Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal and Plant Materials
2.2. Aboveground Infection Assays
2.3. Belowground Infection Assays
2.4. Phenotypic Measurements
2.5. Phytohormone and NHP Treatment
2.6. Fungal Biomass Quantification
2.7. Gene Expression Analysis
2.8. Microscopy
3. Results
3.1. Above- and Belowground Infectivity of R. solani Japanese Isolates on B. distachyon and Barley
3.2. Resistance Genotypes of B. distachyon and Barley Against R. solani
3.3. Comparison of Defense Responses in Leaves of Resistant B. distachyon and Barley Lines During Infection by R. solani AG-1 IA and AG-4 HG-I+II
3.4. Effects of Exogenous SA and NHP Applications on Leaf Infection by R. solani AG-1 IA and AG-4 HG-I+II
3.5. Differences in Infection Behavior Between R. solani AG-1 IA and AG-4 HG-I+II
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Li, S.; Wei, S.; Sun, W. Strategies to manage rice sheath blight: Lessons from interactions between rice and Rhizoctonia solani. Rice 2021, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Yang, L.; Wang, Y.; Chen, Y.; Hu, K.; Yang, W.; Zuo, S.; Xu, J.; Kang, Z.; Xiao, X.; et al. A high-quality genome of Rhizoctonia solani, a devastating fungal pathogen with a wide host range. Mol. Plant Microbe Interact. 2022, 35, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Kozaka, T. Ecological studies on sheath blight of rice caused by Pellicualria sasakii and its chemical control. Chugoku Agric. Res. 1961, 20, 1–13. [Google Scholar]
- Matsuura, K. Scanning electron microscopy of the infection process of Rhizoctonia solani in leaf sheaths of rice plants. Phytopathology 1986, 76, 811–814. [Google Scholar] [CrossRef]
- Zheng, A.; Lin, R.; Zhang, D.; Qin, P.; Xu, L.; Ai, P.; Ding, L.; Wang, Y.; Chen, Y.; Liu, Y.; et al. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat. Commun. 2013, 4, 1424. [Google Scholar] [CrossRef]
- Abdelsalam, S.S.H.; Kouzai, Y.; Watanabe, M.; Inoue, K.; Matsui, H.; Yamamoto, M.; Ichinose, Y.; Toyoda, K.; Tsuge, S.; Mochida, K.; et al. Identification of effector candidate genes of Rhizoctonia solani AG-1 IA expressed during infection in Brachypodium distachyon. Sci. Rep. 2020, 10, 14889. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Yamamoto, N.; Wang, M.; Yi, X.; Li, P.; Lin, R.; Nasimi, Z.; Okada, K.; Mochida, K.; et al. Secreted glycosyltransferase RsIA_GT of Rhizoctonia solani AG-1 IA inhibits defense responses in Nicotiana benthamiana. Pathogens 2022, 11, 1026. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, R.; Yamamoto, N.; Wang, Z.; Lin, H.; Okada, K.; Liu, Y.; Xiang, X.; Zheng, T.; Zheng, H.; et al. Mitochondrial-targeting effector RsIA_CtaG/Cox11 in Rhizoctonia solani AG-1 IA has two functions: Plant immunity suppression and cell death induction mediated by a rice cytochrome c oxidase subunit. Mol. Plant Pathol. 2024, 25, e13397. [Google Scholar] [CrossRef]
- Abdoulaye, A.H.; Foda, M.F.; Kotta-Loizou, I. Viruses infecting the plant pathogenic fungus Rhizoctonia solani. Viruses 2019, 11, 1113. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, X.; Du, Q.; Xia, L.; Ma, X.; Li, Q.; Liu, W. Genome sequence of Rhizoctonia solani anastomosis group 4 strain Rhs4ca, a widespread pathomycete in field crops. Mol. Plant Microbe Interact. 2021, 34, 826–829. [Google Scholar] [CrossRef]
- Ajayi-Oyetunde, O.O.; Bradley, C.A. Rhizoctonia solani: Taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol. 2018, 67, 3–17. [Google Scholar] [CrossRef]
