An Update on DOTA-Peptides PET Imaging and Potential Advancements of Radioligand Therapy in Intracranial Meningiomas
Abstract
:1. Introduction
2. Materials and Methods
3. Clinical Evidence in PET Imaging and Radioligands for Meningiomas
3.1. Diagnostic Approach to Meningioma Through PET Imaging
3.2. Peptide Radionuclide Receptor Therapy (PRRT) as a Therapeutic Approach to Meningioma
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | Apparent diffusion coefficient |
DOTA-NOC | DOTA-1-Nal(3)-Octreotide |
DOTA-TATE | DOTA-Tyr3-Octreotate |
DOTA-TOC | DOTA-Tyr3-Octreotide |
EANM | European Association of Nuclear Medicine |
EANO | European Association of Neuro-Oncology |
GBq | Gigabecquerel |
GTV | Gross tumor volume |
HI | Heterogeneity index |
MRI | Magnetic resonance imaging |
NETs | Neuroendocrine tumors |
PET | Positron emission tomography |
PFS | Progression-free survival |
PRRT | Peptide receptor radionuclide therapy |
SNMMI | Society of nuclear medicine and molecular imaging |
SPECT | Single-photon emission computed tomography |
SSR-PET/CT | Somatostatin receptor positron emission tomography/computed tomography |
SSTR | Somatostatin receptor |
SUV | Standardized uptake value |
TLA | Total lesion activity |
WHO | World Health Organization |
References
- Burger, P.C. Revising the World Health Organization (WHO) Blue Book—‘Histological Typing of Tumours of the Central Nervous System’. J. Neurooncol. 1995, 24, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Wiemels, J.; Wrensch, M.; Claus, E.B. Epidemiology and etiology of meningioma. J. Neurooncol. 2010, 99, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Pećina-Šlaus, N.; Kafka, A.; Lechpammer, M. Molecular Genetics of Intracranial Meningiomas with Emphasis on Canonical Wnt Signalling. Cancers 2016, 8, 67. [Google Scholar] [CrossRef]
- Asaoka, K.; Barrs, D.M.; Sampson, J.H.; McElveen, J.T.; Tucci, D.L.; Fukushima, T. Intracanalicular meningioma mimicking vestibular schwannoma. AJNR Am. J. Neuroradiol. 2002, 23, 1493–1496. [Google Scholar] [PubMed]
- Weber, W.A.; Barthel, H.; Bengel, F.; Eiber, M.; Herrmann, K.; Schäfers, M. What Is Theranostics? J. Nucl. Med. 2023, 64, 669–670. [Google Scholar] [CrossRef]
- Basirinia, G.; Ali, M.; Comelli, A.; Sperandeo, A.; Piana, S.; Alongi, P.; Longo, C.; Di Raimondo, D.; Tuttolomondo, A.; Benfante, V. Theranostic Approaches for Gastric Cancer: An Overview of In Vitro and In Vivo Investigations. Cancers 2024, 16, 3323. [Google Scholar] [CrossRef]
- van der Heide, C.D.; Dalm, S.U. Radionuclide imaging and therapy directed towards the tumor microenvironment: A multi-cancer approach for personalized medicine. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4616–4641. [Google Scholar] [CrossRef]
- Salgues, B.; Graillon, T.; Horowitz, T.; Chinot, O.; Padovani, L.; Taïeb, D.; Guedj, E. Somatostatin Receptor Theranostics for Refractory Meningiomas. Curr. Oncol. 2022, 29, 5550–5565. [Google Scholar] [CrossRef]
- Galldiks, N.; Albert, N.L.; Wollring, M.; Werner, J.-M.; Lohmann, P.; Villanueva-Meyer, J.E.; Fink, G.R.; Langen, K.-J.; Tonn, J.-C. Advances in PET imaging for meningioma patients. Neurooncol Adv. 2023, 5, i84–i93. [Google Scholar] [CrossRef]
