Inflammatory and Fibrosis Parameters Predicting CPET Performance in Males with Recent Elective PCI for Chronic Coronary Syndrome
Abstract
1. Introduction
2. Materials and Methods
3. Results
- -
- Using a cut-off point of 25.2, galectin-3 predicted an impaired FC with a sensitivity of 90% and a specificity of 70% (AUC = 0.831; CI95%: 0.744–0.918; p = 0.001);
- -
- Using a cut-off point of 2.0, NLR predicted a lower FC with a sensitivity of 80% and a specificity of 65% (AUC = 0.748; CI95%: 0.645–0.850; p = 0.001);
- -
- Using a cut-off point of 158, PLR predicted a diminished FC with a sensitivity of 72% and a specificity of 67.55% (AUC = 0.720; CI95%: 0.611–0.828; p = 0.001).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FC | functional capacity |
CPET | cardiopulmonary exercise testing |
CCS | chronic coronary syndrome |
Gal-3 | galectin-3 |
NLR | neutrophil-to-lymphocyte ratio |
PLR | platelet-to-lymphocyte ratio |
MLR | monocyte-to-lymphocyte ratio |
PCI | percutaneous coronary intervention |
CR | cardiovascular rehabilitation |
%VO2max | percent predicted oxygen uptake |
CAD | coronary artery disease |
HF | heart failure |
VO2max | peak oxygen uptake |
ACS | acute coronary event |
HBP | hypertension |
SBP | systolic blood pressure |
DBP | diastolic blood pressure |
BMI | body mass index |
CBC | complete blood count |
CRP | C-reactive protein |
NTproBNP | N-terminal pro b-type natriuretic peptide |
HbA1c | glycated hemoglobin |
LVEF | left ventricular ejection fraction |
ABPM | ambulatory blood pressure monitoring |
% max WR | peak workload relative to age- and sex-predicted normal |
% max HR | peak HR relative to age-predicted normal |
ROC | receiver–operating characteristic |
TTE | transthoracic echocardiography |
OR | odds ratio |
LA | left atrium |
LDL | low-density lipoprotein |
References
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the Management of Chronic Coronary Syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef]
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk Factors for Coronary Artery Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Ralapanawa, U.; Sivakanesan, R. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. J. Epidemiol. Glob. Health 2021, 11, 169–177. [Google Scholar] [CrossRef]
- Prabhu, N.V.; Maiya, A.G.; Prabhu, N.S. Impact of Cardiac Rehabilitation on Functional Capacity and Physical Activity after Coronary Revascularization: A Scientific Review. Cardiol. Res. Pract. 2020, 2020, 1236968. [Google Scholar] [CrossRef] [PubMed]
- Keteyian, S.J.; Brawner, C.A.; Savage, P.D.; Ehrman, J.K.; Schairer, J.; Divine, G.; Aldred, H.; Ophaug, K.; Ades, P.A. Peak Aerobic Capacity Predicts Prognosis in Patients with Coronary Heart Disease. Am. Heart J. 2008, 156, 292–300. [Google Scholar] [CrossRef]
- Lala, A.; Shah, K.B.; Lanfear, D.E.; Thibodeau, J.T.; Palardy, M.; Ambardekar, A.V.; McNamara, D.M.; Taddei-Peters, W.C.; Baldwin, J.T.; Jeffries, N.; et al. Predictive Value of Cardiopulmonary Exercise Testing Parameters in Ambulatory Advanced Heart Failure. JACC Heart Fail. 2021, 9, 226–236. [Google Scholar] [CrossRef]
