Next Article in Journal
The Effects of Levosimendan on Microcirculation and Peripheral Perfusion in Septic Shock: A Pilot Study
Previous Article in Journal
Bicuspid Aortic Valve and Sudden Cardiac Death
Previous Article in Special Issue
Hypoglycemic, Antioxidant Activities, and Probiotic Characteristics of Lacticaseibacillus rhamnosus LBUX2302 Isolated from Stool Samples of Neonates
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Morphological and Molecular Characterization of a New Section and Two New Species of Alternaria from Iran

by
Abdollah Ahmadpour
1,*,
Youbert Ghosta
2,
Zahra Alavi
2,
Fatemeh Alavi
2,
Leila Mohammadi Hamidi
2 and
Pabulo Henrique Rampelotto
3,*
1
Higher Education Center of Shahid Bakeri, Urmia University, Miyandoab 59781-59111, Iran
2
Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 57561-51818, Iran
3
Bioinformatics and Biostatistics Core Facility, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil
*
Authors to whom correspondence should be addressed.
Life 2025, 15(6), 870; https://doi.org/10.3390/life15060870
Submission received: 12 April 2025 / Revised: 17 May 2025 / Accepted: 26 May 2025 / Published: 28 May 2025

Abstract

:
Alternaria is a large genus of fungi comprising approximately 400 species, currently classified into 29 sections. These fungi exhibit a cosmopolitan distribution, thriving in both natural and human-impacted environments with saprophytic, endophytic, and parasitic lifestyles. As part of our ongoing studies on fungi associated with wetland plants in the families Cyperaceae and Juncaceae across various regions of Iran, we isolated 21 fungal strains displaying morphological traits of Alternaria. Multigene phylogenetic analysis and morphological examination of eight selected strains confirmed their placement within Alternaria with strong support. These isolates formed a basal clade distinct from the 29 previously recognized sections and six monotypic lineages, leading to the establishment of a new section, Alternaria section Iraniana, to accommodate them. Furthermore, two monophyletic lineages within this section were identified, representing two new species, A. avrinica and A. iraniana, which are described and illustrated in this study. The new section is distinguished by long, semi-macronematous to macronematous conidiophores with multiple geniculate and sympodial proliferations, as well as solitary, non-beaked conidia that have only transverse eu-septa to pseudo-septa. The newly described species are differentiated based on conidiophore and conidial characteristics and nucleotide sequence comparisons of genomic regions. These results contribute to a better understanding of the distribution and host range of Alternaria species, while highlighting the importance of ongoing research into fungal taxonomy and biodiversity in Iran, a region rich in potential for the discovery of new fungal species.

1. Introduction

The fungal genus Alternaria was established by Nees in 1816 on a single species, A. tenuis [1]. Nees originally described Alternaria as “erect, scattered, dark hyphae with separate three to four oval articulations, united by filiform connections”. However, this description lacked clarity and completeness, which complicated accurate species identification. Despite these limitations, Nees’s account is now considered sufficiently detailed to be recognized as referring to Alternaria [2,3]. In 1832, Fries introduced Torula alternata in Systema Mycologicum, without recognizing Alternaria as a distinct genus, and instead, listed A. tenuis Nees as a synonym of T. alternata [4]. Concurrently, Fries established the genus Macrosporium, which is morphologically similar to Alternaria [5]. The taxonomy of this group of phaeodictyosporic hyphomycetes became even more complex with the later descriptions of two additional genera, Stemphylium Wallroth (1833) and Ulocladium Preuss (1851) [6,7,8]. Von Keissler re-evaluated the descriptions of A. tenuis Nees and T. alternata Fr. and synonymized them under A. alternata, which is now recognized as the type species of Alternaria [9]. Although mycelium, conidiophores, and conidia served as diagnostic traits among these genera, differentiation primarily relied on conidial morphology. In an effort to revise the taxonomy and nomenclature of Alternaria and Macrosporium, the two genera were treated as separate, the generic concept of Alternaria was refined, and six morphological groups were proposed based on spore features [2]. The representative species of Alternaria and Macrosporium were later examined to clarify their classification [4]. It was concluded that Alternaria and Macrosporium are congeneric, and Macrosporium was discarded as a nomen ambiguum in favor of Alternaria.
Given the extensive morphological diversity within Alternaria and its related genera, efforts were made to classify the genus into subgeneric groups. Neergaard categorized Alternaria species in Denmark into three sections based on conidial catenulation, each typified by a species [10]. Species within each section were identified using conidial characteristics such as shape, size, color, surface ornamentation, and beak morphology. This classification led to the identification of 16 species, two varieties, and a few special forms. Similarly, Joly classified Alternaria species into three sections based on conidia color, rigidity, and lateral symmetry [11]. Simmons redefined the generic concepts of Alternaria, Stemphylium, and Ulocladium by examining authenticated specimens and emphasizing sporulation patterns, juvenile and mature conidial shapes, and modes of conidiophores and conidia proliferation [3]. Alternaria alternata (Fries) Keissler was formally designated as the type species of Alternaria. Ellis provided detailed descriptions and illustrations for 44 Alternaria taxa [12,13]. Subsequent studies expanded the number of species to approximately 70 [14,15,16,17,18,19]. Simmons introduced a species-group system based on conidial characteristics, the patterns of chain formation, and the nature of apical extensions of conidial cells, defining 14 species-groups [20]. Further species-groups were later described [21,22,23]. However, molecular phylogenetic studies reveal that many Alternaria species clades do not fully correspond with species-groups established based on morphology [8,22,23,24,25,26,27]. Lawrence et al. elevated species-groups to the taxonomic rank of section and established eight sections within the Alternaria complex, each typified by a type species [7]. However, the A. infectoria species-group was not granted section status. Woudenberg et al. redefined Alternaria using a combination of multi-gene phylogenetic analysis and morphological characteristics, emended its generic circumscription, added 16 new sections, identified six monotypic lineages, and synonymized 13 sexual and asexual generic names (Allewia, Brachycladium, Chalastospora, Chmelia, Crivellia, Embellisia, Lewia, Nimbya, Sinomyces, Teretispora, Ulocladium, Undifilum, and Ybotromyces) under Alternaria [8]. Subsequent studies added five more sections, bringing the total number of sections to 29 [28,29,30,31,32].
As part of our ongoing studies of fungi from various wetland plants in different regions of Iran, we isolated and purified 21 fungal strains with morphological characteristics similar to those of the genus Alternaria. Following a thorough morphological examination, eight strains were selected for further study using multi-gene phylogenetic analyses. The results indicate that these isolates represent a new basal section within the Alternaria complex, forming two monophyletic lineages and representing two new species. This study aims to introduce and describe the newly identified section, Alternaria section Iraniana, along with two new species: Alternaria avrinica and A. iraniana. Detailed morphological descriptions and illustrations are provided, along with a discussion of their phylogenetic relationships within the Alternaria complex.

2. Materials and Methods

2.1. Fungal Isolates

Leaf and culm samples exhibiting brown lesions and blight symptoms were collected from various wetland plants belonging to the families of Cyperaceae and Juncaceae across three provinces in Iran, Guilan, West Azarbaijan, and Zanjan, between 2019 and 2021. The samples were labeled, stored at low temperatures, and transported to the laboratory. Fungal isolation and purification followed the method described by Ahmadpour et al. [33]. The isolated fungal strains were preserved on Potato Dextrose Agar (PDA; 39 g/L, Merck, Darmstadt, Germany) slants at 4 °C and on sterile filter paper segments at –20 °C. All purified isolates were deposited in the fungal culture collections of the Iranian Research Institute of Plant Protection (IRAN) and Urmia University (FCCUU).

2.2. Morphological Characterization

For morphological characterization, purified isolates were cultured on Potato Carrot Agar (PCA) and incubated at 23–25 °C under Cool White fluorescent light, following an 8/16 h light/dark cycle for 5–7 days without humidity control [34,35]. Appropriate slide mounts were prepared using lactophenol, and microscopic features of the hyphae, conidiophores, and conidia were examined using an Olympus AX70 compound microscope with differential interference contrast (DIC) illumination (Olympus Optical CO., Ltd., Tokyo, Japan). Thirty to fifty structures of each type were measured, and microphotographs were captured from slide mounts and edited using Adobe Photoshop 2020 v. 2.10.8 software (Adobe Inc., San Jose, CA, USA). Colony morphology was assessed on PDA, PCA, and V-8A (comprising 175 mL of commercial V8 vegetable juice, 3 g CaCO3, 20 g agar, and 1000 mL distilled water) media after a 7-day incubation at 25 °C in the dark. Colony colors were identified using Rayner’s color charts [36]. Newly described taxa were registered in MycoBank [37].

2.3. DNA Extraction and PCR Amplification

Genomic DNA was extracted from fresh fungal mycelium scraped from 10-day-old PDA cultures using a standard sodium dodecyl sulfate (SDS) lysis buffer. The procedure included chloroform extraction and isopropanol precipitation [38]. Amplification targeted the small subunit rRNA (SSU), internal transcribed spacer (ITS-rDNA), large subunit rRNA (LSU), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase II largest subunit (RPB2), and translation elongation factor 1-alpha (TEF1) genes, using the primer pairs listed in Table 1. PCR conditions and reaction mixtures followed by Ahmadpour et al. [33,39]. Amplicons were analyzed on a 1% agarose gel stained with FluoroVueTM Nucleic Acid Gel Stain (SMOBIO Technology Inc., Hsinchu, Taiwan), and fragment sizes were compared against a FluoroBandTM 100 bp+3K Fluorescent DNA Ladder (SMOBIO Technology Inc., Hsinchu, Taiwan). PCR products were cleaned and sequenced by Macrogen Corp. (Seoul, South Korea) using the same primers as in PCR amplification. The resulting sequences were submitted to GenBank (Table 2).

