gupta, G.; Kurmi, B. Das A Comprehensive Review on Doxorubicin: Mechanisms, Toxicity, Clinical Trials, Combination Therapies and Nanoformulations in Breast Cancer. Drug Deliv. Transl. Res. 2025, 15, 102–133. [Google Scholar] [CrossRef]
- Lizano, M.; Carrillo-García, A.; de la Cruz-Hernández, E.; Castro-Muñoz, L.J.; Contreras-Paredes, A. Promising Predictive Molecular Biomarkers for Cervical Cancer (Review). Int. J. Mol. Med. 2024, 53, 50. [Google Scholar] [CrossRef]
- Brooke, G.; Wendel, S.; Banerjee, A.; Wallace, N. Opportunities to Advance Cervical Cancer Prevention and Care. Tumour Virus Res. 2024, 18, 200292. [Google Scholar] [CrossRef]
- Kobayashi, O.; Kamata, S.; Okuma, Y.; Nakajima, T.; Ikeda, Y.; Saito, K.; Kawana, K. Carcinogenesis and Epidemiology of Cervical Cancer: The Hallmark of Human Papillomavirus-Associated Cancer. J. Obstet. Gynaecol. Res. 2024, 50, 25–30. [Google Scholar] [CrossRef]
- Preti, M.; Rosso, S.; Micheletti, L.; Libero, C.; Sobrato, I.; Giordano, L.; Busso, P.; Gallio, N.; Cosma, S.; Bevilacqua, F.; et al. Risk of HPV-Related Extra-Cervical Cancers in Women Treated for Cervical Intraepithelial Neoplasia. BMC Cancer 2020, 20, 972. [Google Scholar] [CrossRef]
- Hernández-Silva, C.D.; Ramírez de Arellano, A.; Pereira-Suárez, A.L.; Ramírez-López, I.G. HPV and Cervical Cancer: Molecular and Immunological Aspects, Epidemiology and Effect of Vaccination in Latin American Women. Viruses 2024, 16, 327. [Google Scholar] [CrossRef] [PubMed]
- Riano, I.; Contreras-Chavez, P.; Pabon, C.M.; Meza, K.; Kiel, L.; Bejarano, S.; Florez, N. An Overview of Cervical Cancer Prevention and Control in Latin America and the Caribbean Countries. Hematol. Oncol. Clin. N. Am. 2024, 38, 13–33. [Google Scholar] [CrossRef] [PubMed]
- de Juan, A.; Redondo, A.; Rubio, M.J.; García, Y.; Cueva, J.; Gaba, L.; Yubero, A.; Alarcón, J.; Maximiano, C.; Oaknin, A. SEOM Clinical Guidelines for Cervical Cancer (2019). Clin. Transl. Oncol. 2020, 22, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.; Han, B.; Zhao, Y. Focus on the Molecular Mechanisms of Cisplatin Resistance Based on Multi-Omics Approaches. Mol. Omics 2023, 19, 297–307. [Google Scholar] [CrossRef]
- Qi, L.; Luo, Q.; Zhang, Y.; Jia, F.; Zhao, Y.; Wang, F. Advances in Toxicological Research of the Anticancer Drug Cisplatin. Chem. Res. Toxicol. 2019, 32, 1469–1486. [Google Scholar] [CrossRef]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef]
- Gupta, A.; Marquess, A.R.; Pandey, A.K.; Bishayee, A. Jackfruit (Artocarpus heterophyllus Lam.) in Health and Disease: A Critical Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 6344–6378. [Google Scholar] [CrossRef]
- Ghosh, P.; Muhasina, K.M.; Pandey, N.; Basavan, D. Jackfruit Waste: An Invented Anticancer Therapy Using Jacalin Lectin from Jackfruit Seed. Anticancer Drugs 2023, 34, 1085–1093. [Google Scholar] [CrossRef]
- Morrison, I.J.; Zhang, J.; Lin, J.; Murray, J.E.; Porter, R.; Langat, M.K.; Sadgrove, N.J.; Barker, J.; Zhang, G.; Delgoda, R. Potential Chemopreventive, Anticancer and Anti-Inflammatory Properties of a Refined Artocarpin-Rich Wood Extract of Artocarpus heterophyllus Lam. Sci. Rep. 2021, 11, 6854. [Google Scholar] [CrossRef]
- Arung, E.T.; Wicaksono, B.D.; Handoko, Y.A.; Kusuma, I.W.; Shimizu, K.; Yulia, D.; Sandra, F. Cytotoxic Effect of Artocarpin on T47D Cells. J. Nat. Med. 2010, 64, 423–429. [Google Scholar] [CrossRef]
- Liu, Y.P.; Yu, X.M.; Zhang, W.; Wang, T.; Jiang, B.; Tang, H.X.; Su, Q.T.; Fu, Y.H. Prenylated Chromones and Flavonoids from Artocarpus heterophyllus with Their Potential Antiproliferative and Anti-Inflammatory Activities. Bioorg. Chem. 2020, 101, 104030. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- IBUNAM—Instituto de Biología, UNAM. Available online: https://www.ib.unam.mx/ib/colecciones-biologicas/herbario-nacional/ (accessed on 15 May 2025).
