Continuous Cropping of Tussilago farfara L. Has a Significant Impact on the Yield and Quality of Its Flower Buds, and Physicochemical Properties and the Microbial Communities of Rhizosphere Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Test Area
2.2. Plant Materials, Reagents and Instruments
2.3. Experimental Design
2.4. Determination of Yield and Quality
2.4.1. Yield Determination
2.4.2. Quality Determination
2.5. Assessment of the Physicochemical Properties of Rhizosphere Soil and Its Associated Microbial Communities
2.5.1. Collection of Rhizosphere Soil Samples
2.5.2. Soil Nutrient and Enzyme Activity Determination
2.5.3. Sample DNA Extraction and High-Throughput Sequencing
2.6. Data Analysis
3. Results
3.1. The Yield and Quality of T. farfara Flower Buds
3.2. Physicochemical Properties and Enzymatic Activity of Rhizosphere Soil
3.3. Changes in Rhizosphere Soil Bacterial Community Structure of T. farfara in Different Continuous Cropping Years
3.3.1. Quality Analysis of Rhizosphere Soil Sequencing Results in Different Continuous Cropping Years
3.3.2. Distribution of Bacteria and Fungi OUT in Rhizosphere Soil Under Different Years of Continuous Cropping
3.3.3. Alpha Diversity Analysis of Rhizosphere Soil Bacteria and Fungi of T. farfara in Different Continuous Cropping Years
3.3.4. Changes in Rhizosphere Soil Bacteria Community Structure of T. farfara in Different Continuous Cropping Years
3.3.5. Changes in Rhizosphere Soil Fungal Community Structure of T. farfara in Different Continuous Cropping Years
3.3.6. Beta Diversity Analysis of Rhizosphere Soil Bacteria and Fungi in Different Continuous Cropping Years
3.4. Correlation Analysis Among the Yield and Quality of Continuous Cropping of T. farfara: Flower Buds, Soil Physicochemical Properties, and Rhizosphere Soil Microorganisms
4. Discussion
4.1. Continuous Cropping of T. farfara Has Adverse Effects on the Yield and Quality of Its Flower Buds
4.2. Continuous Cropping of T. farfara Has Adverse Effects on the Soil Environment
4.3. Increasing Continuous Cropping Years Affect Rhizosphere Soil Bacterial Diversity and Community Structure of T. farfara
4.4. Increasing Continuous Cropping Years Affect the Rhizosphere Soil Fungi Diversity and Community Structure of T. farfara
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Treatment | Bacteria | Fungi | ||||
---|---|---|---|---|---|---|
Valid Sequence | High-Quality Sequence | Proportion/% | Valid Sequence | High-Quality Sequence | Proportion/% | |
T1 | 72,289 | 44,243 | 61.27 | 86,236 | 65,999 | 76.44 |
T2 | 80,784 | 51,961 | 63.81 | 83,916 | 65,380 | 78.06 |
T3 | 73,774 | 45,487 | 60.97 | 85,665 | 62,736 | 73.88 |
Total | 680,542 | 425,074 | 62.46 | 767,453 | 582,343 | 76.12 |
References
- Norani, M.; Ebadi, M.T.; Ayyari, M. Volatile constituents and antioxidant capacity of seven Tussilago farfara L. populations in Iran. Sci. Hortic. 2019, 257, 108635. [Google Scholar] [CrossRef]
- Bota, V.B.; Neamtu, A.A.; Olah, N.K.; Chise, E.; Burtescu, R.F.; Furtuna, F.R.P.; Nicula, A.S.; Neamtu, C.; Maghiar, A.M.; Ivănescu, L.C.; et al. A Comparative Analysis of the Anatomy, Phenolic Profile, and Antioxidant Capacity of Tussilago farfara L. Vegetative Organs. Plants 2022, 11, 1663. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jiang, H.; Hou, A.; Guo, X.; Man, X.; Yan, M.; Xing, X.; Yang, B.; Wang, Q.; Kuang, H. Simultaneous Determination of Thirteen Q-Markers in Raw and Processed Tussilago farfara L. by UPLC-QQQ-MS/MS Coupled with Chemometrics. Molecules 2019, 24, 598. [Google Scholar] [CrossRef] [PubMed]