- Unterrainer, M.; Kunte, S.C.; Unterrainer, L.M.; Holzgreve, A.; Delker, A.; Lindner, S.; Beyer, L.; Brendel, M.; Kunz, W.G.; Winkelmann, M.; et al. Next-generation PET/CT imaging in meningioma—First clinical experiences using the novel SSTR-targeting peptide [18F]SiTATE. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3390–3399. [Google Scholar] [CrossRef]
- Kunz, W.G.; Jungblut, L.M.; Kazmierczak, P.M.; Vettermann, F.J.; Bollenbacher, A.; Tonn, J.C.; Schichor, C.; Rominger, A.; Albert, N.L.; Bartenstein, P.; et al. Improved Detection of Transosseous Meningiomas Using 68 Ga-DOTATATE PET/CT Compared with Contrast-Enhanced MRI. J. Nucl. Med. 2017, 58, 1580–1587. [Google Scholar] [CrossRef] [PubMed]
- Albert, N.L.; Preusser, M.; Traub-Weidinger, T.; Tolboom, N.; Law, I.; Palmer, J.D.; Guedj, E.; Furtner, J.; Fraioli, F.; Huang, R.Y.; et al. Joint EANM/EANO/RANO/SNMMI practice guideline/procedure standards for diagnostics and therapy (theranostics) of meningiomas using radiolabeled somatostatin receptor ligands: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 3662–3679. [Google Scholar] [CrossRef] [PubMed]
- Milker-Zabel, S.; Zabel-du Bois, A.; Henze, M.; Huber, P.; Schulz-Ertner, D.; Hoess, A.; Haberkorn, U.; Debus, J. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 222–227. [Google Scholar] [CrossRef]
- Benfante, V.; Stefano, A.; Comelli, A.; Giaccone, P.; Cammarata, F.P.; Richiusa, S.; Scopelliti, F.; Pometti, M.; Ficarra, M.; Cosentino, S.; et al. A New Preclinical Decision Support System Based on PET Radiomics: A Preliminary Study on the Evaluation of an Innovative 64Cu-Labeled Chelator in Mouse Models. J. Imaging 2022, 8, 92. [Google Scholar] [CrossRef]
- Benfante, V.; Stefano, A.; Ali, M.; Laudicella, R.; Arancio, W.; Cucchiara, A.; Caruso, F.; Cammarata, F.P.; Coronnello, C.; Russo, G.; et al. An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics 2023, 13, 1210. [Google Scholar] [CrossRef]
- Liepe, K.; Becker, A. 99mTc-Hynic-TOC imaging in the diagnostic of neuroendocrine tumors. World J. Nucl. Med. 2018, 17, 151–156. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.-J. Lu-177-Based Peptide Receptor Radionuclide Therapy for Advanced Neuroendocrine Tumors. Nucl. Med. Mol. Imaging 2018, 52, 208–215. [Google Scholar] [CrossRef]
- Morcet-Delattre, R.; Meneret, P.; Coue, O.; Vauleon, E.; Prigent, K. Transformation From Atypical to Anaplastic Metastatic Meningioma. Clin. Nucl. Med. 2024, 49, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Han, S.A.; Ryu, J.; Song, S.W.; Kim, J.-S.; Ryu, J.-S.; Oh, M. 68Ga-DOATATOC Brain PET/CT Imaging in a case of Dural Metastasis from Synovial Sarcoma. Nucl. Med. Mol. Imaging 2024, 58, 310–316. [Google Scholar] [CrossRef]
- Weitzer, F.; Stanzel, S.; Plhak, E.; Aigner, R.M. Correction: Clinical value of semiquantitative parameters in 68GaDOTANOC PET/CT in treatment and diagnostics of cranial meningioma in a singlecenter retrospective analysis. EJNMMI Rep. 2024, 8, 34. [Google Scholar] [CrossRef]