- Oloya, B.; Namukobe, J.; Ssengooba, W.; Afayoa, M.; Byamukama, R. Phytochemical Screening, Antimycobacterial Activity and Acute Toxicity of Crude Extracts of Selected Medicinal Plant Species Used Locally in the Treatment of Tuberculosis in Uganda. Trop. Med. Health 2022, 50, 16. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Fuentes, G.A.; Delgado-Enciso, O.G.; Larios-Cedeño, E.G.; Sánchez-Galindo, J.M.; Ceballos-Magaña, S.G.; Pineda-Urbina, K.; Alcalá-Pérez, M.A.; Magaña-Vergara, N.E.; Delgado-Enciso, J.; Díaz-Llerenas, U.; et al. Comparative Analysis of Infusions and Ethanolic Extracts of Annona muricata Leaves from Colima, Mexico: Phytochemical Profile and Antioxidant Activity. Life 2024, 14, 1702. [Google Scholar] [CrossRef]
- Grijalva-Verdugo, C.; Rodríguez-Núñez, J.R.; Núñez-Colin, C.A.; Aguirre-Mancilla, C.L.; Montoya-Anaya, D.; Villareal-Fuentes, J.M.; Balois-Morales, R.; Rodríguez-Carrillo, M.G. Total Polyphenolic, Antioxidants, and Cytotoxic Activity of Infusions from Soursop (Annona muricata) Leaves from Two Mexican Regions. Agron. Colomb. 2022, 40, 300–310. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Hudz, N.; Yezerska, O.; Shanajda, M.; Horčinová Sedláčková, V.; Wieczorek, P.P. Application of the Folin-Ciocalteu Method to the Evaluation of Salvia sclarea Extracts. Pharmacia 2019, 66, 209–215. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.-M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus Religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
- Gwatidzo, L.; Dzomba, P.; Mangena, M. TLC Separation and Antioxidant Activity of Flavonoids from Carissa Bispinosa, Ficus Sycomorus, and Grewia Bicolar Fruits. Nutrire 2018, 43, 3. [Google Scholar] [CrossRef]
- Hernández-Rangel, A.E.; Cabrera-Licona, A.; Hernandez-Fuentes, G.A.; Beas-Guzmán, O.F.; Martínez-Martínez, F.J.; Alcalá-Pérez, M.A.; Montes-Galindo, D.A.; Rodriguez-Sanchez, I.P.; Martinez-Fierro, M.L.; Casarez-Price, J.C.; et al. Ethanolic Extract of Salvia officinalis Leaves Affects Viability, Survival, Migration, and the Formation and Growth of 3D Cultures of the Tumourigenic Murine HPV-16+-Related Cancer Cell Line. Biomedicines 2024, 12, 1804. [Google Scholar] [CrossRef]
- Lin, C.N.; Lu, C.M.; Huang, P.L. Flavonoids from Artocarpus heterophyllus. Phytochemistry 1995, 39, 1447–1451. [Google Scholar] [CrossRef]
- Arriffin, N.M.; Jamil, S.; Basar, N.; Khamis, S.; Abdullah, S.A.; Mariam, S.; Lathiff, A. Phytochemical Studies and Antioxidant Activities of Artocarpus scortechinii King. Nat. Prod. 2017, 10, 299–303. [Google Scholar] [CrossRef]
- Sa’Diah, K.; Yuwono, S.D.; Qudus, H.I.; Yandri; Suhartati, T. Isolation, Characterization, Modification of Artocarpin Compound from Pudau Plant (Artocarpus kemando Miq.) and Bioactivity Antibacterial Assay of Artocarpin Compound and Their Modification Result. IOP Conf. Ser. Earth Environ. Sci. 2020, 537, 012047. [Google Scholar] [CrossRef]