- Boucher, M.A.; Côté, H.; Pichette, A.; Ripoll, L.; Legault, J. Chemical composition and antibacterial activity of Tussilago farfara (L.) essential oil from Quebec, Canada. Nat. Prod. Res. 2020, 34, 545–548. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, H.; Wang, S.; Hou, A.; Man, W.; Zhang, J.; Guo, X.; Yang, B.; Kuang, H.; Wang, Q. Discovering the Major Antitussive, Expectorant, and Anti-Tnflammatory Bioactive Constituents in Tussilago farfara L. Based on the Spectrum–Effect Relationship Combined with Chemometrics. Molecules 2020, 25, 620. [Google Scholar] [CrossRef]
- Wan, G.Z.; Guo, Z.H.; Xi, S.Y.; Jin, L.; Chen, J. Spatial variability and climate response characteristics of chemical components of Tussilago farfara L. Ind. Crops Prod. 2023, 204, 117352. [Google Scholar] [CrossRef]
- Zhao, X.; Elcin, E.; He, L.; Vithanage, M.; Zhang, X.; Wang, J.; Wang, S.; Deng, Y.; Niazi, N.K.; Shaheen, S.M.; et al. Using biochar for the treatment of continuous cropping obstacle of herbal remedies: A review. Appl. Soil Ecol. 2024, 193, 105127. [Google Scholar] [CrossRef]
- Zeeshan Ul Haq, M.; Yu, J.; Yao, G.; Yang, H.; Iqbal, H.A.; Tahir, H.; Cui, H.; Liu, Y.; Wu, Y. A Systematic Review on the Continuous Cropping Obstacles and Control Strategies in Medicinal Plants. Int. J. Mol. Sci. 2023, 24, 12470. [Google Scholar] [CrossRef]
- Ku, Y.; Li, W.; Mei, X.; Yang, X.; Cao, C.; Zhang, H.; Cao, L.; Li, M. Biological Control of Melon Continuous Cropping Obstacles: Weakening the Negative Effects of the Vicious Cycle in Continuous Cropping Coil. Microbiol. Spectr. 2022, 10, e0177622. [Google Scholar] [CrossRef]
- Fujisao, K.; Khanthavong, P.; Oudthachit, S.; Matsumoto, N.; Homma, K.; Asai, H.; Shiraiwa, T. A study on the productivity under the continuous maize cultivation in Sainyabuli Province, Laos I. Yield trend under continuous maize cultivation. Field Crop Res. 2018, 217, 167–171. [Google Scholar] [CrossRef]
- Yao, Q.; Xu, Y.; Liu, X.; Liu, J.; Huang, X.; Yang, W.; Yang, Z.; Lan, L.; Zhou, J.; Wang, G. Dynamics of soil properties and fungal community structure in continuous-cropped alfalfa fields in Northeast China. PeerJ 2019, 7, e7127. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, J.; Zhou, Q.; Yasen, M. Effects of continuous melon cropping on rhizospheric fungal communities. Rhizosphere 2023, 27, 100726. [Google Scholar] [CrossRef]
- Cui, R.; Geng, G.; Wang, G.; Stevanato, P.; Dong, Y.; Li, T.; Yu, L.; Wang, Y. The response of sugar beet rhizosphere micro-ecological environment to continuous cropping. Front. Microbiol. 2022, 13, 956785. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Jeong, M.; Park, S.; Ryu, S.M.; Lee, J.; Song, Z.; Guo, Y.; Choi, J.H.; Lee, D.; Jang, D.S. Chemical Constituents of the Leaves of Butterbur (Petasites japonicus) and Their Anti-Inflammatory Effects. Biomolecules 2019, 9, 806. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Caporaso, J.G. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Rohart, F.; Benoît, G.; Singh, A.; Cao, K.A.L. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–587. [Google Scholar] [CrossRef]
- Song, T.; Chen, J.X.; Shan, L.M.; Qian, Y.C.; Chen, M.X.; Han, J.G.; Zhu, F.Y. Allelopathy research on the continuous cropping problem of poplar (populus). Phytochem. Rev. 2024, 23, 1477–1495. [Google Scholar] [CrossRef]
- Xiang, W.; Chen, J.; Zhang, F.; Huang, R.; Li, L. Autotoxicity in Panax notoginseng of root exudatesand their allelochemicals. Front. Plant Sci. 2022, 13, 1020626. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, L.; Zhang, L.; Li, J.; Zheng, Y.; Yang, W.; Deng, L.; Gao, Q.; Mi, Q.; Li, X.; et al. Autotoxins in continuous tobacco cropping soils and their management. Front. Plant Sci. 2023, 14, 1106033. [Google Scholar] [CrossRef]
- Ma, L.; Ma, S.; Chen, G.; Lu, X.; Chai, Q.; Li, S. Mechanisms and Mitigation Strategies for the Occurrence of Continuous Cropping Obstacles of Legumes in China. Agronomy 2023, 14, 104. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Y.; Zhang, Q.; Lin, S.; Zhang, Q.; Chen, Y.; Hong, L.; Jia, X.; Ye, J.; Wang, H. Effect of Soil pH on the Uptake of Essential Elements by Tea Plant and Subsequent Impact on Growth and Leaf Quality. Agronomy 2024, 14, 1338. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Zhang, J.; Zhu, P.; Bai, X.; Hou, Y.; Zhang, X. The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng (Panax quinquefolius) cultivation. Sci. Rep. 2021, 11, 5068. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yin, S.; Kang, S.; Chen, Z.; Wang, F.; Pan, W. Comprehensive effects of thiamethoxam from contaminated soil on lettuce growth and metabolism. Environ. Pollut. 2024, 343, 123186. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, R.; Li, S.; Chen, Y.; Li, Z.; He, P.; Huang, X.; Huang, K. Effects of continuous cropping on soil, senescence, and yield of Tartary buckwheat. Agron. J. 2021, 113, 5102–5113. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, Z.Z.; Zhao, Q.; Huang, X.Y.; Huang, K.F. Effect of continuous cropping on the rhizosphere soil and growth of common buckwheat. Plant Prod. Sci. 2020, 23, 81–90. [Google Scholar] [CrossRef]
- Delgado-baquerizo, M.; Maestre, F.T.; Reich, P.B.; Jeffries, T.C.; Gaitan, J.J.; Encinar, D.; Berdugo, M.; Campbell, C.D.; Singh, B.K. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 2016, 7, 10541. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Vismans, G.; Yu, K.; Song, Y.; Jonge, R.d.; Burgman, W.P.; Burmølle, M.; Herschend, J.; Bakker, P.A.; Pieterse, C.M. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018, 12, 1496–1507. [Google Scholar] [CrossRef]
- Corstanje, R.; Deeks, L.R.; Whitmore, A.P.; Gregory, A.S.; Ritz, K. Probing the basis of soil resilience. Soil Use Manag. 2015, 31, 72–81. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Sun, L.; Qi, G.; Chen, S.; Zhao, X. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci. Rep. 2017, 7, 1. [Google Scholar] [CrossRef]
- Yan, Y.; Kuramae, E.E.; Hollander, M.d.; Klinkhamer, P.G.; Veen, J.A.v. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 2017, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, X.; Chu, G.; Hu, B.; Tao, R. Continuous cropping of cut chrysanthemum reduces rhizospheric soil bacterial community diversity and co-occurrence network complexity. Appl. Soil Ecol. 2023, 185, 104801. [Google Scholar] [CrossRef]
- Belova, S.E.; Ravin, N.V.; Pankratov, T.A.; Rakitin, A.L.; Lvanova, A.A.; Beletsky, A.V.; Mardanov, A.V.; Damsté, J.S.S.; Dedysh, S.N. Corrigendum: Hydrolytic Capabilities as a Key to Environmental Success: Chitinolytic and Cellulolytic Acidobacteria from Acidic Sub-arctic Soils and Boreal Peatlands. Front. Microbiol. 2018, 19, 2775. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Yu, K.; Yin, Y.; Wang, L.; Qiu, Z.; Qiu, H. Abundance, diversity and changes to environmental variables of comammox Nitrospira in bioretention system. J. Water Process Eng. 2023, 51, 103411. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, Z.; Wang, J.; Zhao, Y.; Hu, B. Sphingomonas Relies on Chemotaxis to Degrade Polycyclic Aromatic Hydrocarbons and Maintain Dominance in Coking Sites. Microorganisms 2022, 10, 1109. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Yu, Z.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 2015, 83, 29–39. [Google Scholar] [CrossRef]
