Effect of Transcutaneous Application of Carbon Dioxide on Wound Healing, Wound Recurrence Rate and Diabetic Polyneuropathy in Patients with Neuropathic, Ischemic and Neuroischemic Diabetes-Related Foot Ulcers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Trial Protocol and Objectives
2.2. Diagnostic Tests
2.3. Wound Assessment
2.4. CO2 Therapy
2.5. Terminology
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABI | ankle-brachial index |
BMI | body-mass index |
CO2 | carbon dioxide |
COS | core outcome set |
DFU | diabetes-related foot ulcer |
DM | diabetes mellitus |
DSPN | diabetic distal sensorimotor polyneuropathy |
HbA1c | hemoglobin A1c |
IWGDF | The International Working Group on the Diabetic Foot |
PAD | peripheral arterial disease |
SINBAD | Site, Ischemia, Neuropathy, Bacterial Infection, and Depth |
SOC | standard of care |
SWM | Semmes Weinstein monofilament |
VEGF | vascular endothelial growth factor |
References
- Armstrong, D.G.; Boulton, A.J.M.; Bus, S.A. Diabetic Foot Ulcers and Their Recurrence. N. Engl. J. Med. 2017, 376, 2367–2375. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Prac. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Schaper, N.C.; van Netten, J.J.; Apelqvist, J.; Bus, S.A.; Fitridge, R.; Game, F.; Monteiro-Soares, M.; Senneville, É. Practical guidelines on the prevention and management of diabetes-related foot disease (IWGDF 2023 update). Diabetes Metab. Res. Rev. 2024, 40, e3657. [Google Scholar] [CrossRef] [PubMed]
- Tuncer, O.; Du, Y.; Michalski, N.; Reitzle, L. Diabetes-related amputations in Germany: Analysis of time trend from 2015 to 2022 and differences by area-level socioeconomic deprivation. J. Health Monit. 2024, 9, e12026. [Google Scholar] [CrossRef]
- Rivers, R.J.; Meininger, C.J. The Tissue Response to Hypoxia: How Therapeutic Carbon Dioxide Moves the Response toward Homeostasis and Away from Instability. Int. J. Mol. Sci. 2023, 24, 5181. [Google Scholar] [CrossRef]
- Sakai, Y.; Miwa, M.; Oe, K.; Ueha, T.; Koh, A.; Niikura, T.; Iwakura, T.; Lee, S.Y.; Tanaka, M.; Kurosaka, M. A Novel System for Transcutaneous Application of Carbon Dioxide Causing an “Artificial Bohr Effect” in the Human Body. PLoS ONE 2011, 6, e24137. [Google Scholar] [CrossRef]
- Oe, K.; Ueha, T.; Sakai, Y.; Niikura, T.; Lee, S.Y.; Koh, A.; Hasegawa, T.; Tanaka, M.; Miwa, M.; Kurosaka, M. The effect of transcutaneous application of carbon dioxide (CO2) on skeletal muscle. Biochem. Res. Commun. 2011, 407, 148–152. [Google Scholar] [CrossRef]
- Saito, I.; Hasegawa, T.; Ueha, T.; Takeda, D.; Iwata, E.; Arimoto, S.; Sakakibara, A.; Akashi, M.; Sakakibara, S.; Sakai, Y.; et al. Effect of local application of transcutaneous carbon dioxide on survival of random-pattern skin flaps. J. Plast. Reconstr. Aesthet. Surg. 2018, 71, 1644–1651. [Google Scholar] [CrossRef]
- Macura, M.; Ban Frangez, H.; Cankar, K.; Finžgar, M.; Frangez, I. The effect of transcutaneous application of gaseous CO2 on diabetic chronic wound healing—A double-blind randomized clinical trial. Int. Wound J. 2020, 17, 1607–1614. [Google Scholar] [CrossRef]