- Jung Lee, H.; Hyeong Lee, J.; Peon Hwang, B.; Sub Kim, H.; Joon Lee, J. Fungal Metabolites, Asterric Acid Derivatives Inhibit Vascular Endothelial Growth Factor (VEGF)-Induced Tube Formation of HUVECs. J. Antibiot. 2002, 55, 552–556. [Google Scholar]
- Lee, J.; Park, H.S.; Jung, H.J.; Park, Y.J.; Kang, M.K.; Kim, H.J.; Yoon, D.; Ullah, S.; Kang, D.; Park, Y.; et al. Anti-Browning Effect of 2-Mercaptobenzo[d]Imidazole Analogs with Antioxidant Activity on Freshly-Cut Apple Slices and Their Highly Potent Tyrosinase Inhibitory Activity. Antioxidants 2023, 12, 1814. [Google Scholar] [CrossRef]
- Wen, Y.; Liang, Y.; Chai, W.; Wei, Q.; Yu, Z.; Wang, L. Effect of Ascorbic Acid on Tyrosinase and Its Anti-browning Activity in Fresh-cut Fuji Apple. J. Food Biochem. 2021, 45, e13995. [Google Scholar] [CrossRef]
- Silva, A.C.O.; Santana, E.F.; Saraiva, A.M.; Coutinho, F.N.; Castro, R.H.A.; Pisciottano, M.N.C.; Amorim, E.L.C.; Albuquerque, U.P. Which Approach Is More Effective in the Selection of Plants with Antimicrobial Activity? Evid. Based Complement. Alternat. Med. 2013, 2013, 308980. [Google Scholar] [CrossRef]
- Lin, K.-Y.; Guarnieri, F.G.; Staveley-O’Carroll, K.F.; Levitsky, H.I.; August, J.T.; Pardoll, D.M.; Wu, T.-C. Treatment of Established Tumors with a Novel Vaccine That Enhances Major Histocompatibility Class II Presentation of Tumor Antigen. Cancer Res. 1996, 56, 21–26. [Google Scholar]
- Šmahel, M.; Šíma, P.; Ludvíková, V.; Marinov, I.; Pokorná, D.; Vonka, V. Immunisation with Modified HPV16 E7 Genes against Mouse Oncogenic TC-1 Cell Sublines with Downregulated Expression of MHC Class I Molecules. Vaccine 2003, 21, 1125–1136. [Google Scholar] [CrossRef]
- Gendron, K.B.; Rodriguez, A.; Sewell, D.A. Vaccination with Human Papillomavirus Type 16 E7 Peptide With CpG Oligonucleotides for Prevention of Tumor Growth in Mice. Arch. Otolaryngol. Head Neck Surg. 2006, 132, 327–332. [Google Scholar] [CrossRef][Green Version]
- Manning, J.; Indrova, M.; Lubyova, B.; Pribylova, H.; Bieblova, J.; Hejnar, J.; Simova, J.; Jandlova, T.; Bubenik, J.; Reinis, M. Induction of MHC Class I Molecule Cell Surface Expression and Epigenetic Activation of Antigen-Processing Machinery Components in a Murine Model for Human Papilloma Virus 16-Associated Tumours. Immunology 2008, 123, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari Nejad, A.S.; Fotouhi, F.; Mehrbod, P.; Keshavarz, M.; Alikhani, M.Y.; Ghaemi, A. Oncolytic Effects of Hitchner B1 Strain of Newcastle Disease Virus against Cervical Cancer Cell Proliferation Is Mediated by the Increased Expression of Cytochrome C, Autophagy and Apoptotic Pathways. Microb. Pathog. 2020, 147, 104438. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.; Nejad, A.S.M.; Esghaei, M.; Bokharaei-Salim, F.; Dianat-Moghadam, H.; Keyvani, H.; Ghaemi, A. Oncolytic Newcastle Disease Virus Reduces Growth of Cervical Cancer Cell by Inducing Apoptosis. Saudi J. Biol. Sci. 2020, 27, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Karami, P.; Othman, G.; Housein, Z.; Salihi, A.; Hosseinpour Feizi, M.A.; Azeez, H.J.; Babaei, E. Nanoformulation of Polyphenol Curcumin Enhances Cisplatin-Induced Apoptosis in Drug-Resistant MDA-MB-231 Breast Cancer Cells. Molecules 2022, 27, 2917. [Google Scholar] [CrossRef]