- Ivanidze, J.; Chang, S.J.; Haghdel, A.; Kim, J.T.; Roy Choudhury, A.; Wu, A.; Ramakrishna, R.; Schwartz, T.H.; Cisse, B.; Stieg, P.; et al. [Ga68] DOTATATE PET/MRI-guided radiosurgical treatment planning and response assessment in meningiomas. Neuro Oncol. 2024, 26, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.V.; Lang, H.J.; Donev, K.; Bendok, B.R.; Yang, M. 68Ga-DOTATATE and 18F-FDG PET Imaging of a Rare Chordoid Meningioma With Intracranial Recurrence and Extracranial Metastases. Clin. Nucl. Med. 2024, 49, e354–e356. [Google Scholar] [CrossRef]
- Kim, J.T.; Chang, S.J.C.; Haghdel, A.; Ramakrishna, R.R.; Pannullo, S.C.; Schwartz, T.H.; Osborne, J.R.; Magge, R.S.; Fine, H.A.; Cisse, B.; et al. DOTATATE PET/MR Imaging Differentiates Secondary-Progressive from de Novo World Health Organization Grade 3 Meningiomas. Am. J. Neuroradiol. 2024, 45, 773–780. [Google Scholar] [CrossRef]
- Perlow, H.K.; Nalin, A.P.; Handley, D.; Gokun, Y.; Blakaj, D.M.; Beyer, S.J.; Thomas, E.M.; Raval, R.R.; Boulter, D.; Kleefisch, C.; et al. A Prospective Registry Study of 68Ga-DOTATATE PET/CT Incorporation Into Treatment Planning of Intracranial Meningiomas. Int. J. Radiat. Oncol. Biol. Phys. 2024, 118, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Iglseder, S.; Iglseder, A.; Beliveau, V.; Heugenhauser, J.; Gizewski, E.R.; Kerschbaumer, J.; Stockhammer, G.; Uprimny, C.; Virgolini, I.; Dudas, J.; et al. Somatostatin receptor subtype expression and radiomics from DWI-MRI represent SUV of [68Ga]Ga-DOTATOC PET in patients with meningioma. J. Neurooncol. 2023, 164, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, G.; Huo, M.; Mehta, A.; Ramachandran, P.; Pinkham, M.B.; Law, P.; Watkins, T.; Olson, S.; Hall, B.; Brown, S.; et al. Utility of 68Ga-DOTATATE PET-MRI for Gamma Knife® stereotactic radiosurgery treatment planning for meningioma. Br. J. Radiol. 2024, 97, 180–185. [Google Scholar] [CrossRef]
- Hartmann, K.; Gillman, J.A.; Lazor, J.W.; Ware, J.B.; Weeks, J.K.; Nasrallah, I.M.; Farwell, M.D.; Pantel, A.R. 68Ga-DOTATATE PET to Characterize Lesions in the Neuroaxis. Clin. Nucl. Med. 2024, 49, 9–15. [Google Scholar] [CrossRef]
- Teske, N.; Biczok, A.; Quach, S.; Dekorsy, F.J.; Forbrig, R.; Bodensohn, R.; Niyazi, M.; Tonn, J.-C.; Albert, N.L.; Schichor, C.; et al. Postoperative [68Ga]Ga-DOTA-TATE PET/CT imaging is prognostic for progression-free survival in meningioma WHO grade 1. Eur. J. Nucl. Med. Mol. Imaging 2023, 51, 206–217. [Google Scholar] [CrossRef]
- Rini, J.N.; Keir, G.; Caravella, C.; Goenka, A.; Franceschi, A.M. Somatostatin Receptor–PET/CT/MRI of Head and Neck Neuroendocrine Tumors. Am. J. Neuroradiol. 2023, 44, 959–966. [Google Scholar] [CrossRef]
- Rodriguez, J.; Martinez, G.; Mahase, S.; Roytman, M.; Haghdel, A.; Kim, S.; Madera, G.; Magge, R.; Pan, P.; Ramakrishna, R.; et al. Cost-Effectiveness Analysis of 68 Ga-DOTATATE PET/MRI in Radiotherapy Planning in Patients with Intermediate-Risk Meningioma. Am. J. Neuroradiol. 2023, 44, 783–791. [Google Scholar] [CrossRef]
- Sonnenberg, F.A.; Beck, J.R. Markov Models in Medical Decision Making. Med. Decis. Mak. 1993, 13, 322–338. [Google Scholar] [CrossRef]