- Babu, A.S.; Lopez-Jimenez, F.; Thomas, R.J.; Isaranuwatchai, W.; Herdy, A.H.; Hoch, J.S.; Grace, S.L.; in conjunction with the International Council of Cardiovascular Prevention and Rehabilitation (ICCPR). Advocacy for Outpatient Cardiac Rehabilitation Globally. BMC Health Serv. Res. 2016, 16, 471. [Google Scholar] [CrossRef] [PubMed]
- Winnige, P.; Filakova, K.; Hnatiak, J.; Dosbaba, F.; Bocek, O.; Pepera, G.; Papathanasiou, J.; Batalik, L.; Grace, S.L. Validity and Reliability of the Cardiac Rehabilitation Barriers Scale in the Czech Republic (CRBS-CZE): Determination of Key Barriers in East-Central Europe. Int. J. Environ. Res. Public Health 2021, 18, 13113. [Google Scholar] [CrossRef]
- Long, L.; Anderson, L.; He, J.; Gandhi, M.; Dewhirst, A.; Bridges, C.; Taylor, R. Exercise-Based Cardiac Rehabilitation for Stable Angina: Systematic Review and Meta-Analysis. Open Heart 2019, 6, e000989. [Google Scholar] [CrossRef]
- Mezzani, A.; Hamm, L.F.; Jones, A.M.; McBride, P.E.; Moholdt, T.; Stone, J.A.; Urhausen, A.; Williams, M.A. Aerobic Exercise Intensity Assessment and Prescription in Cardiac Rehabilitation: A Joint Position Statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitation and the Canadian Association of Cardiac Rehabilitation. Eur. J. Prev. Cardiol. 2013, 20, 442–467. [Google Scholar] [CrossRef]
- Mikkelsen, N.; Cadarso-Suárez, C.; Lado-Baleato, O.; Díaz-Louzao, C.; Gil, C.P.; Reeh, J.; Rasmusen, H.; Prescott, E. Improvement in VO 2peak Predicts Readmissions for Cardiovascular Disease and Mortality in Patients Undergoing Cardiac Rehabilitation. Eur. J. Prev. Cardiol. 2020, 27, 811–819. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. The Effect of Cardiopulmonary Exercise Ability to Clinical Outcomes of Patients with Coronary Artery Disease Undergoing Percutaneous Coronary Intervention. Int. J. Gen. Med. 2024, 17, 6145–6152. [Google Scholar] [CrossRef] [PubMed]
- Yoshikane, H.; Yamamoto, T.; Ozaki, M.; Matsuzaki, M. [Clinical significance of high-sensitivity C-reactive protein in lifestyle-related disease and metabolic syndrome]. J. Cardiol. 2007, 50, 175–182. [Google Scholar]
- Sultan, P.; Edwards, M.R.; Gutierrez Del Arroyo, A.; Cain, D.; Sneyd, J.R.; Struthers, R.; Minto, G.; Ackland, G.L. Cardiopulmonary Exercise Capacity and Preoperative Markers of Inflammation. Mediat. Inflamm. 2014, 2014, 727451. [Google Scholar] [CrossRef]
- Strang, F.; Schunkert, H. C-Reactive Protein and Coronary Heart Disease: All Said—Is Not It? Mediat. Inflamm. 2014, 2014, 757123. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Angelopoulos, A.; Papanikolaou, P.; Simantiris, S.; Oikonomou, E.K.; Vamvakaris, K.; Koumpoura, A.; Farmaki, M.; Trivella, M.; Vlachopoulos, C.; et al. Biomarkers of Vascular Inflammation for Cardiovascular Risk Prognostication. JACC Cardiovasc. Imaging 2022, 15, 460–471. [Google Scholar] [CrossRef]
- Heidarpour, M.; Bashiri, S.; Vakhshoori, M.; Heshmat-Ghahdarijani, K.; Khanizadeh, F.; Ferdowsian, S.; Shafie, D. The Association between Platelet-to-Lymphocyte Ratio with Mortality among Patients Suffering from Acute Decompensated Heart Failure. BMC Cardiovasc. Disord. 2021, 21, 454. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Huang, A.; Liu, L. Platelet-to-lymphocyte Ratio and Prognosis in STEMI: A Meta-analysis. Eur. J. Clin. Investig. 2021, 51, e13386. [Google Scholar] [CrossRef]
- Willim, H.A.; Harianto, J.C.; Cipta, H. Platelet-to-Lymphocyte Ratio at Admission as a Predictor of In-Hospital and Long-Term Outcomes in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. Cardiol. Res. 2021, 12, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Chen, L.; Yan, C.; Xu, H.; Cao, G. Elevated Platelet-to-Lymphocyte Ratio as a Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Individuals. J. Clin. Hypertens. 2025, 27, e14980. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, W.; Zheng, X. The Prognostic Value of the Combined Neutrophil-to-Lymphocyte Ratio (NLR) and Neutrophil-to-Platelet Ratio (NPR) in Sepsis. Sci. Rep. 2024, 14, 15075. [Google Scholar] [CrossRef]
- Vakhshoori, M.; Nemati, S.; Sabouhi, S.; Yavari, B.; Shakarami, M.; Bondariyan, N.; Emami, S.A.; Shafie, D. Neutrophil to Lymphocyte Ratio (NLR) Prognostic Effects on Heart Failure; a Systematic Review and Meta-Analysis. BMC Cardiovasc. Disord. 2023, 23, 555. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Aurora, R.G.; Siswanto, B.B.; Muliawan, H.S. The Prognostic Value of Neutrophil-to-Lymphocyte Ratio across All Stages of Coronary Artery Disease. Coron. Artery Dis. 2022, 33, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, M.; Liu, L.; Dang, X.; Zhu, D.; Tian, G. Monocyte/Lymphocyte Ratio Is Related to the Severity of Coronary Artery Disease and Clinical Outcome in Patients with Non-ST-Elevation Myocardial Infarction. Medicine 2019, 98, e16267. [Google Scholar] [CrossRef]
- Song, F.-H.; Zheng, Y.-Y.; Tang, J.-N.; Wang, W.; Guo, Q.-Q.; Zhang, J.-C.; Bai, Y.; Wang, K.; Cheng, M.-D.; Jiang, L.-Z.; et al. A Correlation Between Monocyte to Lymphocyte Ratio and Long-Term Prognosis in Patients with Coronary Artery Disease After PCI. Clin. Appl. Thromb. Hemost. 2021, 27, 1076029621999717. [Google Scholar] [CrossRef]
- Zaborska, B.; Sygitowicz, G.; Smarż, K.; Pilichowska-Paszkiet, E.; Budaj, A. Galectin-3 Is Related to Right Ventricular Dysfunction in Heart Failure Patients with Reduced Ejection Fraction and May Affect Exercise Capacity. Sci. Rep. 2020, 10, 16682. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, S.; Xu, H.; Zhang, N.; Huang, M.; Liu, Z. Inflammation Biomarkers Are Associated with the Incidence of Cardiovascular Disease: A Meta-Analysis. Front. Cardiovasc. Med. 2023, 10, 1175174. [Google Scholar] [CrossRef]
- Okan, S. The Relationship between Exercise Capacity and Neutrophil//Lymphocyte Ratio in Patients Taken to Cardiopulmonary Rehabilitation Program. Bratisl. Lek. Listy 2020, 121, 206–210. [Google Scholar] [CrossRef]
- Drugescu, A.; Roca, M.; Zota, I.M.; Costache, A.-D.; Gavril, O.I.; Gavril, R.S.; Vasilcu, T.F.; Mitu, O.; Esanu, I.M.; Roca, I.-C.; et al. Value of the Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio in Predicting CPET Performance in Patients with Stable CAD and Recent Elective PCI. Medicina 2022, 58, 814. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- American Diabetes Association 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; International Diabetes Federation. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; WHO: Geneva, Switzerland, 2006; ISBN 978-92-4-159493-6. [Google Scholar]
- Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation; WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2011.
- Lancellotti, P.; Zamorano, J.L.; Habib, G.; Badano, L. The EACVI Textbook of Echocardiography; Oxford University Press: Oxford, UK, 2017; ISBN 978-0-19-103889-1. [Google Scholar]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- American Thoracic Society (ATS); American College of Chest Physicians (ACCP). ATS/ACCP Statement on Cardiopulmonary Exercise Testing. Am. J. Respir. Crit. Care Med. 2003, 167, 211–277. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.B.; Storer, T.W. Exercise Testing and Interpretation: A Practical Approach; Cambridge University Press: Cambridge, UK, 2001; ISBN 978-0-521-64842-4. [Google Scholar]
- Ambrosetti, M.; Abreu, A.; Corrà, U.; Davos, C.H.; Hansen, D.; Frederix, I.; Iliou, M.C.; Pedretti, R.F.; Schmid, J.-P.; Vigorito, C.; et al. Secondary Prevention through Comprehensive Cardiovascular Rehabilitation: From Knowledge to Implementation. 2020 Update. A Position Paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2020, 28, 460–495. [Google Scholar] [CrossRef] [PubMed]
- Hung, R.K.; Al-Mallah, M.H.; McEvoy, J.W.; Whelton, S.P.; Blumenthal, R.S.; Nasir, K.; Schairer, J.R.; Brawner, C.; Alam, M.; Keteyian, S.J.; et al. Prognostic Value of Exercise Capacity in Patients with Coronary Artery Disease: The FIT (Henry Ford ExercIse Testing) Project. Mayo Clin. Proc. 2014, 89, 1644–1654. [Google Scholar] [CrossRef]
- Coeckelberghs, E.; Buys, R.; Goetschalckx, K.; Cornelissen, V.A.; Vanhees, L. Prognostic Value of the Oxygen Uptake Efficiency Slope and Other Exercise Variables in Patients with Coronary Artery Disease. Eur. J. Prev. Cardiol. 2016, 23, 237–244. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2012, 32, 2045–2051. [Google Scholar] [CrossRef]
- Yayan, J. Emerging Families of Biomarkers for Coronary Artery Disease: Inflammatory Mediators. Vasc. Health Risk Manag. 2013, 9, 435–456. [Google Scholar] [CrossRef]
- Gary, T.; Pichler, M.; Belaj, K.; Hafner, F.; Gerger, A.; Froehlich, H.; Eller, P.; Rief, P.; Hackl, G.; Pilger, E.; et al. Platelet-to-Lymphocyte Ratio: A Novel Marker for Critical Limb Ischemia in Peripheral Arterial Occlusive Disease Patients. PLoS ONE 2013, 8, e67688. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chandra, P.; Guha, G.; Kalra, V.; Chakraborty, A.; Frankel, R.; Shani, J. Pre-Procedural Elevated White Blood Cell Count and Neutrophil-Lymphocyte (N/L) Ratio Are Predictors of Ventricular Arrhythmias During Percutaneous Coronary Intervention. Cardiovasc. Hematol. Disord. Drug Targets 2011, 11, 58–60. [Google Scholar] [CrossRef]
- Uthamalingam, S.; Patvardhan, E.A.; Subramanian, S.; Ahmed, W.; Martin, W.; Daley, M.; Capodilupo, R. Utility of the Neutrophil to Lymphocyte Ratio in Predicting Long-Term Outcomes in Acute Decompensated Heart Failure. Am. J. Cardiol. 2011, 107, 433–438. [Google Scholar] [CrossRef]
- Ntalouka, M.P.; Nana, P.; Kouvelos, G.N.; Stamoulis, K.; Spanos, K.; Giannoukas, A.; Matsagkas, M.; Arnaoutoglou, E. Association of Neutrophil–Lymphocyte and Platelet–Lymphocyte Ratio with Adverse Events in Endovascular Repair for Abdominal Aortic Aneurysm. J. Clin. Med. 2021, 10, 1083. [Google Scholar] [CrossRef] [PubMed]
- Guasti, L.; Dentali, F.; Castiglioni, L.; Maroni, L.; Marino, F.; Squizzato, A.; Ageno, W.; Gianni, M.; Gaudio, G.; Grandi, A.; et al. Neutrophils and Clinical Outcomes in Patients with Acute Coronary Syndromes and/or Cardiac Revascularisation: A Systematic Review on More than 34,000 Subjects. Thromb. Haemost. 2011, 106, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, A.; Yüksel, M.; Oylumlu, M.; Polat, N.; Akıl, M.A.; Acet, H. The Association between the Neutrophil/Lymphocyte Ratio and Functional Capacity in Patients with Idiopathic Dilated Cardiomyopathy. Anatol. J. Cardiol. 2015, 15, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Cakici, M. Neutrophil to Lymphocyte Ratio Predicts Poor Functional Capacity in Patients with Heart Failure. Arch. Turk. Soc. Cardiol. 2014, 42, 612–620. [Google Scholar] [CrossRef]
- Zhang, S.-Z.; Jin, Y.-P.; Qin, G.-M.; Wang, J.-H. Association of Platelet-Monocyte Aggregates with Platelet Activation, Systemic Inflammation, and Myocardial Injury in Patients with Non-St Elevation Acute Coronary Syndromes. Clin. Cardiol. 2007, 30, 26–31. [Google Scholar] [CrossRef]
- Ugur, M.; Gul, M.; Bozbay, M.; Cicek, G.; Uyarel, H.; Koroglu, B.; Uluganyan, M.; Aslan, S.; Tusun, E.; Surgit, O.; et al. The Relationship between Platelet to Lymphocyte Ratio and the Clinical Outcomes in ST Elevation Myocardial Infarction Underwent Primary Coronary Intervention. Blood Coagul. Fibrinolysis 2014, 25, 806–811. [Google Scholar] [CrossRef]
- Sun, X.-P.; Li, J.; Zhu, W.-W.; Li, D.-B.; Chen, H.; Li, H.-W.; Chen, W.-M.; Hua, Q. Impact of Platelet-to-Lymphocyte Ratio on Clinical Outcomes in Patients With ST-Segment Elevation Myocardial Infarction. Angiology 2017, 68, 346–353. [Google Scholar] [CrossRef]
- Karataş, M.B.; Çanga, Y.; İpek, G.; Özcan, K.S.; Güngör, B.; Durmuş, G.; Onuk, T.; Öz, A.; Şimşek, B.; Bolca, O. Association of Admission Serum Laboratory Parameters with New-Onset Atrial Fibrillation after a Primary Percutaneous Coronary Intervention. Coron. Artery Dis. 2016, 27, 128–134. [Google Scholar] [CrossRef]
- Ayça, B.; Akin, F.; Çelik, Ö.; Yüksel, Y.; Öztürk, D.; Tekiner, F.; Çetin, Ş.; Okuyan, E.; Dinçkal, M.H. Platelet to Lymphocyte Ratio as a Prognostic Marker in Primary Percutaneous Coronary Intervention. Platelets 2015, 26, 638–644. [Google Scholar] [CrossRef]
- Sheng, J.; Liu, N.; He, F.; Cheng, C.; Shen, S.; Sun, Y. Changes in the Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios before and after Percutaneous Coronary Intervention and Their Impact on the Prognosis of Patients with Acute Coronary Syndrome. Clinics 2021, 76, e2580. [Google Scholar] [CrossRef] [PubMed]
- Souza Teixeira, E.D.; Ferreira De Oliveira, J.G.; Mendes, R.; Rodrigues Do Nascimento, C.; Lopes, J.M.; Tenório, P.P. Changes in Neutrophil-Lymphocyte and Platelet-Lymphocyte Ratios before and after Percutaneous Coronary Intervention and Their Impact on the Prognosis of Patients with Acute Coronary Syndrome. Clinics 2023, 78, 100221. [Google Scholar] [CrossRef]
- Flynn, M.C.; Pernes, G.; Lee, M.K.S.; Nagareddy, P.R.; Murphy, A.J. Monocytes, Macrophages, and Metabolic Disease in Atherosclerosis. Front. Pharmacol. 2019, 10, 666. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Sun, J.-Y.; Lou, Y.-X.; Sun, W.; Kong, X.-Q. Monocyte-to-Lymphocyte Ratio Predicts Mortality and Cardiovascular Mortality in the General Population. Int. J. Cardiol. 2023, 379, 118–126. [Google Scholar] [CrossRef]
- Gijsberts, C.M.; Ellenbroek, G.H.; Ten Berg, M.J.; Huisman, A.; van Solinge, W.W.; Asselbergs, F.W.; den Ruijter, H.M.; Pasterkamp, G.; de Kleijn, D.P.; Hoefer, I.E. Routinely Analyzed Leukocyte Characteristics Improve Prediction of Mortality after Coronary Angiography. Eur. J. Prev. Cardiol. 2016, 23, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, Y.; Tian, Y.; Rao, C.; Shi, F.; Bu, H.; Liu, J.; Zhang, Y.; Shan, W.; Ding, Z.; et al. Prognostic Value of Peripheral Blood Inflammatory Cell Subsets in Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. J. Int. Med. Res. 2021, 49, 03000605211010059. [Google Scholar] [CrossRef]
- Fan, Z.; Li, Y.; Ji, H.; Jian, X. Prognostic Utility of the Combination of Monocyte-to-Lymphocyte Ratio and Neutrophil-to-Lymphocyte Ratio in Patients with NSTEMI after Primary Percutaneous Coronary Intervention: A Retrospective Cohort Study. BMJ Open 2018, 8, e023459. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, Q.; Liu, Z.; Zhang, C.; Yang, J.; Meng, K. Relationship between Monocyte/Lymphocyte Ratio and Non-Culprit Plaque Vulnerability in Patients with Acute Coronary Syndrome: An Optical Coherence Tomography Study. Medicine 2020, 99, e21562. [Google Scholar] [CrossRef]
- Mirna, M.; Schmutzler, L.; Topf, A.; Hoppe, U.C.; Lichtenauer, M. Neutrophil-to-Lymphocyte Ratio and Monocyte-to-Lymphocyte Ratio Predict Length of Hospital Stay in Myocarditis. Sci. Rep. 2021, 11, 18101. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, Q.; Su, W.; Wu, D. Neutrophil-to-Lymphocyte Ratio Facilitates Identification of Obstructive Sleep Apnea in Patients with Type B Aortic Dissection. Can. Respir. J. 2021, 2021, 8492468. [Google Scholar] [CrossRef]
- Lopes, L.C.C.; Gonzalez, M.C.; Avesani, C.M.; Prado, C.M.; Peixoto, M.d.R.G.; Mota, J.F. Low Hand Grip Strength Is Associated with Worse Functional Capacity and Higher Inflammation in People Receiving Maintenance Hemodialysis. Nutrition 2022, 93, 111469. [Google Scholar] [CrossRef] [PubMed]
- Widasari, N.; Heriansyah, T.; Ridwan, M.; Munirwan, H.; Kurniawan, F.D. Correlation between High Sensitivity C Reactive Protein (Hs-CRP) and Neutrophil-to- Lymphocyte Ratio (NLR) with Functional Capacity in Post COVID-19 Syndrome Patients. Narra J. 2023, 3, e183. [Google Scholar] [CrossRef]
- Kerget, B.; Aksakal, A.; Kerget, F. Evaluation of the Relationship between Laboratory Parameters and Pulmonary Function Tests in COVID-19 Patients. Int. J. Clin. Pract. 2021, 75, e14237. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, K.; Secknus, M.-A.; Adam, M.; Hayerizadeh, B.-F.; Fiedler, M.; Thiery, J.; Schuler, G. Correlation of Exercise Capacity with High-Sensitive C-Reactive Protein in Patients with Stable Coronary Artery Disease. Am. Heart J. 2005, 150, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Kato, T.; Uchida, T.; Sakuma, M.; Nakajima, A.; Shibazaki, M.; Imoto, Y.; Saito, M.; Hashimoto, S.; Hikichi, Y.; et al. Local Release of C-Reactive Protein From Vulnerable Plaque or Coronary Arterial Wall Injured by Stenting. J. Am. Coll. Cardiol. 2005, 46, 239–245. [Google Scholar] [CrossRef]
- Seropian, I.M.; Cassaglia, P.; Miksztowicz, V.; González, G.E. Unraveling the Role of Galectin-3 in Cardiac Pathology and Physiology. Front. Physiol. 2023, 14, 1304735. [Google Scholar] [CrossRef]
- Edelmann, F.; Holzendorf, V.; Wachter, R.; Nolte, K.; Schmidt, A.G.; Kraigher-Krainer, E.; Duvinage, A.; Unkelbach, I.; Düngen, H.; Tschöpe, C.; et al. Galectin-3 in Patients with Heart Failure with Preserved Ejection Fraction: Results from the Aldo- DHF Trial. Eur. J. Heart Fail. 2015, 17, 214–223. [Google Scholar] [CrossRef]
- Felker, G.M.; Fiuzat, M.; Shaw, L.K.; Clare, R.; Whellan, D.J.; Bettari, L.; Shirolkar, S.C.; Donahue, M.; Kitzman, D.W.; Zannad, F.; et al. Galectin-3 in Ambulatory Patients With Heart Failure: Results From the HF-ACTION Study. Circ. Heart Fail. 2012, 5, 72–78. [Google Scholar] [CrossRef]
- Fernandes-Silva, M.M.; Guimarães, G.V.; Rigaud, V.O.; Lofrano-Alves, M.S.; Castro, R.E.; de Barros Cruz, L.G.; Bocchi, E.A.; Bacal, F. Inflammatory Biomarkers and Effect of Exercise on Functional Capacity in Patients with Heart Failure: Insights from a Randomized Clinical Trial. Eur. J. Prev. Cardiol. 2017, 24, 808–817. [Google Scholar] [CrossRef]
- Walzik, D.; Joisten, N.; Zacher, J.; Zimmer, P. Transferring Clinically Established Immune Inflammation Markers into Exercise Physiology: Focus on Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio and Systemic Immune-Inflammation Index. Eur. J. Appl. Physiol. 2021, 121, 1803–1814. [Google Scholar] [CrossRef]
- Mocan, M.; Mocan Hognogi, L.D.; Anton, F.P.; Chiorescu, R.M.; Goidescu, C.M.; Stoia, M.A.; Farcas, A.D. Biomarkers of Inflammation in Left Ventricular Diastolic Dysfunction. Dis. Markers 2019, 2019, 7583690. [Google Scholar] [CrossRef] [PubMed]
- Tucker, B.; Vaidya, K.; Cochran, B.J.; Patel, S. Inflammation during Percutaneous Coronary Intervention-Prognostic Value, Mechanisms and Therapeutic Targets. Cells 2021, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Buonacera, A.; Stancanelli, B.; Colaci, M.; Malatino, L. Neutrophil to Lymphocyte Ratio: An Emerging Marker of the Relationships between the Immune System and Diseases. Int. J. Mol. Sci. 2022, 23, 3636. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zou, S.; Wang, C.; Tan, X.; Yu, M. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratio in Chinese Han Population from Chaoshan Region in South China. BMC Cardiovasc. Disord. 2019, 19, 125. [Google Scholar] [CrossRef]
Parameters | All Patients (n = 80) | %VO2max > 70 (n = 45) | %VO2max ≤ 70 (n = 35) | p Value * |
---|---|---|---|---|
Age (years) × | 60.39 ± 10.39 | 59.68 ± 10.81 | 60.96 ± 10.12 | 0.563 |
BMI (kg/m2) × | 29.84 (28.90–30.79) | 29.57 (28.33–30.82) | 30.06 (28.65–31.46) | 0.614 |
Past or current smoker □ | 60 (66.7%) | 30 (75.0%) | 30 (60.0%) | 0.130 |
Atrial fibrillation □ | 4 (4.4%) | 2 (5.0%) | 4 (4.0%) | 0.603 |
Hypertension □ | 69 (76.7%) | 28 (70.0%) | 41 (82.0%) | 0.139 |
OSA □ | 4 (4.4%) | 2 (5.0%) | 4 (4.0%) | 0.603 |
COPD □ | 6 (6.7%) | 4 (10.0%) | 2 (4.0%) | 0.239 |
Diabetes □ | 33 (36.7%) | 13 (32.5%) | 20 (40.0%) | 0.305 |
PLR × | 159.99 ± 54.96 | 143.75 ± 63.93 | 173.58 ± 42.20 | 0.010 |
NLR × | 2.23 ± 0.73 | 1.91 ± 0.57 | 2.49 ± 0.75 | 0.001 |
MLR × | 0.32 ± 0.11 | 0.29 ± 0.10 | 0.34 ± 0.12 | 0.012 |
Platelet count, ×103/μL × | 269.47 ± 71.00 | 257.37 ± 81.03 | 279.59 ± 60.38 | 0.140 |
Neutrophil count, ×103/μL × | 3808 ± 1100 | 3592 ± 1217 | 3988 ± 967 | 0.089 |