- Cabrera-Licona, A.; Paz-García, J.; Guzmán, O.F.B.; Delgado-Enciso, I.; Paz-Michel, B.A. Neutral Electrolyzed Water Decreases Triple-Negative Breast Cancer Cell Viability, Clonogenic Survival, Adhesion, Migration, and 3-D Spheroid Growth. J. Cancer Sci. Clin. Ther. 2024, 8, 83–94. [Google Scholar] [CrossRef]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic Assay of Cells in Vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef]
- Elangovan, S.; Hsieh, T.-C.; Wu, J.M. Growth Inhibition of Human MDA-MB-231 Breast Cancer Cells by δ-Tocotrienol Is Associated with Loss of Cyclin D1/CDK4 Expression and Accompanying Changes in the State of Phosphorylation of the Retinoblastoma Tumor Suppressor Gene Product. Anticancer Res. 2008, 28, 2641. [Google Scholar]
- Gebäck, T.; Schulz, M.M.P.; Koumoutsakos, P.; Detmar, M. TScratch: A Novel and Simple Software Tool for Automated Analysis of Monolayer Wound Healing Assays: Short Technical Reports. Biotechniques 2009, 46, 265–274. [Google Scholar] [CrossRef]
- Zhao, D.; Yao, C.; Chen, X.; Xia, H.; Zhang, L.; Liu, H.; Jiang, X.; Dai, Y.; Liu, J. The Fruits of Maclura pomifera Extracts Inhibits Glioma Stem-Like Cell Growth and Invasion. Neurochem. Res. 2013, 38, 2105–2113. [Google Scholar] [CrossRef]
- Du, F.; Zhao, X.; Fan, D. Soft Agar Colony Formation Assay as a Hallmark of Carcinogenesis. Bio Protoc. 2017, 7, e2351. [Google Scholar] [CrossRef]
- Chauhan, S.C.; Vannatta, K.; Ebeling, M.C.; Vinayek, N.; Watanabe, A.; Pandey, K.K.; Bell, M.C.; Koch, M.D.; Aburatani, H.; Lio, Y.; et al. Expression and Functions of Transmembrane Mucin MUC13 in Ovarian Cancer. Cancer Res. 2009, 69, 765–774. [Google Scholar] [CrossRef]
- Metzger, W.; Sossong, D.; Bächle, A.; Pütz, N.; Wennemuth, G.; Pohlemann, T.; Oberringer, M. The Liquid Overlay Technique Is the Key to Formation of Co-Culture Spheroids Consisting of Primary Osteoblasts, Fibroblasts and Endothelial Cells. Cytotherapy 2011, 13, 1000–1012. [Google Scholar] [CrossRef]
- Yakavets, I.; Francois, A.; Benoit, A.; Merlin, J.L.; Bezdetnaya, L.; Vogin, G. Advanced Co-Culture 3D Breast Cancer Model for Investigation of Fibrosis Induced by External Stimuli: Optimization Study. Sci. Rep. 2020, 10, 21273. [Google Scholar] [CrossRef]
- Subramaniyan, A.; Ravi, M. Agarose Hydrogel Induced MCF-7 and BMG-1 Cell Line Progressive 3D and 3D Revert Cultures. J. Cell. Physiol. 2018, 233, 2768–2772. [Google Scholar] [CrossRef]
- Beas-Guzmán, O.F.; Cabrera-Licona, A.; Hernández-Fuentes, G.A.; Ceballos-Magaña, S.G.; Guzmán-Esquivel, J.; De-León-Zaragoza, L.; Ramírez-Flores, M.; Diaz-Martinez, J.; Garza-Veloz, I.; Martínez-Fierro, M.L.; et al. Ethanolic Extract of Averrhoa carambola Leaf Has an Anticancer Activity on Triple-Negative Breast Cancer Cells: An In Vitro Study. Pharmaceutics 2024, 17, 2. [Google Scholar] [CrossRef]