2.4. Sequence Alignment and Phylogenetic Analyses

The generated sequences were processed and trimmed using MEGA 6.0 before being exported as FASTA files for further analysis [45]. Corresponding sequences from type or representative Alternaria strains were retrieved from the GenBank database and incorporated into phylogenetic analyses (Table 2) [7,8,23,27,28,29,30,31,32,36,46,47]. Multiple sequence alignments for each locus were performed using the MAFFT version 7 online tool (https://mafft.cbrc.jp/alignment/server/; accessed on 20 February 2025) [48], with additional manual refinements in MEGA 6.0 as needed. Concatenated multi-gene datasets were assembled using Mesquite v. 3.61 [49]. Two separate multi-locus phylogenetic analyses were conducted: (1) incorporating 167 representative strains from five families in the suborder Pleosporineae, using five gene sequences (SSU, ITS, LSU, GAPDH, and RPB2) to determine the placement of the studied isolates, and (2) incorporating 110 representative strains from 29 Alternaria sections and six monotypic lineages, using six gene sequences (SSU, ITS, LSU, GAPDH, RPB2, and TEF1), to resolve the placement of strains within the Alternaria complex. Bayesian inference (BI) analysis was performed in MrBayes v. 3.2.7 [50] using the Markov Chain Monte Carlo method with four chains, one-million generations, and a heated chain temperature of 0.1. Trees were sampled every 1000 generations, with a 25% burn-in, and posterior probabilities were calculated from the remaining trees. Convergence was confirmed when the average standard deviation of split frequencies dropped below 0.01. The best-fit evolutionary models for BI were determined using MrModeltest 2.3 [51] and the Akaike Information Criterion (AIC) (Table 3). Maximum-likelihood (ML) analysis was conducted using RAxML-HPC BlackBox v. 8.2.12 [52] via the CIPRES Science Gateway version 3.3 (accessible at https://www.phylo.org/; accessed on 20 February 2025) [53], applying the GTRGAMMA+I substitution model. Maximum Parsimony (MP) analysis was performed in PAUP v. 4.0b10 [54], using a heuristic search with 1000 random sequence additions and tree-bisection-reconnection (TBR) branch swapping while treating gaps as missing data. Bootstrap support values were estimated from 1000 replicates, and tree statistics—including Tree Length (TL), Consistency Index (CI), Retention Index (RI), and Homoplasy Index (HI)—were calculated for the MP analysis. Outgroup taxa consisted of Halojulella avicenniae (BCC 18422) for the first analysis, and Stemphylium botryosum (CBS 714.68) and S. vesicarium (CBS 191.86) for the second analysis. The final phylogenetic trees were visualized using FigTree v. 1.4.4 [55].

3. Results

3.1. Phylogenetic Analyses

The results of the first phylogenetic analysis, which included 167 representative strains from five families in the suborder Pleosporineae, are presented in Figure 1. The eight studied strains were placed within the large Alternaria clade with strong support (ML/MP/BI = 100/100/1), confirming their identities as Alternaria. The concatenated matrix, which used SSU, ITS, LSU, GAPDH, and RPB2 sequences, contained a total of 4050 characters, including gaps (1373 SSU, 437 for ITS, 689 LSU, 534 for GAPDH, and 837 for RPB2). Of these, 2807 were constant sites, 1243 were variable sites, 292 were parsimony-uninformative sites, and 951 were parsimony-informative sites (Table 3). The most parsimonious tree yielded the following metrics: TL = 8516, CI = 0.241, RI = 0.686, HI = 0.759. The results of the second phylogenetic analysis, which included 110 representative strains from 29 Alternaria sections and 6 monotypic lineages, are presented in Figure 2. The studied isolates formed a distinct subclade at the base of the large Alternaria clade and comprised two monophyletic lineages, representing two different species. The concatenated matrix, which used SSU, ITS, LSU, GAPDH, RPB2, and TEF1 sequences, contained a total of 4003 characters including gaps (1022 for SSU, 457 for ITS, 851 for LSU, 557 for GAPDH, 799 for RPB2, and 317 for TEF1). Of these, 3105 were constant sites, 898 were variable sites, 121 were parsimony-uninformative sites, and 777 were parsimony-informative sites (Table 3). The most parsimonious tree yielded the following metrics: TL = 4299, CI = 0.329, RI = 0.728, HI = 0.671. The topologies of individual gene trees were consistent, with no conflicts observed in species delimitation. The best-scoring RAxML trees are shown in Figure 1 and Figure 2. A summary of phylogenetic information and substitution models for each dataset is provided in Table 3. Based on the phylogenetic results and morphological characteristics, a new section, Alternaria section Iraniana, and two new species, A. avrinica and A. iraniana (the type species of the new section), are introduced and described.

3.2. Taxonomy

A total of 21 fungal isolates were obtained from various plants in the families Cyperaceae and Juncaceae. All isolates were examined morphologically, and eight representative isolates from different plant hosts were selected for phylogenetic analyses. Based on phylogenetic and morphological analyses, the studied isolates were assigned to a new section, designated here as Alternaria section Iraniana, which includes two new species: A. avrinica and A. iraniana. Detailed morphological descriptions and illustrations of the new taxa are provided, along with a discussion of their phylogenetic relationships with other species in the Alternaria sections.

3.2.1. Section Iraniana A. Ahmadpour, Y. Ghosta, Z. Alavi, F. Alavi & L. Mohammadi, sect. nov.

MycoBank No. MB 858618
Type species. Alternaria iraniana A. Ahmadpour, Y. Ghosta, Z. Alavi, F. Alavi & L. Mohammadi
Diagnosis. Members of Alternaria section Iraniana are characterized by long, simple, semi-macronematous to macronematous conidiophores with multiple geniculate, sympodial proliferation and mono- to polytretic conidiogenous loci. Conidia are solitary, ellipsoidal to cylindrical, non-beaked, and contain only transverse eu- or pseudo-septa. Apical cells in some conidia germinate with the production of a secondary conidiophore, bearing solitary conidia, while they are attached to primary conidiophores. Sexual morph was not observed. This section is associated with plants in the families Cyperaceae and Juncaceae.
Notes. Based on phylogenetic analyses, the studied isolates formed a well-separated basal clade within the large Alternaria complex, distinct from all other known sections and monotypic lineages. Section Crivellia is the closest relative to the section Iraniana (Figure 1 and Figure 2).

3.2.2. Alternaria avrinica A. Ahmadpour, Y. Ghosta, Z. Alavi, F. Alavi & L. Mohammadi, sp. nov. (Figure 3)

MycoBank No. MB 858619
Etymology. The name refers to Avrin Mountain, located in Khoy County, West Azarbaijan province, where the holotype was collected.
Diagnosis: Differs from A. iraniana by the size of primary conidiophores, conidia, and absence of secondary conidiophores.
Typification. Iran, West Azarbaijan province, Khoy County, Avrin Mountain, isolated from the culms of Juncus sp. (Juncaceae, Poales), 20 September 2021, A. Ahmadpour (holotype IRAN 18204F, ex-type culture IRAN 4772C).
Description. Asexual morph on PCA medium: Hyphae 2–4 μm wide, pale brown to brown, smooth, septate, branched. Conidiophores (32–)47–187(–250) × 4–5 µm ( x ¯ = 118 × 4.5 μm, n = 50), mononematous, semi-macronematous to macronematous, unbranched, straight to flexuous, septate, geniculate, brown to dark brown, paler towards the apex, rarely swollen at the base. Conidiogenous cells mono- to polytretic, sympodial proliferation, integrated, terminal or intercalary, subcylindrical to slightly swollen, pale brown to brown, smooth-walled, with thickened and darkened scars. Conidia (9–)12–30(–35) × 5–7 µm ( x ¯ = 23 × 6 μm, n = 50), solitary, pale brown to brown, smooth-walled, straight, ellipsoidal to cylindrical, tapering towards rounded ends, without beak, 1–5 transverse septate, (of which 1–4 (mostly 3) are eu-septate and 1–2 disto-septate), without longitudinal and oblique septa; hila 1–2 μm wide, inconspicuous, flat, thickened, and darkened. Sexual morph and chlamydospores were not observed.
Figure 3. Alternaria avrinica (IRAN 4772C). (a,b) Host (Juncus sp.); (ce) Colony on PDA (c), PCA (d), and V-8A (e) after 7 days; (f) Sporulation pattern on PCA (40×); (gm) Conidiophores and conidia. Scale bars: (gm) = 10 μm.
Figure 3. Alternaria avrinica (IRAN 4772C). (a,b) Host (Juncus sp.); (ce) Colony on PDA (c), PCA (d), and V-8A (e) after 7 days; (f) Sporulation pattern on PCA (40×); (gm) Conidiophores and conidia. Scale bars: (gm) = 10 μm.
Life 15 00870 g003
Culture characteristics. Colony on PCA 42 mm diam., after 7 days at 25 °C, flat, entire, circular, margin regular, olivaceous grey, with white to grey aerial mycelia; reverse olivaceous grey. Colony on PDA 39 mm diam., flat, entire, circular, margin regular, cottony appearance, with white to grey aerial mycelia; reverse grey. Colony on V-8A 26 mm diam., flat, entire, circular, margin entire, hairy appearance, grey, with sparse white to grey aerial mycelia; reverse grey at the center and hyaline at the margin. Sporulation abundant on PCA, and V-8A media, from the erect conidiophores that arise directly from the surface or the aerial hyphae.
Additional specimens examined. Iran, West Azarbaijan province, Khoy County, Avrin Mountain, on infected culms of Juncus sp., 20 September 2021, A. Ahmadpour (culture IRAN 5031C). Iran, Zanjan province, Tarom County, Gilvan city, on infected leaves and culms of Carex sp. (Cyperaceae, Poales), 11 September 2022, A. Ahmadpour (culture FCCUU 1419). —ibid. on infected culms of Juncus sp., 11 September 2022, A. Ahmadpour (culture FCCUU 1420).
Notes. Alternaria avrinica is morphologically similar and phylogenetically closely related to A. iraniana, A. papavericola, and A. penicillata. This species can be differentiated from A. iraniana by its larger conidia (9–35 × 5–7 vs. 10–32 × 4–6 μm), shorter primary conidiophores (32–250 vs. 50–337 μm), and the absence of secondary conidiophores; from A. papavericola by longer conidiophores (32–250 vs. 20–130 μm), smaller conidia (9–35 × 5–7 vs. 40–70 × 6–8 μm), fewer transverse septa (1–5 vs. 3–8), and absence of chlamydospores and ascomata (melanized chlamydospore-like thick-walled cells are commonly formed in A. papavericola); and from A. penicillata by longer conidiophores (32–250 vs. 30–60 μm), and the absence of microsclerotia and ascomata [56]. A comparison of nucleotide differences in SSU, ITS, LSU, GAPDH, RPB2, and TEF1 indicates that A. avrinica type strain (IRAN 4772C) differs from A. iraniana type strain (IRAN 5030C) by 6/513 bp (1.16%, with 3 gaps (0%)) in ITS, 3/810 bp (0.37%) in LSU, 13/567 bp (2.29%, with 4 gaps (0%)) in GAPDH, 28/762 bp (3.67%) in RPB2 and 5/183 bp (2.73%) in TEF1, from A. papavericola type strain (CBS 116606) by 2/807 bp (0.24%, with one gap (0%)) in SSU, 27/515 bp (5.24%, with 8 gaps (1%)) in ITS, 3/833 bp (0.36%) in LSU, 61/557 bp (10.95%, with 10 gaps (1%)) in GAPDH, 63/793 bp (7.94%) in RPB2 and 23/179 bp (12.84%, with 3 gaps (1%)) in TEF1 and from A. penicillata type strain (CBS 116608) by 2/807 bp (0.24%, with one gap (0%)) in SSU, 32/515 bp (6.21%, with 7 gaps (1%)) in ITS, 3/833 bp (0.36%) in LSU, 65/559 bp (11.62%, with 16 gaps (2%)) in GAPDH, 68/793 bp (8.57%) in RPB2 and 17/179 bp (9.49%, with 3 gaps (1%)) in TEF1.