- Hall, J.; Wang, T.J.C.; Yanagihara, T.K. Commentary: Using 68Ga-DOTATATE PET for Postoperative Radiosurgery and Radiotherapy Planning in Patients With Meningioma: A Case Series. Neurosurgery 2023, 93, e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Ensign, S.F.; Agarwal, M.; Klanderman, M.; Badawy, M.; Halfdanarson, T.R.; Johnson, D.R.; Sonbol, M.B.; Kendi, A.T. Clinical utility of somatostatin receptor positron emission tomography imaging biomarkers for characterization of meningioma among incidental central nervous system lesions. Nucl. Med. Commun. 2023, 44, 663–670. [Google Scholar] [CrossRef]
- Milosevic, A.; Styczen, H.; Haubold, J.; Kessler, L.; Grueneisen, J.; Li, Y.; Weber, M.; Fendler, W.P.; Morawitz, J.; Damman, P.; et al. Correlation of the apparent diffusion coefficient with the standardized uptake value in meningioma of the skull plane using [68]Ga-DOTATOC PET/MRI. Nucl. Med. Commun. 2023, 44, 1106–1113. [Google Scholar] [CrossRef]
- Horowitz, T.; Salgues, B.; Padovani, L.; Farah, K.; Dufour, H.; Chinot, O.; Guedj, E.; Graillon, T. Optic Nerve Sheath Meningiomas: Solving Diagnostic Challenges with 68Ga-DOTATOC PET/CT. Diagnostics 2023, 13, 2307. [Google Scholar] [CrossRef] [PubMed]
- Lütgendorf-Caucig, C.; Pelak, M.; Flechl, B.; Georg, P.; Fossati, P.; Stock, M.; Traub-Weidinger, T.; Marosi, C.; Haberler, C.; Zechmeister-Machhart, G.; et al. The trends and significance of SSTR PET/CT added to MRI in follow-up imaging of low-grade meningioma treated with fractionated proton therapy. Strahlenther. Onkol. 2023, 199, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Ghomari, C.F.; Bender, L.; Lhermitte, B.; Noël, G.; Namer, I.J.; Bund, C. 68Ga-DOTATOC PET in Extracranial Hepatic and Bone Metastasis of Atypical Refractory Meningioma. Clin. Nucl. Med. 2023, 48, 176–178. [Google Scholar] [CrossRef]
- Milosevic, A.; Styczen, H.; Grueneisen, J.; Li, Y.; Weber, M.; Fendler, W.P.; Kirchner, J.; Damman, P.; Wrede, K.; Lazaridis, L.; et al. Evaluation of [68 Ga]-DOTATOC PET/MRI in Patients with Meningioma of the Subcranial and Intraorbital Space. J. Nucl. Med. 2023, 64, 1185–1190. [Google Scholar] [CrossRef]
- Severi, S.; Grassi, I.; Bongiovanni, A.; Nicolini, S.; Marini, I.; Arpa, D.; Ranallo, N.; Azzali, I.; Di Iorio, V.; Sarnelli, A.; et al. Peptide Receptor Radionuclide Therapy in Advanced Refractory Meningiomas: Efficacy and Toxicity in a Long Follow-up. J. Nucl. Med. 2024, 65, 1409–1415. [Google Scholar] [CrossRef]
- Moreau, A.; Maureille, A.; Kryza, D. 68Ga-DOTATOC Pictorial Essay of Various Recurrent Meningiomas Rejected for Treatment With 177Lu-DOTATATE. Clin. Nucl. Med. 2024, 49, 655–658. [Google Scholar] [CrossRef]
- Puranik, A.D.; Dev, I.D.; Rangarajan, V.; Kulkarni, S.; Shetty, N.; Gala, K.; Sahu, A.; Bhattacharya, K.; Dasgupta, A.; Chatterjee, A.; et al. PRRT with Lu-177 DOTATATE in Treatment-Refractory Progressive Meningioma: Initial Experience from a Tertiary-Care Neuro-Oncology Center. Neurol. India 2024, 72, 278–284. [Google Scholar] [CrossRef]