- Rosner, B. Fundamentals of Biostatistics/Bernard Rosner, 7th ed.; Brooks/Cole, Cengage Learning, c2011: Boston, MA, USA, 2011; Volume 1. [Google Scholar]
- Pollard, D.A.; Pollard, T.D.; Pollard, K.S. Empowering Statistical Methods for Cellular and Molecular Biologists. Mol. Biol. Cell 2019, 30, 1359–1368. [Google Scholar] [CrossRef]
- Tathe, A.B.; Sekar, N. NLOphoric Red Emitting Bis Coumarins with O-BF2-O Core—Synthesis, Photophysical Properties and DFT Studies. J. Fluoresc. 2016, 26, 471–486. [Google Scholar] [CrossRef]
- Kyushin, S.; Suzuki, Y. Cooperation of σ–π and Σ*–Π* Conjugation in the UV/Vis and Fluorescence Spectra of 9,10-Disilylanthracene. Molecules 2022, 27, 2241. [Google Scholar] [CrossRef]
- Ganadu, M.; Lubinu, G.; Tilocca, A.; Amendolia, S. Spectroscopic Identification and Quantitative Analysis of Binary Mixtures Using Artificial Neural Networks. Talanta 1997, 44, 1901–1909. [Google Scholar] [CrossRef]
- Sisa, M.; Bonnet, S.L.; Ferreira, D.; Van der Westhuizen, J.H. Photochemistry of Flavonoids. Molecules 2010, 15, 5196–5245. [Google Scholar] [CrossRef]
- Dunkel, R.; Wu, X. Identification of Organic Molecules from a Structure Database Using Proton and Carbon NMR Analysis Results. J. Magn. Reson. 2007, 188, 97–110. [Google Scholar] [CrossRef][Green Version]
- Sinha, R.; Gadhwal, M.; Joshi, U.; Srivastava, S.; Govil, G. Modifying Effect of Quercetin on Model Biomembranes: Studied by Molecular Dynamic Simulation, DSC and NMR. Int. J. Curr. Pharm. Res. 2012, 4, 70–79. [Google Scholar]
- Deng, Z.; Wang, H.; Liu, J.; Deng, Y.; Zhang, N. Comprehensive Understanding of Anchorage-Independent Survival and Its Implication in Cancer Metastasis. Cell Death Dis. 2021, 12, 629. [Google Scholar] [CrossRef]
- Brancato, V.; Oliveira, J.M.; Correlo, V.M.; Reis, R.L.; Kundu, S.C. Could 3D Models of Cancer Enhance Drug Screening? Biomaterials 2020, 232, 119744. [Google Scholar] [CrossRef]
- Hernandez-Fuentes, G.A.; Gómez-Bueno, J.d.D.; Pérez-Santos, V.M.; Valle-Capitaine, I.J.; Villaseñor-Gonzalez, P.M.; Hernández-Zamorano, C.J.; Silva-Vázquez, C.G.; de la Cruz-Ruiz, M.; Diaz-Martinez, J.; Garza-Veloz, I.; et al. Comparing Perspectives on Traditional and Complementary Medicine Use in Oncology: Insights from Healthcare Professionals and Oncology Patients in Western Mexico. Curr. Oncol. 2025, 32, 71. [Google Scholar] [CrossRef]
- Delgado, C.S.M.; Ramos, Z.N.; Castro, L.A.; Bautista, C.N. Polifenoles y Capacidad Antioxidante Del Extracto Etanólico de Las Flores de Annona muricata L. (Guanábana). Cienc. Investig. 2021, 24, 17–22. [Google Scholar] [CrossRef]
- Zahra, M.; Abrahamse, H.; George, B.P. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants 2024, 13, 922. [Google Scholar] [CrossRef]
- Rodríguez-Yoldi, M.J. Anti-Inflammatory and Antioxidant Properties of Plant Extracts. Antioxidants 2021, 10, 921. [Google Scholar] [CrossRef]