- Carling, D.E.; Kuninaga, S.; Brainard, K.A. Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology 2002, 92, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Senapati, M.; Tiwari, A.; Sharma, N.; Chandra, P.; Bashyal, B.M.; Ellur, R.K.; Bhowmick, P.K.; Bollinedi, H.; Vinod, K.K.; Singh, A.K.; et al. Rhizoctonia solani Kühn pathophysiology: Status and prospects of sheath blight disease management in rice. Front. Plant Sci. 2022, 13, 881116. [Google Scholar] [CrossRef] [PubMed]
- Misawa, T.; Kurose, D. Anastomosis group and subgroup identification of Rhizoctonia solani strains deposited in NARO Genebank, Japan. J. Gen. Plant Pathol. 2019, 85, 282–294. [Google Scholar] [CrossRef]
- Kouzai, Y.; Kimura, M.; Watanabe, M.; Kusunoki, K.; Osaka, D.; Suzuki, T.; Matsui, H.; Yamamoto, M.; Ichinose, Y.; Toyoda, K.; et al. Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon. New Phytol. 2018, 217, 771–783. [Google Scholar] [CrossRef]
- Abdelghany, M.M.A.; Kurikawa, M.; Watanabe, M.; Matsui, H.; Yamamoto, M.; Ichinose, Y.; Toyoda, K.; Kouzai, Y.; Noutoshi, Y. Surveillance of pathogenicity of Rhizoctonia solani Japanese isolates with varied anastomosis groups and subgroups on Arabidopsis thaliana. Life 2022, 12, 76. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Staskawicz, B.J.; Dangl, J.L. The plant immune system: From discovery to deployment. Cell 2024, 187, 2095–2116. [Google Scholar] [CrossRef]
- Laluk, K.; Mengiste, T. Necrotroph attacks on plants: Wanton destruction or covert extortion? Arab. Book 2010, 2010, e0136. [Google Scholar] [CrossRef]
- Müller, T.; Bronkhorst, J.; Müller, J.; Safari, N.; Hahn, M.; Sprakel, J.; Scheuring, D. Plant infection by the necrotrophic fungus Botrytis requires actin-dependent generation of high invasive turgor pressure. New Phytol. 2024, 244, 192–201. [Google Scholar] [CrossRef]
- Ren, W.; Qian, C.; Ren, D.; Cai, Y.; Deng, Z.; Zhang, N.; Wang, C.; Wang, Y.; Zhu, P.; Xu, L. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Botrytis cinerea. mBio 2024, 15, e00133-24. [Google Scholar] [CrossRef]
- Rahman, M.U.; Liu, X.; Wang, X.; Fan, B. Grapevine gray mold disease: Infection, defense and management. Horticulture Res. 2024, 11, uhae182. [Google Scholar] [CrossRef] [PubMed]
- Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef] [PubMed]
- Vlot, A.C.; Dempsey, D.A.; Klessig, D.F. Salicylic acid, a multifaced hormone to combat disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, E.; Breen, S. Interplay between phytohormone signalling pathways in plant defence—other than salicylic acid and jasmonic acid. Essays Biochem. 2022, 66, 657–671. [Google Scholar]
- Xu, X.; Chen, Y.; Li, B.; Zhang, Z.; Qin, G.; Chen, T.; Tian, S. Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. Hortic. Res. 2022, 9, uhac066. [Google Scholar] [CrossRef]
- Monte, I. Jasmonates and salicylic acid: Evolution of defense hormones in land plants. Curr. Opin. Plant Biol. 2023, 76, 102470. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, J.; Li, X.; Zhang, Y. Salicylic acid: Biosynthesis and signaling. Annu. Rev. Plant Biol. 2021, 72, 761–791. [Google Scholar] [CrossRef]
- Chen, Y.C.; Holmes, E.C.; Rajniak, J.; Kim, J.G.; Tang, S.; Fischer, C.R.; Mudgett, M.B.; Sattely, E.S. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 2018, 115, E4920–E4929. [Google Scholar] [CrossRef]
- Hartmann, M.; Zeier, J. L-lysine metabolism to N-hydroxypipecolic acid: An integral immune-activating pathway in plants. Plant J. 2018, 96, 5–21. [Google Scholar] [CrossRef]
- Shields, A.; Shivnauth, V.; Castroverde, C.D.M. Salicylic acid and N-hydroxypipecolic acid at the fulcrum of the plant immunity-growth equilibrium. Front. Plant Sci. 2022, 13, 841688. [Google Scholar] [CrossRef]
- Hartmann, M.; Zeier, T.; Bernsdorff, F.; Reichel-Deland, V.; Kim, D.; Hohmann, M.; Scholten, N.; Schuck, S.; Bräutigam, A.; Hölzel, T.; et al. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 2018, 173, 456–469.e16. [Google Scholar] [CrossRef] [PubMed]