- Finžgar, M.; Frangež, H.B.; Cankar, K.; Frangež, I. Transcutaneous application of the gaseous CO2 for improvement of the microvascular function in patients with diabetic foot ulcers. Microvasc. Res. 2021, 133, 104100. [Google Scholar] [CrossRef]
- Wollina, U.; Heinig, B.; Uhlemann, C. Transdermal CO2 application in chronic wounds. Int. J. Low. Extrem. Wounds 2004, 3, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Ratano, S.; Jovanovic, B.; ChoudjaOuabo, E. Intérêt de la CarboxythérapiePercutanée dans la priseen charge des douleurs et des limitations fonctionnelles post-traumatiques et post-opératoires du membreinférieur. Sport. Exerc. Med. Switz. 2023, 71, 23–27. [Google Scholar] [CrossRef]
- Amano-Iga, R.; Hasegawa, T.; Takeda, D.; Murakami, A.; Yatagai, N.; Saito, I.; Arimoto, S.; Kakei, Y.; Sakakibara, A.; Akashi, M. Local Application of Transcutaneous Carbon Dioxide Paste Decreases Inflammation and Accelerates Wound Healing. Cureus 2021, 13, e19518. [Google Scholar] [CrossRef] [PubMed]
- Sorg, H.; Limbourg, A.; Roushan, A.; Küther, G.; Braunschweig, G.; Gutenbrunner, G.; Vogt, P.; Rennekampff, H. Verbesserung der Wundheilungdurch CO2-Behandlung: Organisationund Management der Therapie. Z. Wundheilstörung 2012, 17, 23–27. [Google Scholar]
- Shalan, N.; Al-Bazzaz, A.; Al-Ani, I.; Najem, F.; Al-Masri, M.; Shalan, N.; Al-Bazzaz, A.; Al-Ani, I.; Najem, F.; Al-Masri, M. Effect of Carbon Dioxide Therapy on Diabetic Foot Ulcer. J. Diabetes Mellit. 2015, 5, 284–289. [Google Scholar] [CrossRef]
- Chao, C.Y.L.; Cheing, G.L.Y. Microvascular dysfunction in diabetic foot disease and ulceration. Diabetes Metab. Res. Rev. 2009, 25, 604–614. [Google Scholar] [CrossRef]
- Mohammedi, K.; Woodward, M.; Marre, M.; Colagiuri, S.; Cooper, M.; Harrap, S.; Mancia, G.; Poulter, N.; Williams, B.; Zoungas, S.; et al. Comparative effects of microvascular and macrovascular disease on the risk of major outcomes in patients with type 2 diabetes. Cardiovasc. Diabetol. 2017, 16, 95. [Google Scholar] [CrossRef]
- Sharma, S.; Schaper, N.; Rayman, G. Microangiopathy: Is it relevant to wound healing in diabetic foot disease? Diabetes Metab. Res. Rev. 2020, 36 (Suppl. S1), e3244. [Google Scholar] [CrossRef]
- Aagaard, T.V.; Moeini, S.; Skou, S.T.; Madsen, U.R.; Brorson, S. Benefits and Harms of Exercise Therapy for Patients with Diabetic Foot Ulcers: A Systematic Review. Int. J. Low. Extrem. Wounds 2022, 21, 219–233. [Google Scholar] [CrossRef]
- Yatagai, N.; Hasegawa, T.; Kyotani, K.; Noda, T.; Amano, R.; Saito, I.; Arimoto, S.; Takeda, D.; Kakei, Y.; Akashi, M. Exploratory clinical trial to evaluate the efficacy and safety of carbon dioxide paste in healthy people. Medicine 2022, 101, E29511. [Google Scholar] [CrossRef]
- Ban Frangež, H.; Rodi, Z.; Miklavčič, J.; Frangež, I. The Effect of Transcutaneous Application of Gaseous CO2 on Diabetic Symmetrical Peripheral Neuropathy—A Double-Blind Randomized Clinical Trial. Appl. Sci. 2021, 11, 4911. [Google Scholar] [CrossRef]