- Li, Z.; Lan, Y.; Miao, J.; Chen, X.; Chen, B.; Liu, G.; Wu, X.; Zhu, X.; Cao, Y. Phytochemicals, Antioxidant Capacity and Cytoprotective Effects of Jackfruit (Artocarpus heterophyllus Lam.) Axis Extracts on HepG2 Cells. Food Biosci. 2021, 41, 100933. [Google Scholar] [CrossRef]
- Burci, L.M.; da Silva, C.B.; de Oliveira, M.; Dalarmi, L.; Zanin, S.M.W.; Miguel, O.G.; Miguel, M.D. Determination of Antioxidant, Radical Scavenging Activity and Total Phenolic Compounds of Artocarpus heterophyllus (Jackfuit) Seeds Extracts. J. Med. Plants Res. 2015, 9, 1013–1020. [Google Scholar] [CrossRef]
- Muscolo, A.; Mariateresa, O.; Giulio, T.; Mariateresa, R. Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. Int. J. Mol. Sci. 2024, 25, 3264. [Google Scholar] [CrossRef]
- Widyawati, T.; Daulay, M. Effect of Using Ethanol Extract of Artocarpus heterophyllus Leaves and Olea europea Fruit Oil Combination on Facial Skin. Acta Inform. Med. 2023, 31, 168–171. [Google Scholar] [CrossRef]
- Bhattacharjee, C. Amitsankar Dutta. Phytochemical and Acute Toxicity Study of Leaves of Artocarpus heterophyllus Lam. Int. J. Allied Med. Sci. Clin. Res. 2020, 1, 78–81. [Google Scholar]
- Kenny, P.A.; Lee, G.Y.; Myers, C.A.; Neve, R.M.; Semeiks, J.R.; Spellman, P.T.; Lorenz, K.; Lee, E.H.; Barcellos-Hoff, M.H.; Petersen, O.W.; et al. The Morphologies of Breast Cancer Cell Lines in Three-Dimensional Assays Correlate with Their Profiles of Gene Expression. Mol. Oncol. 2007, 1, 84–96. [Google Scholar] [CrossRef]
- Smahel, M.; Smahelová, J.; Tejklová, P.; Tachezy, R.; Marinov, I. Characterization of Cell Lines Derived from Tumors Induced by TC-1 Cells in Mice Preimmunized against HPV16 E7 Oncoprotein. Int. J. Oncol. 2005, 27, 731–742. [Google Scholar]
- Wätjen, W.; Weber, N.; Lou, Y.J.; Wang, Z.Q.; Chovolou, Y.; Kampkötter, A.; Kahl, R.; Proksch, P. Prenylation Enhances Cytotoxicity of Apigenin and Liquiritigenin in Rat H4IIE Hepatoma and C6 Glioma Cells. Food Chem. Toxicol. 2007, 45, 119–124. [Google Scholar] [CrossRef]
- Guo, J.-M.; Li, L.-X.; Li, X.-Y.; Wang, T.-Y.; Zhu, E.-N.; Wu, A.-J.; Li, S.-R.; Yang, H.-; Liu, Y.-P.; Fu, Y.-H. 2-Arylbenzofurans from the Stems and Leaves of Artocarpus Tonkinensis and Their Potential Antiproliferative Activities. Nat. Prod. Res. 2024, 1–8. [Google Scholar] [CrossRef]
- Sun, G.; Zheng, Z.; Lee, M.-H.; Xu, Y.; Kang, S.; Dong, Z.; Wang, M.; Gu, Z.; Li, H.; Chen, W. Chemoprevention of Colorectal Cancer by Artocarpin, a Dietary Phytochemical from Artocarpus Heterophyllus. J. Agric. Food Chem. 2017, 65, 3474–3480. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Liu, J.-F.; Chiang, Y.-C.; Chu-Sung Hu, S.; Hsu, L.-F.; Lin, Y.-C.; Lin, Z.-C.; Lee, H.-C.; Chen, M.-C.; Huang, C.-L.; et al. Artocarpin, an Isoprenyl Flavonoid, Induces P53-Dependent or Independent Apoptosis via ROS-Mediated MAPKs and Akt Activation in Non-Small Cell Lung Cancer Cells. Oncotarget 2017, 8, 28342–28358. [Google Scholar] [CrossRef]