- Lenk, M.; Wenig, M.; Bauer, K.; Hug, F.; Knappe, C.; Lange, B.; Timsy; Häußler, F.; Mengel, F.; Dey, S.; et al. Pipecolic acid is induced in barley upon infection and triggers immune responses associated with elevated nitric oxide accumulation. Mol. Plant Microbe Interact. 2019, 32, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Foley, R.C.; Gleason, C.A.; Anderson, J.P.; Hamann, T.; Singh, K.B. Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; evidence of resistance mediated through NADPH oxidases. PLoS ONE 2013, 8, e56814. [Google Scholar] [CrossRef] [PubMed]
- Kidd, B.N.; Foley, R.; Singh, K.B.; Anderson, J.P. Foliar resistance to Rhizoctonia solani in Arabidopsis is compromised by simultaneous loss of ethylene, jasmonate and PEN2 mediated defense pathways. Sci. Rep. 2021, 11, 2546. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hassan, S.; Kidd, B.N.; Garg, G.; Mathesius, U.; Singh, K.B.; Anderson, P. Ethylene signaling is important for isoflavonoid-mediated resistance to Rhizoctonia solani in roots of Medicago truncatula. Mol. Plant Microbe Interact. 2017, 30, 691–700. [Google Scholar] [CrossRef]
- Koley, P.; Brahmachari, S.; Saha, A.; Deb, C.; Mondal, M.; Das, N.; Das, A.; Lahiri, S.; Das, M.; Thakur, M.; et al. Phytohormone priming of tomato plants evoke differential behavior in Rhizoctonia solani during infection, with salicylate priming imparting greater tolerance than jasmonate. Front. Plant Sci. 2022, 12, 766095. [Google Scholar] [CrossRef]
- Taheri, P.; Tarighi, S. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J. Plant Physiol. 2010, 167, 201–208. [Google Scholar] [CrossRef]
- He, Y.; Zhang, K.; Li, S.; Lu, X.; Zhao, H.; Guan, C.; Huang, X.; Shi, Y.; Kang, Z.; Fan, Y.; et al. Multiomics analysis reveals the molecular mechanisms underlying virulence in Rhizoctonia and jasmonic acid-mediated resistance in Tartary buckwheat (Fagopyrum tataricum). Plant Cell 2023, 35, 2773–2798. [Google Scholar] [CrossRef]
- Pethybridge, S.J.; Nelson, S.C. Leaf doctor: A new portable application for quantifying plant disease severity. Plant Dis. 2015, 99, 1310–1316. [Google Scholar] [CrossRef]
- Schneebeli, K.; Mathesius, U.; Zwart, A.B.; Bragg, J.N.; Vogel, J.P.; Watt, M. Brachypodium distachyon genotypes vary in resistance to Rhizoctonia solani AG8. Funct. Plant Biol. 2016, 43, 189–198. [Google Scholar] [CrossRef]
- Foley, R.C.; Kidd, B.N.; Hane, J.K.; Anderson, J.P.; Singh, K.B. Reactive oxygen species play a role in the infection of the necrotrophic fungi, Rhizoctonia solani in wheat. PLoS ONE 2016, 11, e0152548. [Google Scholar] [CrossRef] [PubMed]
- Okubara, P.A.; Leston, N.; Micknass, U.; Kogel, K.H.; Imani, J. Rapid quantitative assessment of Rhizoctonia resistance in roots of selected wheat and barley genotypes. Plant Dis. 2016, 100, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Sayler, R.J.; Yang, Y. Detection and quantification of Rhizoctonia solani AG-1 IA, the rice sheath blight pathogen, in rice using real-time PCR. Plant Dis. 2007, 91, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Budge, G.E.; Shaw, M.W.; Colyer, A.; Pietravalle, S.; Boonham, N. Molecular tools to investigate Rhizoctonia solani distirution in soil. Plant Pathol. 2009, 58, 1071–1080. [Google Scholar] [CrossRef]
- Zhu, H.; Wen, F.; Li, P.; Liu, X.; Cao, J.; Jiang, M.; Ming, F.; Chu, Z. Validation of a reference gene (BdFIM) for quantifying transgene copy numbers in Brachypodium distachyon by real-time PCR. Appl. Biochem. Biotechnol. 2014, 172, 3163–3175. [Google Scholar] [CrossRef]