- Monteiro-Soares, M.; Russell, D.; Boyko, E.J.; Jeffcoate, W.; Mills, J.L.; Morbach, S.; Game, F. Guidelines on the classification of diabetic foot ulcers (IWGDF 2019). Diabetes Metab. Res. Rev. 2020, 36, e3273. [Google Scholar] [CrossRef] [PubMed]
- Falanga, V.; Saap, L.J.; Ozonoff, A. Wound bed score and its correlation with healing of chronic wounds. Dermatol. Ther. 2006, 19, 383–390. [Google Scholar] [CrossRef] [PubMed]
- van Netten, J.J.; Bus, S.A.; Apelqvist, J.; Chen, P.; Chuter, V.; Fitridge, R.; Game, F.; Hinchliffe, R.J.; Lazzarini, P.A.; Mills, J.; et al. Definitions and criteria for diabetes-related foot disease (IWGDF 2023 update). Diabetes Metab. Res. Rev. 2024, 40, e3654. [Google Scholar] [CrossRef]
- Sidawy, A.N.; Perler, B.A. Rutherford’s Vascular Surgery and Endovascular Therapy, 9th ed.; Sidawy, A.N., Perler, B.A., Eds.; Elsevier: Philadelphia, PA, USA, 2019. [Google Scholar]
- Irie, H.; Tatsumi, T.; Takamiya, M.; Zen, K.; Takahashi, T.; Azuma, A.; Tateishi, K.; Nomura, T.; Hayashi, H.; Nakajima, N.; et al. Carbon dioxide-rich water bathing enhances collateral blood flow in ischemic hindlimb via mobilization of endothelial progenitor cells and activation of NO-cGMP system. Circulation 2005, 111, 1523–1529. [Google Scholar] [CrossRef]
- Behroozian, A.; Beckman, J.A. Microvascular Disease Increases Amputation in Patients with Peripheral Artery Disease. Arter. Biol. 2020, 40, 534–540. [Google Scholar] [CrossRef]
- Soyoye, D.O.; Abiodun, O.O.; Ikem, R.T.; Kolawole, B.A.; Akintomide, A.O. Diabetes and peripheral artery disease: A review. World J. Diabetes 2021, 12, 827. [Google Scholar] [CrossRef]
- Gosain, A.; DiPietro, L.A. Aging and Wound Healing. World J. Surg. 2004, 28, 321–326. [Google Scholar] [CrossRef]
- Cukjati, D.; Reberšek, S.; Miklavčič, D. A reliable method of determining wound healing rate. Med. Biol. Eng. Comput. 2001, 39, 263–271. [Google Scholar] [CrossRef]
- Sinnreich, M.; Taylor, B.V.; Dyck, P.J.B. Diabetic neuropathies. Classification, clinical features, and pathophysiological basis. Neurologist 2005, 11, 63–79. [Google Scholar] [CrossRef]
- Staniszewska, A.; Game, F.; Nixon, J.; Russell, D.; Armstrong, D.G.; Ashmore, C.; Bus, S.A.; Chung, J.; Chuter, V.; Dhatariya, K.; et al. Development of a Core Outcome Set for Studies Assessing Interventions for Diabetes-Related Foot Ulceration. Diabetes Care 2024, 47, 1958–1968. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, P.; Jones, P.; Caselli, A.; Giurini, J.M.; Veves, A. Percent Change in Wound Area of Diabetic Foot Ulcers Over a 4-Week Period Is a Robust Predictor of Complete Healing in a 12-Week Prospective Trial. Diabetes Care 2003, 26, 1879–1882. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value |
---|---|
No. of subjects | 35: M (28), F (7) |
BMI [kg/m2] | 29.4 (22.6–44.2) |
DM | Type 2 (35) |
HbA1c [%] | 7.3 (5.8–11.4) |
ABI [/] * | L: 0.97 ± 0.23 a R: 0.96 ± 0.23 b |
T [°C] * | 27.2 ± 3.3 |
SWM score | 16 (0–16) |
Vibration test score | 4 (0–10) |
Characteristic | Value |
---|---|
No. of wounds | 40 |
Etiology | I (15), N (8), NI (17) |
Ulcer age [month] | 2 (1–12) |