3.2.3. Alternaria iraniana A. Ahmadpour, Y. Ghosta, Z. Alavi, F. Alavi & L. Mohammadi, sp. nov. (Figure 4)

MycoBank No: MB 858620
Etymology. Named after the country “Iran”, where the holotype was collected.
Typification. Iran, Guilan province, Asalem County, isolated from the culms of Juncus sp. (Juncaceae, Poales), 9 September 2022, A. Ahmadpour (holotype IRAN 18473F, ex-type culture IRAN 5030C).
Description. Asexual morph on PCA medium: Hyphae 2–4 μm wide, pale brown to brown, smooth, septate, branched. Conidiophores (50–)75–250(–337) × 4–5 µm ( x ¯ = 150 × 4.5 μm, n = 50), mononematous, semi-macronematous to macronematous, unbranched, straight to flexuous, septate, geniculate, brown to dark brown, paler towards the apex. Conidiogenous cells mono- to polytretic, sympodial proliferation, integrated, terminal or intercalary, subcylindrical to slightly swollen, pale brown to brown, smooth-walled, with thickened and darkened scars. Apical cells in some conidia germinate with the production of a secondary conidiophore, resembling primary conidiophores in size and geniculations, bearing solitary conidia, while they are attached to primary conidiophores. Conidia (10–)13–29(–32) × 4–6 µm ( x ¯ = 20 × 5 μm, n = 50), solitary, pale brown to brown, smooth-walled, straight, ellipsoidal to cylindrical, 1–4 transverse septa, (of which 1–3 (mostly 3) are eu-septate and 1–3 disto-septate), without longitudinal and oblique septa; hila 1–2 μm wide, inconspicuous, flat, thickened, and darkened. Sexual morph and chlamydospores were not observed.
Figure 4. Alternaria iraniana (IRAN 5030C). (a,b) Host (Juncus sp.); (ce) Colony on PDA (c), PCA (d), and V-8A (e) after 7 days; (f,g) Sporulation pattern on PCA (f = 10×, g = 40×); (hp) Conidiophores and conidia. Scale bars: (hp) = 10 μm.
Figure 4. Alternaria iraniana (IRAN 5030C). (a,b) Host (Juncus sp.); (ce) Colony on PDA (c), PCA (d), and V-8A (e) after 7 days; (f,g) Sporulation pattern on PCA (f = 10×, g = 40×); (hp) Conidiophores and conidia. Scale bars: (hp) = 10 μm.
Life 15 00870 g004
Culture characteristics. Colony on PCA 50 mm diam., after 7 days at 25 °C, flat, entire, circular, margin regular, grey with white to grey aerial mycelia; reverse grey. Colony on PDA 46 mm diam., flat, entire, circular, margin regular, velvety, with white to grey aerial mycelia; reverse pale brown at the center to grey at the margin. Colony on V-8A 22 mm diam., flat, entire, circular, margin entire, hairy appearance, grey with sparse white to grey aerial mycelia; reverse grey at the center and hyaline at the margin. Sporulation abundant on PCA, and V-8A media, from the erect conidiophores that arise directly from the surface or the aerial hyphae.
Additional specimens examined. Iran, Guilan province, Asalem County, isolated from the culms of Juncus sp. (Juncaceae, Poales), 9 September 2022, A. Ahmadpour (cultures FCCUU 1421, FCCUU 1422, FCCUU 1423).
Notes. Alternaria iraniana is morphologically similar and phylogenetically closely related to A. avrinica, A. papavericola, and A. penicillata. This species can be differentiated from A. avrinica by its smaller conidia (10–32 × 4–6 vs. 9–35 × 5–7 μm), longer primary conidiophores (50–337 vs. 32–250 μm), and the presence of secondary conidiophores; from A. papavericola by longer conidiophores (50–337 vs. 20–130 μm), smaller conidia (10–32 × 4–6 vs. 40–70 × 6–8 μm), fewer transverse septa (1–4 vs. 3–8); and from A. penicillata by longer conidiophores (50–337 vs. 30–60 μm), smaller conidia (10–32 × 4–6 vs. 17–35 × 5–7) and the absence of microsclerotia and ascomata [56]. Comparisons of nucleotide differences in A. iraniana are provided in the notes section for A. avrinica. A comparison of nucleotide differences in ITS, LSU, GAPDH, RPB2, and TEF1 indicates that A. iraniana type strain (IRAN 5030C) differs from A. papavericola type strain (CBS 116606) by 29/545 bp (5.32%, with 6 gaps (1%)) in ITS, 2/826 bp (0.24%) in LSU, 66/560 bp (11.78%, with 14 gaps (2%)) in GAPDH, 64/829 bp (7.72%, with 1 gaps (0%)) in RPB2 and 33/221 bp (14.93%, with 5 gaps (2%)) in TEF1 and from A. penicillata type strain (CBS 116608) by 31/515 bp (5.67%, with 6 gaps (1%)) in ITS, 2/826 bp (0.14%) in LSU, 59/558 bp (10.57%, with 8 gaps (1%)) in GAPDH, 68/829 bp (8.20%, with 1 gaps (0%)) in RPB2 and 27/221 bp (12.21%, with 5 gaps (2%)) in TEF1.

4. Discussion

Alternaria (Pleosporaceae, Pleosporales, Dothideomycetes, Ascomycota) is a widely distributed fungal genus found in diverse habitats and substrates, including agricultural products, animals, the atmosphere, food and feed commodities, indoor environments, plants, and soil [8,57,58,59]. According to the Index Fungorum database (https://www.indexfungorum.org/; accessed 29 March 2025), 861 species epithets have been recorded, although only approximately 400 species have been formally described [33,39,60,61,62,63,64,65]. Many species in this genus are plant pathogens, responsible for destructive diseases in more than 400 plant species, and some act as post-harvest pathogens, contributing to losses of horticultural products [66,67,68,69]. Additionally, some Alternaria species are opportunistic pathogens in animals and humans or serve as airborne allergens. They are also well-known for producing toxic secondary metabolites, including mycotoxins and host-specific toxins, which pose serious food safety risks when contaminating food and feed [70,71,72,73,74,75,76,77]. Accurate species identification is essential in both fundamental and applied fungal research, aiding in the understanding of fungal biology, biodiversity, evolution, and ecological impact [56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81]. Traditionally, species identification has relied on morphological characteristics of asexual/sexual morphs, with host relationships being a secondary factor [20,35,82,83,84]. However, phylogenetic studies demonstrate that these morphological classifications do not always reflect true evolutionary relationships [28,46,85]. Currently, species delimitation is based on multi-locus sequence analysis combined with morphological characteristics; however, various gene combinations are used for species identification, depending on the specific sections of Alternaria [8,32,69,86,87]. These advances have refined Alternaria taxonomy, clarified species boundaries, and facilitated the regular description of new species.
Cyperaceae and Juncaceae are two families of graminoid, monocotyledonous flowering plants that dominate wetland ecosystems. They provide essential ecological functions, such as habitat and food for wildlife, nutrient cycling, and water purification. In addition, they have various traditional applications in cosmetics, medicine, perfumery, and handicrafts. However, they are also considered invasive weeds that compete with crop plants and harbor diverse fungal communities [88,89,90,91,92,93,94]. Identifying and characterizing fungi associated with these plants is of primary relevance for understanding their impact on host health, host range, and potential for disease management, biocontrol applications, and biotechnology. In our study on fungi associated with plants in families Cyperaceae and Juncaceae, 21 strains resembling the genus Alternaria were isolated and purified. These strains exhibited simple, elongated, geniculately proliferating conidiophores, and solitary beakless conidia with only transverse septa, both eu-septa and distosepta. The morphological characteristics of conidiophores, especially successive geniculations with porospores and the formation of solitary conidia at each condiogenous locus, are somewhat similar to those of Pleosporaceae genera (Bipolaris, Curvularia, Exserohilum, Johnalcornia, and Pyrenophora). However, the conidial shape and the formation of transverse eu-septa distinguish the new species from those of other Pleosporaceae genera [95,96,97]. Multi-gene phylogenetic analysis confirmed that the studied strains form a well-supported monophyletic clade within Alternaria (Figure 1 and Figure 2), positioned as a basal clade relative to other Alternaria sections and monotypic lineages. Based on these findings, we propose a new section, Iraniana. The topology of our phylogenetic tree aligns with those of Lawrence et al. [8] and Li et al. [59]. The closest related section, Crivellia, includes two species, A. penicillata, and A. papavericola, isolated from Papaver spp. (Papaveraceae) [56]. While species in both sections share similar conidial morphology and septation patterns, members of section Iraniana lack microsclerotia/chlamydospore formation and sexual morphs (pseudothecia), which are observed in section Crivellia. Within section Iraniana, two species were identified and differentiated based on morphological characteristics and nucleotide sequence comparisons. In our previous studies, we identified 13 species of Alternaria within section Nimbya [33,38,39]. The present study further highlights that plants in the families of Cyperaceae and Juncaceae serve as primary hosts of previously undescribed Alternaria species. Additional research is required to explore their full diversity in wetlands, assess the pathogenicity and host range of these newly identified strains, and evaluate their potential for biocontrol of weedy wetland plants. On fostering interdisciplinary collaboration, we can better address the challenges posed by these fungi and leverage their potential benefits in sustainable agriculture and ecosystem management.

Author Contributions

A.A. and Y.G. designed and performed sampling, fungal isolation, experiments, writing, and editing, and A.A., Z.A., F.A. and L.M.H. took photography. A.A., F.A. and P.H.R. carried out phylogenetic analyses. All authors have read and agreed to the published version of the manuscript.

Funding

This work is based upon research funded by the Iran National Science Foundation (INSF) under project No. 99033118.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All of the data supporting the findings of this study are available in the main text.