- Songoen, W.; Phanchai, W.; Brecker, L.; Wenisch, D.; Jakupec, M.A.; Pluempanupat, W.; Schinnerl, J. Highly Aromatic Flavan-3-Ol Derivatives from Palaeotropical Artocarpus lacucha Buch.-Ham Possess Radical Scavenging and Antiproliferative Properties. Molecules 2021, 26, 1078. [Google Scholar] [CrossRef]
- Nonpanya, N.; Sanookpan, K.; Joyjamras, K.; Wichadakul, D.; Sritularak, B.; Chaotham, C.; Chanvorachote, P. Norcycloartocarpin Targets Akt and Suppresses Akt-Dependent Survival and Epithelial-Mesenchymal Transition in Lung Cancer Cells. PLoS ONE 2021, 16, e0254929. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Grijaldo, S.J.B.; Alvarez, M.R.S.; Heralde, F.M.I.I.I.; Nacario, R.C.; Lebrilla, C.B.; Rabajante, J.F.; Completo, G.C. Integrating Computational Methods in Network Pharmacology and In Silico Screening to Uncover Multi-Targeting Phytochemicals against Aberrant Protein Glycosylation in Lung Cancer. ACS Omega 2023, 8, 20303–20312. [Google Scholar] [CrossRef]
- Yuniarti, L.; Fakih, T.; Tejasari, M.; Indriyanti, R.; Maryam, E.; Nugroho, B. Comprehensive Bioactive Compound Profiling of Artocarpus heterophyllus Leaves: LC-MS/MS Analysis, Antioxidant Potential, and Molecular Insights. Drug Des. Devel. Ther. 2025, 19, 1195–1213. [Google Scholar] [CrossRef]
- Kamiya, T.; Yamaguchi, Y.; Oka, M.; Hara, H. Combined Action of FOXO1 and Superoxide Dismutase 3 Promotes MDA-MB-231 Cell Migration. Free Radic. Res. 2022, 56, 106–114. [Google Scholar] [CrossRef]
- Lee, D.K.; Oh, J.; Park, H.W.; Gee, H.Y. Anchorage Dependence and Cancer Metastasis. J. Korean Med. Sci. 2024, 39, e156. [Google Scholar] [CrossRef]
- Kumar, M.; Potkule, J.; Tomar, M.; Punia, S.; Singh, S.; Patil, S.; Singh, S.; Ilakiya, T.; Kaur, C.; Kennedy, J.F. Jackfruit Seed Slimy Sheath, a Novel Source of Pectin: Studies on Antioxidant Activity, Functional Group, and Structural Morphology. Carbohydr. Polym. Technol. Appl. 2021, 2, 100054. [Google Scholar] [CrossRef]
- Lee, M.T.; Lin, W.C.; Yu, B.; Lee, T.T. Antioxidant Capacity of Phytochemicals and Their Potential Effects on Oxidative Status in Animals—A Review. Asian-Australas. J. Anim. Sci. 2016, 30, 299–308. [Google Scholar] [CrossRef]
- Sabidi, S.; Koh, S.P.; Abd Shukor, S.; Adzni Sharifudin, S.; Sew, Y.S. Safety Assessment of Fermented Jackfruit (Artocarpus heterophyllus) Pulp and Leaves in Sprague-Dawley Rats. Food Sci. Nutr. 2020, 8, 4370–4378. [Google Scholar] [CrossRef]
- Hernández-Fuentes, G.A.; Delgado-Enciso, I.; Enríquez-Maldonado, I.G.; Delgado-Machuca, J.J.; Zaizar-Fregoso, S.A.; Hernandez-Rangel, A.E.; Garcia-Casillas, A.C.; Guzman-Esquivel, J.; Rodriguez-Sanchez, I.P.; Martinez-Fierro, M.L.; et al. Antitumor Effects of Annopurpuricin A, an Acetogenin from the Roots of Annona purpurea. Rev. Bras. Farmacog. 2024, 34, 111–121. [Google Scholar] [CrossRef]
Metabolites | AHEE |
---|---|
Tannins (FeCl3) | +++ |
Tannins (gelatin hydrolysis) | + |
Flavonoids (Shinoda test) | +++ |
Flavonoids (Salkowski test) | +++ (Chalcones) |
Steroids | +++ |
Alkaloids (Dragendorff test) | + |
Alkaloids (Wagner test) | + |
Alkaloids (Mayer test) | − |