- Graillon, T.; Salgues, B.; Horowitz, T.; Padovani, L.; Appay, R.; Tabouret, E.; Guedj, E.; Chinot, O. Peptide radionuclide radiation therapy with Lutathera in multirecurrent nonanaplastic meningiomas: Antitumoral activity study by growth rate analysis. J. Neurooncol. 2024, 167, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Kurz, S.C.; Zan, E.; Cordova, C.; Troxel, A.B.; Barbaro, M.; Silverman, J.S.; Snuderl, M.; Zagzag, D.; Kondziolka, D.; Golfinos, J.G.; et al. Evaluation of the SSTR2-targeted Radiopharmaceutical 177Lu-DOTATATE and SSTR2-specific 68Ga-DOTATATE PET as Imaging Biomarker in Patients with Intracranial Meningioma. Clin. Cancer Res. 2024, 30, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Boursier, C.; Zaragori, T.; Bros, M.; Bordonne, M.; Melki, S.; Taillandier, L.; Blonski, M.; Roch, V.; Marie, P.-Y.; Karcher, G.; et al. Semi-automated segmentation methods of SSTR PET for dosimetry prediction in refractory meningioma patients treated by SSTR-targeted peptide receptor radionuclide therapy. Eur. Radiol. 2023, 33, 7089–7098. [Google Scholar] [CrossRef]
- Hintz, E.B.; Park, D.J.; Ma, D.; Viswanatha, S.D.; Rini, J.N.; Schulder, M.; Goenka, A. Using 68Ga-DOTATATE PET for Postoperative Radiosurgery and Radiotherapy Planning in Patients with Meningioma: A Case Series. Neurosurgery 2023, 93, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Tennvall, J.; Fischer, M.; Bischof Delaloye, A.; Bombardieri, E.; Bodei, L.; Giammarile, F.; Lassmann, M.; Oyen, W.; Brans, B. EANM procedure guideline for radio-immunotherapy for B-cell lymphoma with 90Y-radiolabelled ibritumomab tiuxetan (Zevalin). Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 616–622. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Batko, K.; Ślęzak, A. The use of Big Data Analytics in healthcare. J. Big Data 2022, 9, 3. [Google Scholar] [CrossRef]
1.1. Diagnostic Utility of SSTR PET Imaging | |||||
Study Population | Patients (n) | Ligand | Key Findings | Ref. | |
Grade I (WHO) | 17 (18 lesions) | 68Ga-DOTATATE | PET/MRI increased GTV volume vs. MRI (p = 0.008); improved target delineation for radiosurgery. | [26] | |
Neuroaxis tumors (head/neck) | 52 (70 lesions) | 68Ga-DOTATATE PET/CT | Paragangliomas (SUVmax 62) vs. schwannomas (SUVmax 2); meningiomas intermediate (SUVmax 19). High SUVmax (>50) aids paraganglioma diagnosis. | [27] | |
Grade I (WHO) | 46 (49 tumors) | 68Ga-DOTA-TATE PET/CT | PET findings linked to progression risk (p = 0.015) and lower PFS (p = 0.029). Negative PET predicted recurrence-free survival. | [28] | |
Head and neck tumors | 30 | SSR–PET/CT vs. MRI | PET/MRI detected additional lesions in 9 cases; vertex-to-thigh imaging identified metastases in 1 of 17 patients, with incidental dindings in 8. | [29] | |
Mixed grades (WHO) | 12 | 68Ga-DOTATATE | PET detected MRI-negative intraosseous lesions and recurrence in 9/12 patients. | [45] | |
Grade III (suspected meningioma) | 1 | 68Ga-DOTATOC PET/CT | Differentiated dural metastasis (SUVmax 4.9) from meningioma (SUVmax 9.3 in pituitary gland). | [19] | |
Optic nerve sheath meningioma | 12 | 68Ga-DOTATOC | SUVmax > 5 confirmed ONSM; SUVmax < 5 ruled out tumor (e.g., neurosarcoidosis). | [35] | |
1.2. PRRT Therapy Outcomes | |||||
Study Population | Patients (n) | Ligand | Dose/Duration | Key Outcomes | Ref. |