Acknowledgments

The authors thank the Iran National Science Foundation (INSF), and the Research Deputy of Urmia University.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Nees von Esenbeck, C.G. Das System der Pilze und Schwämme: Ein Versuch; Stahel: Würzburg, Germany, 1816. [Google Scholar]
  2. Elliott, J.A. Taxonomic characters of the genera Alternaria and Macrosporium. Am. J. Bot. 1917, 4, 439–476. [Google Scholar] [CrossRef]
  3. Simmons, E.G. Typification of Alternaria, Stemphylium, and Ulocladium. Mycologia 1967, 59, 67–92. [Google Scholar] [CrossRef]
  4. Wiltshire, S.P. The foundation species of Alternaria and Macrosporium. Trans. Br. Mycol. Soc. 1933, 18, 135–160. [Google Scholar] [CrossRef]
  5. Fries, E.M. Systema Mycologicum. Vol. 3; Gryphiswaldae: Sumtibus Ernesti Maurittii: Gryphiswaldia, Germany, 1832. [Google Scholar]
  6. Thomma, B.P. Alternaria spp.: From general saprophyte to specific parasite. Mol. Plant Pathol. 2003, 4, 225–236. [Google Scholar] [CrossRef]
  7. Lawrence, D.P.; Gannibal, P.B.; Peever, T.L.; Pryor, B.M. The sections of Alternaria: Formalizing species-group concepts. Mycologia 2013, 105, 530–546. [Google Scholar] [CrossRef]
  8. Woudenberg, J.; Groenewald, J.; Binder, M.; Crous, P. Alternaria redefined. Stud. Mycol. 2013, 75, 171–212. [Google Scholar] [CrossRef] [PubMed]
  9. Von Keissler, K. Zur kenntnis der pilzflora krains. Beih. Bot. Centralbl. 1912, 29, 395–440. [Google Scholar]
  10. Neergaard, P. Danish Species of Alternaria and Stemphylium; Oxford University Press: London, UK, 1945. [Google Scholar]
  11. Joly, P. Le Genre Alternaria. Encyclopédie Mycologique XXXIII; P. Lechevalier: Paris, France, 1964. [Google Scholar]
  12. Ellis, M.B. Dematiaceous Hyphomycetes; Commonwealth Mycological Institute: Kew, UK, 1971. [Google Scholar]
  13. Ellis, M.B. More Dematiaceous Hyphomycetes; Commonwealth Mycological Institute: Kew, UK, 1976. [Google Scholar]
  14. Simmons, E.G. Alternaria themes and variations (1–6). Mycotaxon 1981, 13, 16–34. [Google Scholar]
  15. Simmons, E.G. Alternaria themes and variations (11–13). Mycotaxon 1982, 14, 44–57. [Google Scholar]
  16. Simmons, E.G. Alternaria themes and variations (14–16). Mycotaxon 1986, 25, 195–202. [Google Scholar]
  17. Simmons, E.G. Alternaria themes and variations (17–21). Mycotaxon 1986, 25, 203–216. [Google Scholar]
  18. Simmons, E.G. Alternaria themes and variations (22–26). Mycotaxon 1986, 25, 287–308. [Google Scholar]
  19. Simmons, E.G. Alternaria themes and variations (27–53). Mycotaxon 1990, 37, 79–119. [Google Scholar]
  20. Simmons, E.G. Alternaria taxonomy: Current status, viewpoint, challenge. In Alternaria Biology, Plant Diseases and Metabolites; Chelkowski, J., Visconti, A., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1992; pp. 1–35. [Google Scholar]
  21. Simmons, E.G. Alternaria themes and variations (112–144). Mycotaxon 1995, 55, 55–163. [Google Scholar]
  22. Hong, S.G.; Cramer, R.A.; Lawrence, C.B.; Pryor, B.M. Alt a 1 allergen homologs from Alternaria and related taxa: Analysis of phylogenetic content and secondary structure. Fungal Genet. Biol. 2005, 42, 119–129. [Google Scholar] [CrossRef]
  23. Lawrence, D.P.; Park, M.S.; Pryor, B.M. Nimbya and Embellisia revisited, with nov. comb. for Alternaria celosiae and A. perpunctulata. Mycol. Prog. 2012, 11, 799–815. [Google Scholar] [CrossRef]
  24. Pryor, B.M.; Gilbertson, R.L. Molecular phylogenetic relationships amongst Alternaria species and related fungi based upon analysis of nuclear ITS and mt SSU rDNA sequences. Mycol. Res. 2000, 104, 1312–1321. [Google Scholar] [CrossRef]
  25. Pryor, B.M.; Bigelow, D.M. Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia 2003, 95, 1141–1154. [Google Scholar] [CrossRef] [PubMed]
  26. Andrew, M.; Peever, T.L.; Pryor, B.M. An expanded multilocus phylogeny does not resolve species among the small-spored Alternaria species complex. Mycologia 2009, 101, 95–109. [Google Scholar] [CrossRef]
  27. Wang, Y.; Geng, Y.; Ma, J.; Wang, Q.; Zhang, X.G. Sinomyces: A new genus of anamorphic Pleosporaceae. Fungal Biol. 2011, 115, 188–195. [Google Scholar] [CrossRef]
  28. Woudenberg, J.H.C.; Truter, M.; Groenewald, J.Z.; Crous, P.W. Large-spored Alternaria pathogens in section Porri disentangled. Stud. Mycol. 2014, 79, 1–47. [Google Scholar] [CrossRef] [PubMed]
  29. Grum-Grzhimaylo, A.A.; Georgieva, M.L.; Bondarenko, S.A.; Debeta, A.J.M.; Bilanenko, E.N. On the diversity of fungi from soda soils. Fungal Divers. 2016, 76, 27–74. [Google Scholar] [CrossRef]
  30. Lawrence, D.P.; Rotondo, F.; Gannibal, P.B. Biodiversity and taxonomy of the pleomorphic genus Alternaria. Mycol. Prog. 2016, 15, 3. [Google Scholar] [CrossRef]
  31. Ghafri, A.A.; Maharachchikumbura, S.S.N.; Hyde, K.D.; Al-Saady, N.A.; Al-Sadi, A.M. A new section and a new species of Alternaria encountered from Oman. Phytotaxa 2019, 405, 279–289. [Google Scholar] [CrossRef]
  32. Gannibal, P.B.; Orina, A.S.; Gasich, E.L. A new section for Alternaria helianthiinficiens found on sunflower and new asteraceous hosts in Russia. Mycol. Prog. 2022, 21, 34. [Google Scholar] [CrossRef]
  33. Ahmadpour, A.; Ghosta, Y.; Poursafar, A. Novel species of Alternaria section Nimbya from Iran as revealed by morphological and molecular data. Mycologia 2021, 113, 1073–1088. [Google Scholar] [CrossRef]
  34. Simmons, E.G. Macrospora Fuckel (Pleosporales) and related anamorphs. Sydowia 1989, 41, 314–329. [Google Scholar]
  35. Simmons, E.G. Alternaria an Identification Manual; CBS Fungal Biodiversity Centre: Utrecht, The Netherlands, 2007. [Google Scholar]
  36. Rayner, R.W. A Mycological Colour Chart; Commonwealth Mycological Institute: Kew, UK, 1970. [Google Scholar]
  37. Crous, P.W.; Gams, W.; Stalpers, J.A.; Robert, V.; Stegehuis, G. MycoBank: An online initiative to launch mycology into the 21st century. Stud. Mycol. 2004, 50, 19–22. [Google Scholar]
  38. Ahmadpour, A. Alternaria caricicola, a new species of Alternaria in the section Nimbya from Iran. Phytotaxa 2019, 405, 65–73. [Google Scholar] [CrossRef]
  39. Ahmadpour, A.; Ghosta, Y.; Alavi, Z.; Alavi, F.; Poursafar, A.; Rampelotto, P.H. Diversity of Alternaria section Nimbya in Iran, with the description of eight new species. J. Fungi 2025, 11, 225. [Google Scholar] [CrossRef]
  40. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Shinsky, J.J., White, T.J., Eds.; Elsevier: Berlin/Heidelberg, Germany, 1990; pp. 315–322. [Google Scholar]
  41. Berbee, M.L.; Pirseyedi, M.; Hubbard, S. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 1999, 91, 964–977. [Google Scholar] [CrossRef]
  42. Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
  43. Sung, G.H.; Sung, J.M.; Hywel-Jones, N.L.; Spatafora, J.W. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Mol. Phylogenet. Evol. 2007, 44, 1204–1223. [Google Scholar] [CrossRef]
  44. Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef]
  45. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
  46. Woudenberg, J.H.C.; Seidl, M.F.; Groenewald, J.Z.; de Vries, M.; Stielow, J.B.; Thomma, B.P.H.J.; Crous, P.W. Alternaria section Alternaria: Species, formae speciales or pathotypes. Stud. Mycol. 2015, 82, 1–21. [Google Scholar] [CrossRef]
  47. Nishikawa, J.; Nakashima, C. Japanese species of Alternaria and their species boundaries based on host range. Fungal Syst. Evol. 2020, 5, 197–281. [Google Scholar] [CrossRef]
  48. Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 108, 1160–1166. [Google Scholar] [CrossRef]
  49. Maddison, W.P.; Maddison, D.R. Mesquite: A Modular System for Evolutionary Analysis. Version 3.61. 2019. Available online: http://www.mesquiteproject.org (accessed on 20 February 2025).
  50. Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
  51. Nylander, J.A.A. MrModeltest v2.0. Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
  52. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
  53. Miller, M.A.; Pfeiffer, W.; Schwartz, T. The CIPRES Science Gateway: Enabling High-Impact Science for Phylogenetics Researchers with Limited Resources. In Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the Extreme to the Campus and Beyond (ACM), Chicago, IL, USA, 16–20 July 2012. [Google Scholar]
  54. Swofford, D.L. Paup: Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0. B5. Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