Falanga score | B (24), C (16) |
SINBAD score | 1 (1), 2 (6), 3 (7), 4 (10), 5 (13), 6 (3) |
P [cm2] | 1.5 (0.3–11.1) |
Amputation history | Yes (10) a, No (25) |
Group 1 | Group 2 | p | |
---|---|---|---|
Group size | 24: M (19), F (5) | 11: M (9), F (2) | 0.856 |
Age [year] | 74 (49–83) | 67 (41–79) | 0.036 |
BMI [kg/m2] | 29.2 (22.6–41.7) | 29.4 (22.6–44.2) | 0.636 |
DM type | Type 2 (24) | Type 2 (11) | / |
HbA1c [%] | 7.3 (5.8–11.4) | 7.3 (6.2–10.8) | 0.540 |
ABI [/] * | L: 0.93 ± 0.26 a R: 0.97 ± 0.25 b | L: 1.02 ± 0.10 c R: 0.96 ± 0.16 d | 0.285 0.589 |
T1 [°C] * | 27.6 ± 3.6 | 26.5 ± 2.6 | 0.311 |
T2 [°C] * | 31.3 ± 1.6 | 30.6 ± 2.0 | 0.398 |
SWM score 1 | 16 (0–16) | 16 (3–16) | 0.793 |
SWM score 2 | 8 (0–16) | 10 (0–14) | 0.370 |
Vibration test score 1 | 4 (0–10) | 4 (0–10) | 0.224 |
Vibration test score 2 | 2 (0–10) | 2 (0–8) | 0.958 |
Group 1 | Group 2 | p | |
---|---|---|---|
Etiology | I (12), N (5), NI (10) | I (3), N (3), NI (7) | 0.418 |
Ulcer age [month] | 2 (1–12) | 2 (1–12) | 0.887 |
Falanga score 1 | B (18), C (9) | B (6), C (7) | 0.215 |
Falanga score 2 | wounds healed (27) | A (12), B (1) | / |
SINBAD score 1 | 1–4 (17); 5–6 (10) 1 (1), 2 (5), 3 (6), 4 (5), 5 (8), 6 (2) | 1–4 (7); 5–6 (6) 1 (0), 2 (1), 3 (1), 4 (5), 5 (5), 6 (1) | 0.581 |
SINBAD score 2 | wounds healed (27) | 1–4 (13), 5–6 (0) 1 (3), 2 (2), 3 (7), 4 (1), 5 (0), 6 (0) | / |
P1 [cm2] | 2.1 (0.3–11.1) | 1.2 (0.3–4.1) | 0.031 |
P2 [cm2] | 0 (0–0) | 0.2 (0.1–2.9) | <0.001 |
Amputation history | Yes (5) a | Yes (3) | 0.774 |
No. of Recurred Wounds on the Same Foot | No. of Recurred Wounds on a Contralateral Foot | |
Group 1 | 4 | 0 |
Group 2 | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulum, T.; Poljičanin, T.; Badanjak, A.; Držič, J.; Metelko, Ž. Effect of Transcutaneous Application of Carbon Dioxide on Wound Healing, Wound Recurrence Rate and Diabetic Polyneuropathy in Patients with Neuropathic, Ischemic and Neuroischemic Diabetes-Related Foot Ulcers. Life 2025, 15, 618. https://doi.org/10.3390/life15040618
Bulum T, Poljičanin T, Badanjak A, Držič J, Metelko Ž. Effect of Transcutaneous Application of Carbon Dioxide on Wound Healing, Wound Recurrence Rate and Diabetic Polyneuropathy in Patients with Neuropathic, Ischemic and Neuroischemic Diabetes-Related Foot Ulcers. Life. 2025; 15(4):618. https://doi.org/10.3390/life15040618
Chicago/Turabian StyleBulum, Tomislav, Tamara Poljičanin, Anica Badanjak, Jelena Držič, and Željko Metelko. 2025. "Effect of Transcutaneous Application of Carbon Dioxide on Wound Healing, Wound Recurrence Rate and Diabetic Polyneuropathy in Patients with Neuropathic, Ischemic and Neuroischemic Diabetes-Related Foot Ulcers" Life 15, no. 4: 618. https://doi.org/10.3390/life15040618
APA StyleBulum, T., Poljičanin, T., Badanjak, A., Držič, J., & Metelko, Ž. (2025). Effect of Transcutaneous Application of Carbon Dioxide on Wound Healing, Wound Recurrence Rate and Diabetic Polyneuropathy in Patients with Neuropathic, Ischemic and Neuroischemic Diabetes-Related Foot Ulcers. Life, 15(4), 618. https://doi.org/10.3390/life15040618