- Chambers, J.P.; Behpour, A.; Bird, A.; Ng, C.K.-Y. Evaluation of the use of the polyubiquitin genes, Ubi4 and Ubi10 as reference genes for expression studies in Brachypodium distachyon. PLoS ONE 2012, 7, e49372. [Google Scholar] [CrossRef]
- Gines, M.; Baldwin, T.; Rashid, A.; Bregitzer, P.; Maughan, P.J.; Jillen, E.N.; Klos, K.E. Selection of expression reference genes with demonstrated stability in barley among a diverse set of tissues and cultivars. Crop Sci. 2018, 58, 332–341. [Google Scholar] [CrossRef]
- Kouzai, Y.; Shimizu, M.; Inoue, K.; Uehara-Yamaguchi, Y.; Takahagi, K.; Nakayama, R.; Matsuura, T.; Mori, I.C.; Hirayama, T.; Abdelsalam, S.S.H.; et al. BdWRKY38 is required for the incompatible interaction of Brachypodium distachyon with the necrotrophic fungus Rhizoctonia solani. Plant J. 2020, 104, 995–1008. [Google Scholar] [CrossRef]
- Chen, J.; Xuan, Y.; Yi, J.; Xiao, G.; Yuan, D.P.; Li, D. Progress in rice sheath blight resistance research. Front. Plant Sci. 2023, 14, 1141697. [Google Scholar]
- Wibberg, D.; Jelonek, L.; Rupp, O.; Hennig, M.; Eikmeyer, F.; Goesmann, A.; Hartmann, A.; Borriss, R.; Grosch, R.; Pühler, A.; et al. Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. J. Biotechnol. 2013, 167, 142–155. [Google Scholar] [CrossRef]
- Gaire, S.P.; Zhou, X.G.; Zhou, Y.; Shi, J.; Jo, Y.K. Identification and distribution of fungal pathogens associated with seedling blight of rice in the southern United States. Plant Pathol. 2023, 72, 76–88. [Google Scholar] [CrossRef]
- Bacharis, C.; Gouziotis, A.; Kalogeropoulou, P.; Koutita, O.; Tzavella-Klonari, K.; Karaoglanidis, G.S. Characterization of Rhizoctonia spp. isolates associated with damping-off disease in cotton and tobacco seedlings in Greece. Plant Dis. 2010, 94, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Choupannejad, R.; Sharifnabi, B.; Fadaei Tehrani, A.A.; Gholami, J. Rhizoctonia solani AG4 associated with foliar blight symptoms on barley in Iran. Australas. Plant Dis. Notes 2017, 12, 2. [Google Scholar] [CrossRef]
- Pizolotto, C.A.; Brown, L.; Harrington, S.; Murdock, M.R.; Harrington, M.; Woodhall, J.W.; Moll, M.; Marshall, J.M. First report of Rhizoctonia solani AG4 HG-II infecting barley stems in Idaho. Plant Dis. 2020, 104, 3058. [Google Scholar] [CrossRef]
- Kucharska, K.; Katulski, B.; Goriewa, K.; Duba, A.; Wachowska, U. Pathogenicity and fungicide sensitivity of Rhizoctonia solani and R. cerealis isoates. Gesunde Pflanzen 2018, 70, 13–19. [Google Scholar] [CrossRef]
- Spoel, S.H.; Dong, X. Salicylic acid in plant immunity and beyond. Plant Cell 2024, 36, 1451–1464. [Google Scholar] [CrossRef]
- Schnake, A.; Hartmann, M.; Schreiber, S.; Malik, J.; Brahmann, L.; Yildiz, I.; von Dahlen, J.; Rose, L.E.; Schaffrath, U.; Zeier, J. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. J. Exp. Bot. 2020, 71, 6444–6459. [Google Scholar] [CrossRef]
- Hofman, T.W.; Jongebloed, P.H.J. Infection process of Rhizoctonia solani on Solarium tuberosum and effects of granular nematicides. Neth. J. Plant Pathol. 1988, 94, 243–252. [Google Scholar] [CrossRef]
- Singh, A.; Rohila, R.; Savary, S.; Willocquet, L.; Singh, U.S. Infection process in sheath blight of rice caused by Rhizoctonia solani. Indian Phytopathol. 2003, 56, 434–438. [Google Scholar]
- Basu, A.; Chowdhury, S.; Chaudhuri, T.R.; Kundu, S. Differential behaviour of sheath blight pathogen Rhizoctonia solani in tolerant and susceptible rice varieties before and during infection. Plant Pathol. 2016, 65, 1333–1346. [Google Scholar] [CrossRef]
- Liu, S.; Wang, T.; Meng, G.; Liu, J.; Lu, D.; Liu, X.; Zeng, Y. Cytological observation and transcriptome analysis reveal dynamic changes of Rhizoctonia solani colonization on leaf sheath and different genes recruited between the resistant and susceptible genotypes in rice. Front. Plant Sci. 2022, 13, 1055277. [Google Scholar] [CrossRef] [PubMed]