  55. Rambaut, A. FigTree, a Graphical Viewer of Phylogenetic Trees. 2019. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 20 February 2025).
  56. Inderbitzin, P.; Shoemaker, R.A.; O’Neill, N.R.; Turgeon, B.G.; Berbee, M.L. Systematics and mating systems of two fungal pathogens of opium poppy: The heterothallic Crivellia papaveracea with a Brachycladium penicillatum asexual state and a homothallic species with a Brachycladium papaveris asexual state. Can. J. Bot. 2006, 84, 1304–1326. [Google Scholar] [CrossRef]
  57. Amatulli, M.T.; Fanelli, F.; Moretti, A.; Mule, G.; Logrieco, A.F. Alternaria species and mycotoxins associated to black point of cereals. Mycotoxins 2013, 63, 39–46. [Google Scholar] [CrossRef]
  58. Somma, S.; Amatulli, M.T.; Masiello, M.; Moretti, A.; Logrieco, A.F. Alternaria species associated to wheat black point identified through a multilocus sequence approach. Int. J. Food Microbiol. 2019, 293, 34–43. [Google Scholar] [CrossRef]
  59. Li, J.; Jiang, H.; Jeewon, R.; Hongsanan, S.; Bhat, D.J.; Tang, S.M.; Lumyong, S.; Mortimer, P.E.; Xu, J.C.; Camporesi, E.; et al. Alternaria: Update on species limits, evolution, multi-locus phylogeny, and classification. Stud. Fungi 2023, 7, 23. [Google Scholar] [CrossRef]
  60. He, L.; Cheng, H.; Zhao, L.; Htun, A.A.; Yu, Z.H.; Deng, J.X.; Li, Q.L. Morphological and molecular identification of two new Alternaria species (Ascomycota, Pleosporaceae) in section Radicina from China. MycoKeys 2021, 78, 187–198. [Google Scholar] [CrossRef] [PubMed]
  61. He, J.; Li, D.W.; Cui, W.L.; Huang, L. Seven new species of Alternaria (Pleosporales, Pleosporaceae) associated with Chinese fir, based on morphological and molecular evidence. MycoKeys 2024, 101, 1–44. [Google Scholar] [CrossRef]
  62. Li, J.; Phookamsak, R.; Jiang, H.; Bhat, D.J.; Camporesi, E.; Lumyong, S.; Kumla, J.; Hongsanan, S.; Mortimer, P.E.; Xu, J.; et al. Additions to the inventory of the genus Alternaria section Alternaria (Pleosporaceae, Pleosporales) in Italy. J. Fungi 2022, 8, 898. [Google Scholar] [CrossRef]
  63. Huang, J.H.; Gou, Y.N.; New, Z.M.; Aung, S.L.L.; Deng, J.X.; Li, M.J. Alternaria youyangensis sp. nov. (Ascomycota: Pleosporaceae) from leaf spot of Fagopyrum esculentum in China. Phytotaxa 2024, 672, 176–186. [Google Scholar] [CrossRef]
  64. Nwe, Z.M.; Htut, K.N.; Aung, S.L.L.; Gou, Y.N.; Huang, C.X.; Deng, J.X. Two novel species and new host of Alternaria (Pleosporales, Pleosporaceae) from sunflower (Compositae) in Myanmar. MycoKeys 2024, 105, 337–354. [Google Scholar] [CrossRef]
  65. Bessadat, N.; Bataillé-Simoneau, N.; Colou, J.; Hamon, B.; Mabrouk, K.; Simoneau, P. New members of Alternaria (Pleosporales, Pleosporaceae) collected from Apiaceae in Algeria. MycoKeys 2025, 113, 169–192. [Google Scholar] [CrossRef]
  66. Ozkilinc, H.; Sarpakaya, K.; Kurt, S.; Can, C.; Polatbilek, H.; Yasar, A.; Sevinc, U.; Uysal, A.; Konukoglu, F. Pathogenicity, morpho-species and mating types of Alternaria spp. causing Alternaria blight in Pistacia spp. in Turkey. Phytoparasitica 2017, 45, 719–728. [Google Scholar] [CrossRef]
  67. Aloi, F.; Riolo, M.; Sanzani, S.M.; Mincuzzi, A.; Ippolito, A.; Siciliano, I.; Pane, A.; Gullino, M.L.; Cacciola, S.O. Characterization of Alternaria species associated with heart rot of pomegranate fruit. J. Fungi 2021, 7, 172. [Google Scholar] [CrossRef] [PubMed]
  68. Salotti, I.; Giorni, P.; Battilani, P. Biology, ecology, and epidemiology of Alternaria species affecting tomato: Ground information for the development of a predictive model. Front. Plant Sci. 2024, 15, 1430965. [Google Scholar] [CrossRef]
  69. Xu, Z.T.; Long, J.-H.; Liu, J.Q.; Zhang, R.-Z.; Xu, L.L.; Wang, J.-J.; Wei, X.K.; White, J.F.; Kamran, M.; Cui, H.W.; et al. Characterization and pathogenicity of Alternaria species associated with leaf spot on Plantago lanceolata in Sichuan Province, China. Plant Pathol. 2024, 73, 1749–1760. [Google Scholar] [CrossRef]
  70. Salo, P.M.; Arbes, S.J., Jr.; Sever, M.; Jaramillo, R.; Cohn, R.D.; London, S.J.; Zeldin, D.C. Exposure to Alternaria alternata in US homes is associated with asthma symptoms. J. Allergy Clin. Immunol. 2006, 118, 892–898. [Google Scholar] [CrossRef]
  71. Dye, C.; Johnson, E.M.; Gruffydd-Jones, T.J. Alternaria species infection in nine domestic cats. J. Feline Med. Surg. 2009, 11, 332–336. [Google Scholar] [CrossRef]
  72. Lopes, L.; Borges-Costa, J.; Soares-Almeida, L.; Filipe, P.; Neves, F.; Santana, A.; Guerra, J.; Kutzner, H. Cutaneous alternariosis caused by Alternaria infectoria: Three cases in kidney transplant patients. Healthcare 2013, 1, 100–106. [Google Scholar] [CrossRef] [PubMed]
  73. Meena, M.; Gupta, S.K.; Swapnil, P.; Zehra, A.; Dubey, M.K.; Upadhyay, R.S. Alternaria toxins: Potential virulence factors and genes related to pathogenesis. Front. Microbiol. 2017, 8, 1451. [Google Scholar] [CrossRef]
  74. Sharma, B.; Kamble, U.; Ghosh, G.; Prasad, A.; Chowdhary, A. Invasive rhinosinusitis due to Alternaria alternata and Rhizopus arrhizus mixed infection: A case report and review. Int. J. Infect. 2017, 4, e42127. [Google Scholar]
  75. Kim, G.; Yoo, S.J.; Yoo, J.R.; Seo, K.B. The first case report of thorn-induced Alternaria alternata infection of the hand in an immunocompetent host. BMC Infect. Dis. 2022, 22, 34. [Google Scholar] [CrossRef]
  76. Xia, X.; Liu, Z.; Shen, H. Subcutaneous phaeohyphomycosis caused by Alternaria section Alternaria. Int. J. Infect. Dis. 2023, 134, 99–101. [Google Scholar] [CrossRef] [PubMed]
  77. Minaeva, L.P.; Markova, Y.M.; Sedova, I.B.; Chaly, Z.A. Micromycetes of the genus Alternaria are producers of emerging mycotoxins: Analysis of profile and toxinogenic potential in vitro. Bull. Exp. Biol. Med. 2024, 178, 218–222. [Google Scholar] [CrossRef] [PubMed]
  78. Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef]
  79. Gautam, A.K.; Verma, R.K.; Avasthi, S.; Sushma; Bohra, Y.; Devadatha, B.; Niranjan, M.; Suwannarach, N. Current insight into traditional and modern methods in fungal diversity estimates. J. Fungi 2022, 8, 226. [Google Scholar] [CrossRef]
  80. Mansourvar, M.; Charylo, K.R.; Frandsen, R.J.N.; Brewer, S.S.; Hoof, J.B. Automated fungal identification with deep learning on time-lapse images. Information 2025, 16, 109. [Google Scholar] [CrossRef]
  81. Pouris, J.; Konstantinidis, K.; Pyrri, I.; Papageorgiou, E.G.; Voyiatzaki, C. FungID: Innovative fungi identification method with chromogenic profiling of colony color patterns. Pathogens 2025, 14, 242. [Google Scholar] [CrossRef]
  82. Deshpande, K.B.; Rajderkar, N.R. New species of Alternaria from Marathwada (India). Mycopathol. Mycol. Appl. 1964, 23, 277–280. [Google Scholar] [CrossRef]
  83. Chen, W.Q.; Zhang, T.Y. Two new species of Alternaria from China. Mycol. Res. 1997, 101, 1257–1258. [Google Scholar] [CrossRef]
  84. Roberts, R.G. Alternaria roseogrisea, a new species from achenes of Helianthus annuus L. (Sunflower). Mycotaxon 2008, 103, 21–26. [Google Scholar]
  85. Gannibal, P.B.; Gomzhina, M.M. Revision of Alternaria sections Pseudoulocladium and Ulocladioides: Assessment of species boundaries, determination of mating-type loci, and identification of Russian strains. Mycologia 2024, 116, 744–763. [Google Scholar] [CrossRef]
  86. Poursafar, A.; Ghosta, Y.; Orina, A.S.; Gannibal, P.B.; Javan-Nikkhah, M.; Lawrence, D.P. Taxonomic study on Alternaria sections Infectoriae and Pseudoalternaria associated with black (sooty) head mold of wheat and barley in Iran. Mycol. Prog. 2018, 17, 343–356. [Google Scholar] [CrossRef]
  87. Iturrieta-González, I.; Pujol, I.; Iftimie, S.; Gracía, D.; Morente, V.; Queralt, R.; Guevara-Suarez, M.; Alastruey-Izquierdo, A.; Ballester, F.; Hernández-Restrepo, M.; et al. Polyphasic identification of three new species in Alternaria section Infectoria causing human cutaneous infection. Mycoses 2020, 63, 212–224. [Google Scholar] [CrossRef] [PubMed]
  88. Wong, M.K.M.; Hyde, K.D. Diversity of fungi on six species of Gramineae and one species of Cyperaceae in Hong Kong. Mycol. Res. 2001, 105, 1485–1491. [Google Scholar] [CrossRef]
  89. Bryson, C.T.; Carter, R. The significance of Cyperaceae as weeds. In Sedges: Uses, Diversity, and Systematics of the Cyperaceae; Naczi, R.C.F., Ford, B.A., Eds.; Missouri Botanical Garden Press: St. Louis, MO, USA, 2008; pp. 15–101. [Google Scholar]