Grades I–III (WHO) | 14 | 177Lu-DOTATATE | 7.4 GBq × 4 cycles | PFS-6: 50%; stable disease, reduced PET uptake. | [43] |
Grades I–III (WHO) | 8 | 177Lu-DOTATATE | 2.64 MBq/kg × 2 cycles | Median progression: 8.9 months; 7/8 stable disease. | [41] |
Recurrent meningiomas | 42 | 90Y-DOTATOC/177Lu-DOTATATE | Cumulative 11–22 GBq | Median PFS: 16 months; OS: 36 months; retreatment PFS: 6.5 months. | [39] |
Grades I–IV (WHO) | 20 (39 lesions) | 177Lu-DOTATATE | 7.4 GBq/cycle | SUVmean × volume predicted absorbed dose (r = 0.78); optimal threshold: 1.7× meninges SUVpeak. | [44] |
1.3. Imaging Modality Comparisons | |||||
Study Population | Patients (n) | Ligand | Key Findings | Ref. | |
Mixed grades (WHO) | 48 | 68Ga-DOTATATE vs. MRI | Concordant PET/MRI lesions had higher SUVmax (7.9 vs. 4.0, p = 0.008) and Krenning scores. | [33] | |
Skull base/orbital meningiomas | 60 | 68Ga-DOTATOC | No SUVmax-ADC correlation (p > 0.05). PET/MRI specificity (75%) vs. MRI (66%). | [33,37,38] | |
1.4. Radiomics and Biomarker Correlations | |||||
Study Population | Patients (n) | Ligand | Key Findings | Ref. | |
Grades I–II (WHO) | 51 | 68Ga-DOTATOC | SSTR2A/B and SSTR5 correlated with SUVmax (p < 0.001). Radiomic model predicted SUVmax (r = 0.42). | [25] | |
Grade I (WHO) | 22 | 68Ga-DOTATOC PET/CT | 81.8% showed reduced SUVmean/TLA post-treatment; increased heterogeneity index in 75%. | [36] | |
1.5. Case Reports and Unique Scenarios | |||||
Study Population | Patients (n) | Ligand | Key Findings | Ref. | |
Metastatic meningioma | 1 | 68Ga-DOTATOC PET/MRI | Detected liver/bone metastases; biopsy confirmed meningioma spread. | [37] | |
Recurrent grades II/III | 4 | 177Lu-DOTATATE/PSMA | Insufficient tracer uptake for PRRT eligibility. | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benfante, V.; Vetrano, I.G.; Ali, M.; Purpura, P.; Gagliardo, C.; Feraco, P.; Longo, C.; Bartolotta, T.V.; Toia, P.; Calisto, O.; et al. An Update on DOTA-Peptides PET Imaging and Potential Advancements of Radioligand Therapy in Intracranial Meningiomas. Life 2025, 15, 617. https://doi.org/10.3390/life15040617
Benfante V, Vetrano IG, Ali M, Purpura P, Gagliardo C, Feraco P, Longo C, Bartolotta TV, Toia P, Calisto O, et al. An Update on DOTA-Peptides PET Imaging and Potential Advancements of Radioligand Therapy in Intracranial Meningiomas. Life. 2025; 15(4):617. https://doi.org/10.3390/life15040617
Chicago/Turabian StyleBenfante, Viviana, Ignazio Gaspare Vetrano, Muhammad Ali, Pierpaolo Purpura, Cesare Gagliardo, Paola Feraco, Costanza Longo, Tommaso Vincenzo Bartolotta, Patrizia Toia, Oriana Calisto, and et al. 2025. "An Update on DOTA-Peptides PET Imaging and Potential Advancements of Radioligand Therapy in Intracranial Meningiomas" Life 15, no. 4: 617. https://doi.org/10.3390/life15040617
APA StyleBenfante, V., Vetrano, I. G., Ali, M., Purpura, P., Gagliardo, C., Feraco, P., Longo, C., Bartolotta, T. V., Toia, P., Calisto, O., Comelli, A., Midiri, M., & Alongi, P. (2025). An Update on DOTA-Peptides PET Imaging and Potential Advancements of Radioligand Therapy in Intracranial Meningiomas. Life, 15(4), 617. https://doi.org/10.3390/life15040617