Saponins (hemolysis in agar) | − |
Saponins (foam formation) | − |
Coumarins (NaOH test) | + |
TFC a | QE = 0.45 ± 0.02 mg/g extract |
FRPA b | percentage reduction = 34.09 ± 0.24 |
TAC c | percentage TAC = 81.25 ± 4.25 |
TPC d | GAE = 3.34 ± 0.01 µg/mg extract |
DPPH e | Scavenging effect = 86.34 ± 4.18% |
Overall Color Difference (∆E)2 Mean ± SD | Control | AHEE 1.0 mg/mL | AHEE 0.5 mg/mL | Ascorbic Acid | |
---|---|---|---|---|---|
post hoc p-values at hour 24 | |||||
Control | 20.41 ± 3.41 | <0.001 | <0.001 | <0.001 | |
AHEE 1.0 mg/mL | 14.98 ± 1.60 | <0.001 | ns | <0.001 | |
AHEE 0.5 mg/mL | 13.64 ± 1.60 | <0.001 | ns | <0.001 | |
Ascorbic acid | 8.28 ± 1.48 | <0.001 | <0.001 | <0.001 | |
P (ANOVA) | <0.001 | ||||
post hoc p-values at hour 36 | |||||
Control | 27.19 ± 2.32 | ns | <0.001 | <0.001 | |
AHEE 1.0 mg/mL | 20.53 ± 0.61 | <0.001 | ns | <0.001 | |
AHEE 0.5 mg/mL | 17.60 ± 3.75 | ns | ns | <0.001 | |
Ascorbic acid | 10.28 ± 0.67 | <0.001 | <0.001 | <0.001 | |
P (ANOVA) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera-Licona, A.; Hernández-Fuentes, G.A.; Beas-Guzmán, O.F.; Hernández-Rangel, A.E.; Diaz-Martinez, J.; Montesinos-López, O.A.; Guzmán-Esquivel, J.; Cervantes-Kardasch, V.H.; Ramírez-Flores, M.; Rodriguez-Hernandez, A.; et al. Exploring the Anticancer Activity of Artocarpus heterophyllus Leaves: Selective Effects on Triple-Negative Breast Cancer and HPV16-Positive Tumorigenic Cells. Life 2025, 15, 1090. https://doi.org/10.3390/life15071090
Cabrera-Licona A, Hernández-Fuentes GA, Beas-Guzmán OF, Hernández-Rangel AE, Diaz-Martinez J, Montesinos-López OA, Guzmán-Esquivel J, Cervantes-Kardasch VH, Ramírez-Flores M, Rodriguez-Hernandez A, et al. Exploring the Anticancer Activity of Artocarpus heterophyllus Leaves: Selective Effects on Triple-Negative Breast Cancer and HPV16-Positive Tumorigenic Cells. Life. 2025; 15(7):1090. https://doi.org/10.3390/life15071090
Chicago/Turabian StyleCabrera-Licona, Ariana, Gustavo A. Hernández-Fuentes, Oscar F. Beas-Guzmán, Alejandra E. Hernández-Rangel, Janet Diaz-Martinez, Osval A. Montesinos-López, José Guzmán-Esquivel, Víctor H. Cervantes-Kardasch, Mario Ramírez-Flores, Alejandrina Rodriguez-Hernandez, and et al. 2025. "Exploring the Anticancer Activity of Artocarpus heterophyllus Leaves: Selective Effects on Triple-Negative Breast Cancer and HPV16-Positive Tumorigenic Cells" Life 15, no. 7: 1090. https://doi.org/10.3390/life15071090
APA StyleCabrera-Licona, A., Hernández-Fuentes, G. A., Beas-Guzmán, O. F., Hernández-Rangel, A. E., Diaz-Martinez, J., Montesinos-López, O. A., Guzmán-Esquivel, J., Cervantes-Kardasch, V. H., Ramírez-Flores, M., Rodriguez-Hernandez, A., González-Espinosa, E. R., Castellanos-Gutiérrez, A. B., Orozco-Ramos, F., Melnikov, V., & Delgado-Enciso, I. (2025). Exploring the Anticancer Activity of Artocarpus heterophyllus Leaves: Selective Effects on Triple-Negative Breast Cancer and HPV16-Positive Tumorigenic Cells. Life, 15(7), 1090. https://doi.org/10.3390/life15071090