  90. Escudero, M. Phylogenetic congruence of parasitic smut fungi (Anthracoidea, Anthracoideaceae) and their host plants (Carex, Cyperaceae): Cospeciation or host-shift speciation? Am. J. Bot. 2015, 102, 1108–1114. [Google Scholar] [CrossRef]
  91. Mishra, S.; Tripathi, A.; Tripathi, D.K.; Chauhan, D.K. Role of sedges (Cyperaceae) in wetlands, environmental cleaning and as food material: Possibilities and future perspectives. In Plant-Environment Interaction: Responses and Approaches to Mitigate Stress; Azooz, M.M., Ahmad, P., Eds.; John Wiley & Sons, Ltd.: Bognor Regis, UK, 2016; pp. 327–338. [Google Scholar]
  92. Riess, K.; Schön, M.E.; Ziegler, R.; Lutz, M.; Shivas, R.S.; Piątek, M.; Garnica, S. The origin and diversification of the Enthorrhizales: Deep evolutionary roots but recent specialization with a phylogenetic and phenotypic split between associates of the Cyperaceae and Juncaceae. Org. Divers. Evol. 2019, 19, 13–30. [Google Scholar] [CrossRef]
  93. Léveillé-Bourret, É.; Eggertson, Q.; Hambleton, S.; Starr, J.R. Cryptic diversity and significant cophylogenetic signal detected by DNA barcoding the rust fungi (Pucciniaceae) of Cyperaceae-Juncaceae. J. Syst. Evol. 2021, 59, 833–851. [Google Scholar] [CrossRef]
  94. Portalanza, D.; Acosta-Mejillones, A.; Alcivar, J.; Colorado, T.; Guaita, J.; Montero, L.; Villao-Uzho, L.; Santos-Ordonez, E. Fungal community dynamics in Cyperus rotundus: Implications for Rhizophora mangle in a mangrove ecosystem. Int. J. Plant Biol. 2025, 16, 23. [Google Scholar] [CrossRef]
  95. Ahmadpour, A.; Heidarian, Z.; Ghosta, Y.; Alavi, Z.; Alavi, F.; Manamgoda, D.S.; Karunarathna, S.C.; Rampelotto, P.H. Morphological and molecular characterization of Curvularia species from Iran, with description of two novel species and two new records. Mycologia 2025, 117, 261–285. [Google Scholar] [CrossRef]
  96. Ahmadpour, A.; Heidarian, Z.; Ghosta, Y.; Alavi, Z.; Alavi, F.; Manamgoda, D.S.; Kumla, J.; Karunarathna, S.C.; Rampelotto, P.H.; Suwannarach, N. Morphological and phylogenetic analyses of Bipolaris species associated with Poales and Asparagales host plants in Iran. Front. Cell. Infect. Microbiol. 2025, 15, 1520125. [Google Scholar] [CrossRef]
  97. Tan, Y.P.; Madrid, H.; Crous, P.W.; Shivas, R.G. Johnalcornia gen. et. comb. nov., and nine new combinations in Curvularia based on molecular phylogenetic analysis. Australas. Plant Pathol. 2014, 43, 589–603. [Google Scholar] [CrossRef]
Figure 1. Phylogenetic tree generated using maximum-likelihood (ML) analysis of 167 strains in the suborder Pleosporineae, based on a concatenated dataset of SSU, ITS, LSU, GAPDH, and RPB2 sequences. Bootstrap support values for maximum likelihood and maximum parsimony (MLBS/MPBS) ≥70% and Bayesian posterior probabilities (BIPP) ≥ 0.95 are shown at the nodes. The tree is rooted with Halojulella avicenniae (BCC 18422). The scale bar represents the number of nucleotide substitutions. Newly identified strains are highlighted in bold blue. Families, genera, and sections are presented with colored blocks and * indicate monotypic lineages.
Figure 1. Phylogenetic tree generated using maximum-likelihood (ML) analysis of 167 strains in the suborder Pleosporineae, based on a concatenated dataset of SSU, ITS, LSU, GAPDH, and RPB2 sequences. Bootstrap support values for maximum likelihood and maximum parsimony (MLBS/MPBS) ≥70% and Bayesian posterior probabilities (BIPP) ≥ 0.95 are shown at the nodes. The tree is rooted with Halojulella avicenniae (BCC 18422). The scale bar represents the number of nucleotide substitutions. Newly identified strains are highlighted in bold blue. Families, genera, and sections are presented with colored blocks and * indicate monotypic lineages.
Life 15 00870 g001aLife 15 00870 g001b
Figure 2. Phylogenetic tree generated using maximum-likelihood (ML) analysis of 110 Alternaria spp. strains based on a concatenated dataset of SSU, ITS, LSU, GAPDH, RPB2, and TEF1 sequences. Bootstrap support values for maximum likelihood and maximum parsimony (MLBS/MPBS) ≥ 70% and Bayesian posterior probabilities (BIPP) ≥ 0.95 are shown at the nodes. The tree is rooted with Stemphylium botryosum (CBS 714.68) and S. vesicarium (CBS 191.86). Newly identified strains are highlighted in bold blue. The scale bar represents the number of nucleotide substitutions. Six monotypic lineages are marked with a black asterisk.
Figure 2. Phylogenetic tree generated using maximum-likelihood (ML) analysis of 110 Alternaria spp. strains based on a concatenated dataset of SSU, ITS, LSU, GAPDH, RPB2, and TEF1 sequences. Bootstrap support values for maximum likelihood and maximum parsimony (MLBS/MPBS) ≥ 70% and Bayesian posterior probabilities (BIPP) ≥ 0.95 are shown at the nodes. The tree is rooted with Stemphylium botryosum (CBS 714.68) and S. vesicarium (CBS 191.86). Newly identified strains are highlighted in bold blue. The scale bar represents the number of nucleotide substitutions. Six monotypic lineages are marked with a black asterisk.
Life 15 00870 g002
Table 1. Primer sets used for PCR amplifications in this study, their sequences, and references.
Table 1. Primer sets used for PCR amplifications in this study, their sequences, and references.
LociPrimer NamePrimer Sequence (5′–3′)DirectionReferences
SSUNS1GTAGTCATATGCTTGTCTCForward[40]
NS4CTTCCGTCAATTCCTTTAAGReverse
ITSITS1TCCGTAGGTGAACCTGCGGForward[40]
ITS4TCCTCCGCTTATTGATATGCReverse
LSULR0RGTACCCGCTGAACTTAAGCForward[40]
LR5TCCTGAGGGAAACTTCGReverse
GAPDHgpd1CAACGGCTTCGGTCGCATTGForward[41]
gpd2GCCAAGCAGTTGGTTGTGReverse
RPB2RPB2-5F2GGGGWGAYCAGAAGAAGGCForward[42]
RPB2-7cRCCCATRGCTTGTYYRCCCATReverse[43]
TEF1EF1-728FCATCGAGAAGTTCGAGAAGGForward[44]
EF1-986RTACTTGAAGGAACCCTTACCReverse
Table 2. Lists of the Alternaria species and allied genera in Pleosporineae used for phylogenetic analyses, with details about host/substrate, country, and GenBank accession numbers. Newly generated sequences are in bold. R and T indicate reference and ex-type strains, respectively.
Table 2. Lists of the Alternaria species and allied genera in Pleosporineae used for phylogenetic analyses, with details about host/substrate, country, and GenBank accession numbers. Newly generated sequences are in bold. R and T indicate reference and ex-type strains, respectively.
Species NameSectionCollection No.CountryHost/SubstrateGenBank Accession Numbers
SSUITSLSUGAPDHRPB2TEF1
Alternaria abundansChalastosporaCBS 534.83 TNew ZealandFragaria sp.KC584581JN383485KC584323KC584154KC584448KC584707
A. alternantheraeAlternantheraeCBS 1243s92ChinaSolanum melongenaKC584506KC584179KC584251KC584096KC584374KC584633
A. alternariaeUlocladiumCBS 126989 TUSADaucus carotaKC584604AF229485KC584346AY278815KC584470KC584730
A. alternataAlternariaCBS 916.96 TIndiaArachis hypogaeaKC584507AF347031DQ678082AY278808KC584375KC584634
A. arborescensAlternariaCBS 102605 TUSALycopersicon
esculentum
KC584509AF347033KC584253AY278810KC584377KC584636
A. argyranthemi - CBS 116530 TNew ZealandArgyranthemum sp.KC584510KC584181KC584254KC584098KC584378KC584637
A. arrhenatheriPseudoalternariaLEP 140372 TUSAArrhenatherum elatius - JQ693677 - JQ693635 - -
A. asperaPseudoulocladiumCBS 115269 TJapanPistacia veraKC584607KC584242KC584349KC584166KC584474KC584734
A. atraUlocladioidesCBS 195.67 TUSASoilKC584608AF229486KC584350KC584167KC584475KC584735
A. avenicolaPanaxCBS 121459 TNorwayAvena sp.KC584512KC584183KC584256KC584100KC584380KC584639
A. avrinicaIranianaIRAN 4772C TIranJuncus sp.PV435164PV435148PV435156PV443215PV443231PV443223
A. avrinicaIranianaIRAN 5031CIranJuncus sp.PV435165PV435149PV435157PV443216PV443232PV443224
A. avrinicaIranianaFCCUU 1419IranCarex sp.PV435166PV435150PV435158PV443217PV443233PV443225
A. avrinicaIranianaFCCUU 1420IranJuncus sp.PV435167PV435151PV435159PV443218PV443234PV443226
A. bornmuelleriUndifilumDAOM 231361 TAustriaSecurigera variaKC584624FJ357317KC584366FJ357305KC584491KC584751
A. botryosporaEmbellisioidesCBS 478.90 TNew ZealandLeptinella dioicaKC584594MH862228KC584336AY278831KC584461KC584720
A. botrytisUlocladiumCBS 197.67 TUSAContaminantKC584609KC584243KC584351KC584168KC584476KC584736
A. brassicae - CBS 116528 RUSABrassica oleraceaKC584514KC584185KC584258KC584102KC584382KC584641
A. brassicicolaBrassicicolaCBS 118699 RUSABrassica oleraceaKC584515JX499031KC584259KC584103KC584383KC584642
A. brassicifolii - CNU 111118 TKoreaBrassica rapa subsp. pekinensis - JQ317188 - KM821537 - -