- Yao, F.; Yang, S.; Wang, Z.; Wang, X.; Ye, J.; Wang, X.; DeBruyn, J.M.; Feng, X.; Jiang, Y.; Li, H. Microbial Taxa Distribution Is Associated with Ecological Trophic Cascades along an Elevation Gradient. Front. Microbiol. 2017, 8, 2071. [Google Scholar] [CrossRef]
- Bonfante, P.; Venice, F. Mucoromycota: Going to the roots of plant-interacting fungi. Fungal Biol. Rev. 2020, 34, 100–113. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, P.; Ma, Y.; Jiang, R.; Jiang, C.; Wang, G. Insights into intracellular signaling network in Fusarium species. Int. J. Biol. Macromol. 2022, 222, 1007–1014. [Google Scholar] [CrossRef]
- Schlatter, D.; Kinkel, L.; Thomashow, L.; Weller, D.; Paulitz, T. Disease Suppressive Soils: New Insights from the Soil Microbiome. Phytopathology 2017, 107, 1284–1297. [Google Scholar] [CrossRef]
- Hou, X.Y.; Wang, Y.F.; Jiang, C.Y.; Zhai, T.T.; Miao, R.; Deng, J.J.; Yao, Z.H.; Zhang, R.S. Correction to: A native Trichoderma harzianum strain Th62 displays antagonistic activities against phytopathogenic fungi and promotes the growth of Celosia cristata. Hortic. Environ. Biotechnol. 2021, 62, 169–179. [Google Scholar] [CrossRef]
- Shukla, S.K.; Jaiswal, V.P.; Sharma, L.; Tiwari, R.; Pathak, A.D.; Gaur, A.; Awasthi, S.K.; Srivastava, A. Trash management and Trichoderma harzianum influencing photosynthesis, soil carbon sequestration, and growth and yield of sugarcane ratoon in subtropical India. Eur. J. Agron. 2022, 141, 126631. [Google Scholar] [CrossRef]
Treatment | Bacteria | Fungi | ||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |
Goods_coverage | 0.99 a | 0.99 a | 0.99 a | 1.00 a | 1.00 a | 1.00 a |
Chao | 1820.06 b | 1966.82 a | 1628.20 c | 248.67 b | 255.67 b | 296.00 a |
Ace | 1821.88 b | 1970.68 a | 1632.24 c | 272.00 b | 280.00 b | 322.00 a |
Shannon | 9.24 ab | 9.88 a | 8.92 c | 4.41 b | 5.24 a | 5.69 a |
Simpson | 0.98 a | 0.99 a | 0.98 a | 0.78 b | 0.93 a | 0.95 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Wang, X.; Fan, L.; Jin, X.; Zhang, X.; Wang, H. Continuous Cropping of Tussilago farfara L. Has a Significant Impact on the Yield and Quality of Its Flower Buds, and Physicochemical Properties and the Microbial Communities of Rhizosphere Soil. Life 2025, 15, 404. https://doi.org/10.3390/life15030404
Huang Z, Wang X, Fan L, Jin X, Zhang X, Wang H. Continuous Cropping of Tussilago farfara L. Has a Significant Impact on the Yield and Quality of Its Flower Buds, and Physicochemical Properties and the Microbial Communities of Rhizosphere Soil. Life. 2025; 15(3):404. https://doi.org/10.3390/life15030404
Chicago/Turabian StyleHuang, Zhenbin, Xia Wang, Liangshuai Fan, Xiaojun Jin, Xiang Zhang, and Hongyan Wang. 2025. "Continuous Cropping of Tussilago farfara L. Has a Significant Impact on the Yield and Quality of Its Flower Buds, and Physicochemical Properties and the Microbial Communities of Rhizosphere Soil" Life 15, no. 3: 404. https://doi.org/10.3390/life15030404
APA StyleHuang, Z., Wang, X., Fan, L., Jin, X., Zhang, X., & Wang, H. (2025). Continuous Cropping of Tussilago farfara L. Has a Significant Impact on the Yield and Quality of Its Flower Buds, and Physicochemical Properties and the Microbial Communities of Rhizosphere Soil. Life, 15(3), 404. https://doi.org/10.3390/life15030404