Lymphocyte count, ×103/μL † | 1808 ± 571 | 1959 ± 661 | 1682 ± 453 | 0.021 |
CRP (mg/dl) † | 0.62 (0.53–0.71) | 0.61 (0.47–0.74) | 0.63 (0.51–0.75) | 0.750 |
HbA1c (%) × | 6.62 ± 1.23 | 6.73 ± 1.03 | 6.57 ± 1.35 | 0.689 |
Galectin-3 × | 32.71 ± 12.93 | 25.58 ± 9.27 | 38.42 ± 12.67 | 0.001 |
NTproBNP | ||||
<100 pg/mL □ | 54 (60.0%) | 27 (67.5%) | 27 (54.0%) | 0.196 |
100–300 pg/mL □ | 23 (25.6%) | 10 (25.0%) | 13 (26.0%) | 0.179 |
>300 pg/mL □ | 13 (14.4%) | 3 (7.5%) | 10 (20.0%) | 0.003 |
TTE parameters | ||||
LVEF × | 51.36 ± 10.34 | 51.50 ± 11.34 | 51.24 ± 9.58 | 0.906 |
Left atrial volume (mL/m2) × | 34.85 ± 4.84 | 33.63 ± 3.37 | 35.83 ± 5.60 | 0.031 |
E/average e’ × | 9.34 ± 2.02 | 8.15 ± 1.17 | 10.29 ± 2.06 | 0.001 |
Diastolic dysfunction | 68 (75.6%) | 26 (65.0%) | 42 (84.0%) | 0.033 |
ABPM | ||||
Average DBP/24 h *) | 71.53 ± 10.64 | 73.50 ± 11.43 | 10.04 ± 2.14 | 0.336 |
Average SBP/24 h *) | 127.34 ± 17.59 | 127.75 ± 21.97 | 127.05 ± 14.15 | 0.905 |
CPET | ||||
Resting HR × | 76.47 ± 10.76 | 77.15 ± 10.56 | 75.92 ± 10.99 | 0.593 |
% peak HR × | 73.34 ± 10.34 | 76.33 ± 9.92 | 70.95 ± 10.13 | 0.013 |
Anaerobic threshold * | 13.18 ± 4.41 | 15.91 ± 4.19 | 10.74 ± 2.95 | 0.001 |
Resting HR | Peak HR | % Peak HR | %VO2max | |
---|---|---|---|---|
PLR | r = −0.119 p = 0.263 | r = −0.038 p = 0.723 | r = −0.042 p = 0.692 | r = −0.228 p = 0.031 |
NLR | r = −0.189 p = 0.074 | r = −0.142 p = 0.181 | r = −0.139 p = 0.192 | r = −0.420 p = 0.001 |
Parameters | OR (95% CI) | p |
---|---|---|
MLR | 5.552 (1.001–8.842) | 0.046 |
NLR PLR Lymphocyte count Galectin-3 E/e’ LA volume Diastolic dysfunction | 2.130 (1.562–8.071) 1.316 (1.048–1.828) 1.002 (1.000–1.004) 1.746 (1.609–1.915) 1.671 (1.149–2429) 1.026 (0.781–1.345) 1.284 (1.005–5.896) | 0.026 0.011 0.063 0.005 0.044 0.853 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drugescu, A.; Gavril, R.S.; Zota, I.M.; Costache, A.D.; Gavril, O.I.; Roca, M.; Vasilcu, T.F.; Mitu, O.; Leon, M.M.; Dimitriu, D.C.; et al. Inflammatory and Fibrosis Parameters Predicting CPET Performance in Males with Recent Elective PCI for Chronic Coronary Syndrome. Life 2025, 15, 510. https://doi.org/10.3390/life15040510
Drugescu A, Gavril RS, Zota IM, Costache AD, Gavril OI, Roca M, Vasilcu TF, Mitu O, Leon MM, Dimitriu DC, et al. Inflammatory and Fibrosis Parameters Predicting CPET Performance in Males with Recent Elective PCI for Chronic Coronary Syndrome. Life. 2025; 15(4):510. https://doi.org/10.3390/life15040510
Chicago/Turabian StyleDrugescu, Andrei, Radu Sebastian Gavril, Ioana Mădălina Zota, Alexandru Dan Costache, Oana Irina Gavril, Mihai Roca, Teodor Flaviu Vasilcu, Ovidiu Mitu, Maria Magdalena Leon, Daniela Cristina Dimitriu, and et al. 2025. "Inflammatory and Fibrosis Parameters Predicting CPET Performance in Males with Recent Elective PCI for Chronic Coronary Syndrome" Life 15, no. 4: 510. https://doi.org/10.3390/life15040510
APA StyleDrugescu, A., Gavril, R. S., Zota, I. M., Costache, A. D., Gavril, O. I., Roca, M., Vasilcu, T. F., Mitu, O., Leon, M. M., Dimitriu, D. C., Ghiciuc, C. M., & Mitu, F. (2025). Inflammatory and Fibrosis Parameters Predicting CPET Performance in Males with Recent Elective PCI for Chronic Coronary Syndrome. Life, 15(4), 510. https://doi.org/10.3390/life15040510