A. breviramosaChalastosporaCBS 121331 TAustraliaTriticum sp.KC584574FJ839608KC584318KC584148KC584442KC584700
A. cantlousUlocladioidesCBS 123007 TChinaCucumis meloKC584612KC584245KC584354KC584171KC584479KC584739
A. caricicolaNimbyaIRAN 3418C TIranCarex sp. - MK508871 - MK505392MT187279MT187265
A. caricisNimbyaCBS 480.90 TUSACarex hoodiiKC584600AY278839KC584342AY278826KC584467KC584726
A. celosiicolaAlternantheraeMAFF 243058JapanCelosia argentea var. plumosa - AB678217 - AB744033LC476781LC480205
A. ceteraChalastosporaCBS 121340 TAustraliaElymus scabrusKC584573JN383482KC584317AY562398KC584441KC584699
A. chartarumPseudoulocladiumCBS 200.67 TCanadaPopulus sp.KC584614AF229488KC584356KC584172KC584481KC584741
A. cheiranthiCheiranthusCBS 109384RItalyCheiranthus cheiriKC584519AF229457KC584263KC584107KC584387KC584646
A. chlamydosporaPhragmosporaeCBS 491.72 TEgyptSoilKC584520KC584189KC584264KC584108KC584388KC584647
A. chlamydosporigenaEmbellisiaCBS 341.71 RUSAAirKC584584KC584231KC584326KC584156KC584451KC584710
A. cinerariaeSonchiCBS 116495 RUSALigularia sp.KC584521KC584190KC584265KC584109KC584389KC584648
A. conjunctaInfectoriaeCBS 196.86 TSwitzerlandPastinaca sativaKC584522FJ266475KC584266AY562401KC584390KC584649
A. conoideaBrassicicolaCBS 132.89Saudi ArabiaRicinus communisKC584585FJ348226KC584327FJ348227KC584452KC584711
A. cucurbitaeUlocladioidesCBS 483.81RNew ZealandCucumis sativusKC584616FJ266483KC584358AY562418KC584483KC584743
A. cuminiEurekaCBS 121329 TIndiaCuminum cyminumKC584523KC584191KC584267KC584110KC584391KC584650
A. cypericolaNimbyaIRAN 3423C TIranCyperus sp. - MT176120 - MT187250MT187276MT187262
A. dauciPorriCBS 111.38 TItalyDaucus carota - KJ718158 - KJ718005KJ718331KJ718506
A. daucifoliiAlternariaCBS 118812 TUSADaucus carotaKC584525KC584193KC584269KC584112KC584393KC584652
A. dennisii - CBS 476.90 TIsle of ManSenecio jacobaeaKC584587JN383488KC584329JN383469KC584454KC584713
A. dennisii - CBS 110533New ZealandSenecio jacobaeaKC584586KC584232KC584328KC584157KC584453KC584712
A. dianthicolaDianthicolaCBS 116491 RNew ZealandDianthus × allwoodiiKC584526KC584194KC584270KC584113KC584394KC584653
A. didymosporaPhragmosporaeCBS 766.79Adriatic SeaSeawaterKC584588FJ357312KC584330FJ357300KC584455KC584714
A. elegansDianthicolaCBS 109159 TBurkina FasoLycopersicon esculentumKC584527KC584195KC584271KC584114KC584395KC584654
A. embellisiaEmbellisiaCBS 339.71 RUSAAllium sativumKC584582KC584230KC584324KC584155KC584449KC584708
A. ershadiiPseudoalternariaIRAN 3275CIranTriticum aestivum - MK829647 - MK829645 - -
A. eryngiiPanaxCBS 121339 R-Eryngium sp.KC584529JQ693661KC584273AY562416KC584397KC584656
A. euphorbiicolaEuphorbiicolaCBS 119410 RUSAEuphorbia pulcherrima - KJ718173 - KJ718018KJ718346KJ718521
A. euphorbiicolaEuphorbiicolaCBS 133874USAEuphorbia hyssopifolia - KJ718174 - KJ718019KJ718347KJ718522
A. eurekaEurekaCBS 193.86 TAustraliaMedicago rugosaKC584589JN383490KC584331JN383471KC584456KC584715
A. gypsophilaeGypsophilaeCBS 107.41 TUnknownGypsophila elegansKC584533KC584199KC584277KC584118KC584401KC584660
A. helianthiinficiensHelianthiinficientesCBS 117370 RUKHelianthus annuusKC584534KC584200KC584278KC584119KC584402KC584661
A. helianthiinficiensHelianthiinficientesCBS 208.86 TUSAHelianthus annuusKC584535JX101649KC584279KC584120KC584403EU130548
A. heterosporaUlocladioidesCBS 123376 TChinaLycopersicon esculentumKC584621KC584248KC584363KC584176KC584488KC584748
A. heyranicaNimbyaIRAN 3516C TIranCarex sp. - MT176114 - MT187244MT187270MT187256
A. hyacinthiEmbellisioidesCBS 416.71 TNetherlandsHyacinthus orientalisKC584590KC584233KC584332KC584158KC584457KC584716
A. indefessaCheiranthusCBS 536.83 TUSASoilKC584591KC584234KC584333KC584159KC584458KC584717
A. infectoriaInfectoriaeCBS 210.86 TUKTriticum aestivumKC584536DQ323697KC584280AY278793KC584404KC584662
A. iranianaIranianaIRAN 5030C TIranJuncus sp. - PV435152PV435160PV443219PV443235PV443227
A. iranianaIranianaFCCUU 1421IranJuncus sp. - PV435153PV435161PV443220PV443236PV443228
A. iranianaIranianaFCCUU 1422IranJuncus sp. - PV435154PV435162PV443221PV443237PV443229
A. iranianaIranianaFCCUU 1423IranJuncus sp. - PV435155PV435163PV443222PV443238PV443230
A. japonicaJaponicaeCBS 118390 RUSABrassica chinensisKC584537KC584201KC584281KC584121KC584405KC584663
A. junci-acutiNimbyaIRAN 3512C TIranJuncus acutus - MT176113 - MT187243MT187269MT187255
A. kordkuyanaPseudoalternariaIRAN 2764C TIranTriticum aestivum - MF033843 - MF033826 - -
A. kulundiiSodaM313 TRussiaSoilKJ443087KJ443262KJ443132KJ649618KJ443176-
A. leucanthemiTeretisporaCBS 422.65 RUSAChrysanthemum maximumKC584606KC584241KC584348KC584165KC584473KC584733
A. leucanthemiTeretisporaCBS 421.65 TNetherlandsChrysanthemum maximumKC584605KC584240KC584347KC584164KC584472KC584732
A. limaciformisPhragmosporaeCBS 481.81 TUKSoilKC584539KC584203KC584283KC584123KC584407KC584665
A. longipesAlternariaCBS 540.94 RUSANicotiana tabacumKC584541AY278835KC584285AY278811KC584409KC584667
A. mimiculaBrassicicolaCBS 118696 TUSALycopersicon esculentumKC584543FJ266477KC584287AY562415KC584411KC584669
A. nepalensisJaponicaeCBS 118700 TNepalBrassica sp.KC584546KC584207KC584290KC584126KC584414KC584672
A. nobilisGypsophilaeCBS 116490 RNew ZealandDianthus caryophyllusKC584547KC584208KC584291KC584127KC584415KC584673
A. obovoideaUlocladioidesCBS 101229New ZealandCucumis sativusKC584618FJ266487KC584360FJ266498KC584485KC584745
A. omanensisOmanensesSQUCC 15560Omandead woodMK878560MK878563MK878557MK880900MK880894MK880897
A. omanensisOmanensesSQUCC 13580 TOmandead woodMK878559MK878562MK878556MK880899MK880893MK880896
A. oregonensisInfectoriaeCBS 542.94 TUSATriticum aestivumKC584548FJ266478KC584292FJ266491KC584416KC584674
A. oudemansiiUlocladiumCBS 114.07 T--KC584619FJ266488KC584361KC584175KC584486KC584746
A. panaxPanaxCBS 482.81 RUSAAralia racemosaKC584549KC584209KC584293KC584128KC584417KC584675
A. papavericolaCrivelliaCBS 116606 TUSAPapaver somniferumKC584579FJ357310KC584321FJ357298KC584446KC584705
A. penicillataCrivelliaCBS 116608 TAustriaPapaver rhoeasKC584572FJ357311KC584316FJ357299KC584440KC584698
A. penicillataCrivelliaCBS 116607 TAustriaPapaver rhoeasKC584580KC584229KC584322KC584153KC584447KC584706
A. perpunctulataAlternantheraeCBS 115267 TUSAAlternanthera philoxeroidesKC584550KC584210KC584294KC584129KC584418KC584676
A. petroseliniRadicinaCBS 112.41 T-Petroselinum sativumKC584551KC584211KC584295KC584130KC584419KC584677
A. petuchovskiiSodaM304 TRussiaAlkaline soilKJ443079KJ443254KJ443124KJ649616KJ443170-
A. photisticaPanaxCBS 212.86 TUKDigitalis purpureaKC584552KC584212KC584296KC584131KC584420KC584678
A. phragmosporaPhragmosporaeCBS 274.70NetherlandsSoilKC584595JN383493KC584337JN383474KC584462KC584721
A. porriPorriCBS 116699 TUSAAllium cepa-KJ718218-KJ718053KJ718391KJ718564
A. proteaeEmbellisioidesCBS 475.90 TAustraliaProtea sp.KC584597AY278842KC584339KC584161KC584464KC584723
A. protentaPorriCBS 116651 RUSASolanum tuberosumKC584562KC584217KC584306KC584139KC584430KC584688
A. pseudorostrataPorriCBS 119411 TUSAEuphorbia pulcherrimaKC584554JN383483KC584298AY562406KC584422KC584680
A. radicinaRadicinaCBS 245.67 TUSADaucus carotaKC584555KC584213KC584299KC584133KC584423KC584681
A. rosaePseudoalternariaCBS 121341 TNew ZealandRosa rubiginosa - JQ693639-JQ646279 - -
A. scirpicolaNimbyaCBS 481.90UKScirpus sp.KC584602KC584237KC584344KC584163KC584469KC584728
A. scirpinfestansNimbyaEGS 49-185USAScirpus acutus - JN383499 - JN383480 - -
A. scirpivoraNimbyaEGS 50-021USAScirpus acutus - JN383500 - JN383481 - -
A. scirpivoraNimbyaIRAN 3421CIranScirpus acutus - MT176118 - MT187248MT187274MT187260
A. seliniRadicinaCBS 109382 TSaudi ArabiaPetroselinum crispumKC584558AF229455KC584302AY278800KC584426KC584684
A. septosporaPseudoulocladiumCBS 109.38ItalyWoodKC584620FJ266489KC584362FJ266500KC584487KC584747
A. shukurtuziiSodaM307 TRussiaAlkaline soilKJ443082KJ443257KJ443127KJ649620KJ443172-
A. simsimiDianthicolaCBS 115265 TArgentinaSesamum indicumKC584560JF780937KC584304KC584137KC584428KC584686
A. smyrniiRadicinaCBS 109380 RUKSmyrnium olusatrumKC584561AF229456KC584305KC584138KC584429KC584687
A. soliaridae - CBS 118387 TUSASoilKC584563KC584218KC584307KC584140KC584431KC584689
A. sonchiSonchiCBS 119675 RCanadaSonchus asperKC584565KC584220KC584309KC584142KC584433KC584691
A. tellustrisEmbellisiaCBS 538.83 TUSASoilKC584598MH861643KC584340AY562419KC584465KC584724