- Hönig, M.; Roeber, V.M.; Schmülling, T.; Cortleven, A. Chemical priming of plant defense responses to pathogen attacks. Front. Plant Sci. 2023, 14, 1146577. [Google Scholar] [CrossRef]
- Spoel, S.H.; Johnson, J.S.; Dong, X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 2007, 104, 18842–18847. [Google Scholar] [CrossRef] [PubMed]
- Abd El Rahman, T.; El Oirdi, M.; Gonzalez-Lamothe, R.; Bouarab, K. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. Mol. Plant Microbe Interact. 2012, 25, 1584–1593. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Plotnikova, J.M.; De Lorenzo, G.; Ausubel, F.M. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J. 2003, 35, 193–205. [Google Scholar] [CrossRef] [PubMed]
R. solani Isolates | Infectivity 3 | ||||||
---|---|---|---|---|---|---|---|
B. distachyon | Barley | ||||||
Anastomosis Group (AG) | MAFF Number 1 | Name | Source | Leaves 4 | Roots | Leaves | Roots |
AG-1 IA | 305230 | C-325 | Rice | ++ | − | ++ | − |
AG-1 IA | 305219 | C-54 | Rice | + | − | + | − |
AG-2-1 II | 305203 | 6 | Barley | − | − | + | − |
AG-2-2 IIIB | 305244 | C-329 | Rice | − | − | + | − |
AG-3 IV | 305250 | C-564 | Potato | − | − | − | − |
AG-4 HG-I+II 2 | 305225 | BO-3 | Cauliflower | ++ | ++ | ++ | ++ |
AG-5 | 305256 | SH-30 | Soil | − | − | − | − |
AG-6 | 305262 | UB-7-1-A | Soil | − | + | − | + |
Plant Species | Genotype | Treatment | Height (cm) 1 | Height Ratio 2 | Fresh Weight (mg) 1 | Fresh Weight Ratio 2 | Root Development 3 | Mortality Rate (%) |
---|---|---|---|---|---|---|---|---|
Brachypodium distachyon | Bd21 | Control | 7.57 ± 0.10 | 14.35 ± 0.15 | ||||
R. solani | 2.83 ± 0.24 * | 0.37 a | 5.72 ± 0.64 * | 0.39 a | + | 50 | ||
Bd3-1 | Control | 7.87 ± 0.12 | 14.15 ± 0.30 | |||||
R. solani | 5.13 ± 0.25 * | 0.65 ab | 7.97 ± 0.59 * | 0.56 ab | ++ | 25 | ||
Gaz4 | Control | 8.13 ± 0.10 | 15.44 ± 0.19 | |||||
R. solani | 5.96 ± 0.18 * | 0.73 b | 10.45 ± 0.34 * | 0.67 b | ++ | 18.75 | ||
Barley | Haruna Nijo | Control | 19.79 ± 1.37 | 683.35 ± 20.23 | ||||
R. solani | 8.92 ± 0.42 * | 0.45 a | 259.83 ± 65.91 * | 0.38 a | + | 20 | ||
Golden Promise | Control | 11.94 ± 0.83 | 346.34 ± 22.51 | |||||
R. solani | 3.76 ± 0.18 * | 0.31 a | 169.01 ± 46.28 * | 0.48 a | + | 30 | ||
Morex | Control | 20.49 ± 1.27 | 543.89 ±18.85 | |||||
R. solani | 13.21 ± 0.67 * | 0.64 b | 482.28 ± 40.94 * | 0.88 b | ++ | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahadevan, N.; Fernanda, R.; Kouzai, Y.; Kohno, N.; Nagao, R.; Nyein, K.T.; Watanabe, M.; Sakata, N.; Matsui, H.; Toyoda, K.; et al. Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley. Life 2025, 15, 235. https://doi.org/10.3390/life15020235
Mahadevan N, Fernanda R, Kouzai Y, Kohno N, Nagao R, Nyein KT, Watanabe M, Sakata N, Matsui H, Toyoda K, et al. Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley. Life. 2025; 15(2):235. https://doi.org/10.3390/life15020235
Chicago/Turabian StyleMahadevan, Niranjan, Rozi Fernanda, Yusuke Kouzai, Natsuka Kohno, Reiko Nagao, Khin Thida Nyein, Megumi Watanabe, Nanami Sakata, Hidenori Matsui, Kazuhiro Toyoda, and et al. 2025. "Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley" Life 15, no. 2: 235. https://doi.org/10.3390/life15020235
APA StyleMahadevan, N., Fernanda, R., Kouzai, Y., Kohno, N., Nagao, R., Nyein, K. T., Watanabe, M., Sakata, N., Matsui, H., Toyoda, K., Ichinose, Y., Mochida, K., Hisano, H., & Noutoshi, Y. (2025). Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley. Life, 15(2), 235. https://doi.org/10.3390/life15020235