A. thalictrigena - CBS 121712 TGermanyThalictrum sp.KC584568EU040211KC584312KC584144KC584436KC584694
A. triglochinicolaEurekaCBS 119676 TAustraliaTriglochin proceraKC584569KC584222KC584313KC584145KC584437KC584695
A. tumidaEmbellisioidesCBS 539.83 TAustraliaTriticum aestivumKC584599FJ266481KC584341FJ266493KC584466KC584725
A. vaccariicolaGypsophilaeCBS 118714 TUSAVaccaria hispanicaKC584571KC584224KC584315KC584147KC584439KC584697
Alternariaster bidentis - CBS 134021 TBrazilBidens sulphurea - KC609333KC609341KC609325KC609347 -
Alternariaster helianthi - CBS 119672 RUSAHelianthus sp.KC584626KC609337KC584368KC609329KC584493 -
Amarenomyces ammophilae - CBS 114595SwedenAmmophila arenariaGU296185KF766146GU301859 - GU371724 -
Ascochyta pisi - CBS 126.54NetherlandsPisum sativumEU754038 - DQ678070 - DQ677967 -
Bipolaris maydis - CBS 137271 TUSAZea mays - AF071325KM243280KM034846 - -
Bipolaris oryzae - CBS 157.50IndonesiaOryza sativa - HF934931HF934870HG779090HF934833 -
Bipolaris sorokiniana - CBS 480.74South AfricaTribulus terrestris - KJ909771KM243282KM034827 - -
Boeremia exigua - CBS 431.74NetherlandsSolanum tuberosumEU754084FJ427001EU754183 - GU371780 -
Calophoma complanata - CBS 268.92NetherlandsAnglica sylvestrisEU754081FJ515608EU754180 - GU371778 -
Chaetosphaeronema hispidulum - CBS 216.75GermanyAnthyllis vulnerariaEU754045KF251148EU754144 - GU371777 -
Cicatricea salina - CBS 302.84 TNorth Sea, SkagerrakCancer pagurusKC584583JN383486KC584325JN383467KC584450KC584709
Cnidariophoma eilatica - CPC 44117 TIsraelStylophora pistillata - OQ628480OQ629062 - OQ627943 -
Cochliobolus heterostrophus - CBS 134.39Zea maysAY544727DQ491489AY544645 - DQ247790 -
Comoclathris compressa - CBS 156.53USACastilleja miniataKC584630 - KC584372 - KC584497 -
Comoclathris incompta - CBS 467.76GreeceOlea europaeaGU238220 - GU238087 - KC584504 -
Comoclathris typhicola - CBS 132.69NetherlandsTypha angustifoliaJF740105 - JF740325 - KC584505 -
Curvularia affinis - CBS 154.34 TJavaManihot utilissima - HG778981HG779028HG779126HG779159 -
Curvularia hawaiiensis - BRIP 11987 TUSAOryza sativa - KJ415547KJ415502KJ415399 - -
Curvularia lunata - CBS 730.96 TUSAHuman lung biopsy - JX256429JX256396JX276441HF934813 -
Decorospora gaudefroyi - CBS 332.63FranceUnknownAF394542MH858305MH869915 - - -
Decorospora gaudefroyi - CBS 250.60UKUnknown - MH857974MH869526 - - -
Dichotomophthora lutea - CBS 145.57 TUnknownUnknown - MH857676NG069497LT990663LT990634 -
Dichotomophthora portulacae - CBS 174.35 TUnknownUnknown - NR158421MH867137LT990668LT990638 -
Didymella glomerata - CBS 528.66NetherlandsChrysanthemum sp.EU754085FJ427013EU754184 - GU371781 -
Didymella maydis - CBS 588.69 TUSAZea maysEU754093FJ427086EU754192 - GU371782 -
Exserohilum corniculatum - BRIP 11426 TAustraliaOryza sativa - LT837453LT883391LT883533LT852480 -
Exserohilum khartoumensis - IMI 249194 IsoTSudanSorghum bicolor var. mayo - LT837461LT715619LT715888LT852490 -
Exserohilum turcicum - CBS 690.71 ETGermanyZea mays - LT837487LT883415LT882581 - -
Exserohilum turcicum - CBS 387.58USAZea mays - MH857820LT883412LT883554LT852514 -
Halojulella avicenniae - BCC 18422ThailandMangrove woodGU371831 - GU371823 - GU371787 -
Heterosporicola chenopodii - CBS 115.96NetherlandsChenopodium albumEU754089JF740227EU754188 - GU371775 -
Johnalcornia aberrans - BRIP 16281 TAustraliaEragrostis parviflora - KJ415522KJ415475KJ415424 - -
Leptosphaeria maculans - DAOM 229267FranceBrassica sp.DQ470993KT225526DQ470946 - DQ470894 -
Leptosphaerulina australis - CBS 317.83IndonesiaEugenia aromaticaGU296160GU237829GU301830 - GU371790 -
Loratospora aestuarii - JK 5535BUSAJuncus roemerianusGU296168MH863024GU301838 - GU371760 -
Neocamarosporium betae - CBS 109410NetherlandsBeta vulgarisEU754079KY940790EU754178 - GU371774 -
Neocamarosporium calvescens - CBS 246.79GermanyAtriplex hastataEU754032KY940774EU754131 - KC584500 -
Neocamarosporium goegapense - CPC 23676 TSouth AfricaMesembryanthemum sp. - KJ869163KJ869220 - - -
Neophaeosphaeria filamentosa - CBS 102202MexicoYucca rostrataGQ387516JF740259GQ387577 - GU371773 -
Neostemphylium polymorphum - FMR 17886 TSpainFluvial sediment - OU195609OU195892OU195960OU196009ON368192
Neostemphylium polymorphum - FMR 17889SpainFluvial sediment - OU195610OU195914OU195977OU196957ON368193
Ophiosphaerella herpotricha - CBS 620.86SwitzerlandBromus erectusDQ678010 - DQ678062 - DQ677958 -
Paradendryphiella arenariae - CBS 181.58 TFranceCoastal sandKC793336KF156010KC793338 - DQ470924 -
Paradendryphiella salina - CBS 142.60UKSpartina sp.KC793337DQ411540KC793339 - KC793340 -
Paraleptosphaeria dryadis - CBS 643.86SwitzerlandDryas octopetalaKC584632JF740213GU301828 - GU371733 -
Phaeosphaeria avenaria - DAOM 226215CanadaAvena sativaAY544725 - AY544684 - DQ677941 -
Phaeosphaeria eustoma - CBS 573.86SwitzerlandDactylis glomerataDQ678011 - DQ678063 - DQ677959 -
Phoma herbarum - CBS 276.37SwedenWood pulpDQ678014 - DQ678066 - DQ677962 -
Porocercospora seminalis - CBS 134907USABouteloua dactyloides-HF934941HF934862-HF934843 -
Porocercospora seminalis - CPC 213.49USABouteloua dactyloides-HF934945HF934861-HF934845 -
Pyrenophora avenicola - CBS 307.84 TSwedenAvena sp. - MK539972MK540042MK540180 - -
Pyrenophora phaeocomes - DAOM 222769SwitzerlandCalamagrostis villosaDQ499595JN943649DQ499596 - DQ497614 -
Scleromyces submersus - FMR 18289 TSpainFluvial sediment-OU195893OU195959OU196008OU197244OU196982
Setomelanomma holmii - CBS 110217USAPicea pungensGU296196KT389542GU301871 - GU371800 -
Stemphylium botryosum - CBS 714.68 TCanadaMedicago sativaKC584603KC584238KC584345AF443881AF107804KC584729
Stemphylium vesicarium - CBS 191.86 TIndiaMedicago sativaGU238232KC584239GU238160AF443884KC584471KC584731
Tamaricicola muriformis - MFLUCC 150488ItalyTamarix sp.KU870909KU752187KU561879 - KU820870 -
Tamaricicola muriformis - MFLUCC 150489ItalyTamarix sp.KU870910KU752188KU729857 - - -
Typhicola typharum - CBS 145043 NTGermanyLeaf of Typha sp. - MK442590MK442530 - MK442666 -
Table 3. Phylogenetic information of individual and combined sequence datasets used in phylogenetic analyses.
Table 3. Phylogenetic information of individual and combined sequence datasets used in phylogenetic analyses.
AnalysisRegion/GeneParameter
Number of TaxaTotal CharactersConstant SitesVariable SitesParsimony Informative SitesParsimony Uninformative SitesAIC Substitution Model *Lset nst, Rates−lnL
First analysis (suborder Pleosporineae) SSU1221373119417969110GTR+I+G6, invgamma3432.2908
ITS15843726617114328GTR+I+G6, invgamma5161.6314
LSU15086968618311370GTR+I+G6, invgamma3733.1211
GAPDH13053430223220725GTR+I+G6, invgamma8174.018
RPB215083735947841959GTR+I+G6, invgamma21800.52
Combined167405028071243951292GTR+I+G6, invgamma44380.022
Second analysis (All Alternaria sections) SSU891022982402713GTR+I6, propinv1813.347845
ITS1104573361219526SYM+I+G6, invgamma2892.446526
LSU93851798533617GTR+I+G6, invgamma1734.095321
GAPDH11055733422319528GTR+I+G6, invgamma6256.718561
RPB210379950029928514GTR+I+G6, invgamma9217.307515
TEF110031715516213923GTR+I+G6, invgamma3802.639587
Combined11040033105898777121SYM+I+G6, invgamma27448.64266
* Akaike Information Criterion Substitution models implemented in Bayesian Inference.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ahmadpour, A.; Ghosta, Y.; Alavi, Z.; Alavi, F.; Hamidi, L.M.; Rampelotto, P.H. Morphological and Molecular Characterization of a New Section and Two New Species of Alternaria from Iran. Life 2025, 15, 870. https://doi.org/10.3390/life15060870

AMA Style

Ahmadpour A, Ghosta Y, Alavi Z, Alavi F, Hamidi LM, Rampelotto PH. Morphological and Molecular Characterization of a New Section and Two New Species of Alternaria from Iran. Life. 2025; 15(6):870. https://doi.org/10.3390/life15060870

Chicago/Turabian Style

Ahmadpour, Abdollah, Youbert Ghosta, Zahra Alavi, Fatemeh Alavi, Leila Mohammadi Hamidi, and Pabulo Henrique Rampelotto. 2025. "Morphological and Molecular Characterization of a New Section and Two New Species of Alternaria from Iran" Life 15, no. 6: 870. https://doi.org/10.3390/life15060870

APA Style

Ahmadpour, A., Ghosta, Y., Alavi, Z., Alavi, F., Hamidi, L. M., & Rampelotto, P. H. (2025). Morphological and Molecular Characterization of a New Section and Two New Species of Alternaria from Iran. Life, 15(6), 870. https://doi.org/10.3390/life15060870

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop