The Influence of Wool Pellet Application on Alleviating Salt-Induced Stress in Soybean (Glycine max L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Callegaro, K.; Brandelli, A.; Daroit, D.J. Beyond plucking: Feathers bioprocessing into valuable protein hydrolysates. Waste Manag. 2019, 95, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Petek, B.; Marinšek Logar, R. Management of waste sheep wool as valuable organic substrate in European Union countries. J. Mat. Cycles Waste Manag. 2021, 23, 44–54. [Google Scholar] [CrossRef]
- Russell, I.M. Sustainable wool production and processing. In Sustainable Textiles; Woodhead Publishing: Cambridge, MA, USA, 2009; pp. 63–87. [Google Scholar]
- Laitala, K.; Klepp, I.G.; Henry, B. Does use matter? Comparison of environmental impacts of clothing based on fiber type. Sustainability 2018, 10, 2524. [Google Scholar] [CrossRef]
- Broda, J.; Gawlowski, A.; Rom, M.; Kobiela-Mendrek, K. Utilisation of waste wool from mountain sheep as fertiliser in winter wheat cultivation. J. Nat. Fibers 2023, 20, 2200047. [Google Scholar] [CrossRef]
- Wang, B.; Yang, W.; McKittrick, J. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 2016, 76, 229–318. [Google Scholar] [CrossRef]
- FAO. Saline Soils and Their Management. Food and Agriculture Organization of the United Nations. 2016. Available online: http://www.fao.org/3/x5871e/x5871e04.htm (accessed on 5 February 2025).
- FAO. Salt-Affected Soils. Food and Agriculture Organization of the United Nations. 2021. Available online: https://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affect (accessed on 5 February 2025).
- Yan, D.; Wang, J.; Lu, Z.; Liu, R.; Hong, Y.; Su, B.; Wang, Y.; Peng, Z.; Yu, C.; Gao, Y. Melatonin-mediated enhancement of photosynthetic capacity and photoprotection improves salt tolerance in wheat. Plants 2023, 12, 3984. [Google Scholar] [CrossRef]
- Feng, C.; Gao, H.; Zhou, Y.; Jing, Y.; Li, S.; Yan, Z.; Xu, K.; Zhou, F.; Zhang, W.; Yang, X.; et al. Unfolding molecular switches for salt stress resilience in soybean: Recent advances and prospects for salt-tolerant smart plant production. Front. Plant Sci. 2023, 14, 1162014. [Google Scholar] [CrossRef]
- James, R.A.; Blake, C.; Byrt, C.S.; Munns, R. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J. Exp. Bot. 2011, 62, 2939–2947. [Google Scholar] [CrossRef]
- Breś, W.; Kleiber, T.; Markiewicz, B.; Mieloszyk, E.; Mieloch, M. The effect of NaCl stress on the response of lettuce (Lactuca sativa L.). Agronomy 2022, 12, 244. [Google Scholar] [CrossRef]
- Cetin Karaca, U.; Chalabee, O.A.H.; Saba, M. The effect of sheep wool fertilizer on some biochemical properties of a clay loam soil. Comm. Soil Sci. Plant Anal. 2023, 54, 48–61. [Google Scholar] [CrossRef]
- Allafi, F.; Hossain, M.S.; Lalung, J.; Shaah, M.; Salehabadi, A.; Ahmad, M.I.; Shadi, A. Advancements in applications of natural wool fiber. J. Nat. Fibers 2022, 19, 497–512. [Google Scholar] [CrossRef]
- Maria, A.; Păcurar, I. Study on the use sheep wool, in soil and fertilization as the mixture into cubes nutrients. Proenvir 2022, 8, 290–292. [Google Scholar]
- Selem, E.; Tuncturk, R.; Nohutcu, L.; Tuncturk, M. Effects of rhizobacteria and algal species on physiological and biochemical parameters in Calendula officinalis L. under different irrigation regimes. J. Elem. 2022, 27, 87–97. [Google Scholar]
- Güneri Bagci, E. Determination of Drought-Induced Oxidative Stress in Chickpea Varieties by Physiological and Biochemical Parameters. Ph.D. Thesis, Ankara University (unpublished), Ankara, Türkiye, 2010. [Google Scholar]
- Obanda, M.; Owuor, P.O.; Taylor, S.J. Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J. Sci. Food Agric. 1997, 74, 209–215. [Google Scholar] [CrossRef]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, J.; Luyck, M. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharm. 2000, 72, 35–40. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Duzgunes, O.; Kesici, T.; Kavuncu, O.; Gürbüz, F. Research and Experimental Methods. Statistical Methods-II; Ankara University Faculty of Agriculture Publications: Ankara, Turkey, 1987; Volume 1, pp. 1021–1295. [Google Scholar]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahomood, A.; Chen, Z.; Zeng, X.; Liu, Y.; Li, Y. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, T.; Lassaletta, L.; Mueller, D.A.; Tubiello, F.N.; Lisk, M.D.; Lu, C.; Conant, R.T.; Dorich, C.D.; Gerber, J.; et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2021, 2, 529–540. [Google Scholar] [CrossRef]
- Xing, J.; Cao, X.; Zhang, M.; Wei, X.; Zhang, J.; Wan, X. Plant nitrogen availability and crosstalk with phytohormones signallings and their biotechnology breeding application in crops. Plant Biotechnol. J. 2023, 21, 1320–1342. [Google Scholar] [CrossRef]
- Zheljazkov, V.D. Assessment of wool waste and hair waste as soil amendment and nutrient. source. J. Environ. Qual. 2005, 34, 2310–2317. [Google Scholar] [CrossRef]
- Sharma, S.C.; Sahoo, A.; Chand, R. Potential use of waste wool in agriculture: An overview. Indian J. Small Ruminants 2019, 25, 1–12. [Google Scholar] [CrossRef]
- Kovács, F.; Papdi, E.; Veres, A.; Mohay, P.; Szegő, A.; Juhos, K. More efficient nitrogen utilization through wool pellet and soil inoculation. Agrosyst. Geosci. Environ. 2024, 7, e20534. [Google Scholar] [CrossRef]
- Lal, B.; Sharma, S.C.; Meena, R.L.; Sarkar, S.; Sahoo, A.; Balai, R.C.; Meena, B.P. Utilization of byproducts of sheep farming as organic fertilizer for improving soil health and productivity of barley forage. J. Environ. Manag. 2020, 269, 110765. [Google Scholar] [CrossRef] [PubMed]
- Ordiales, E.; Gutiérrez, J.I.; Zajara, L.; Gil, J.; Lanzke, M. Assessment of utilization of sheep wool pellets as organic fertilizer and soil amendment in processing tomato and broccoli. Mod. Agric. Sci. Technol. 2016, 2, 20–35. [Google Scholar]
- Abdallah, A.M.; Ugolini, F.; Baronti, S.; Maienza, A.; Ungaro, F.; Camilli, F. Assessment of two sheep wool residues from textile industry as organic fertilizer in sunflower and maize cultivation. J. Soil Sci. Plant Nutr. 2019, 19, 793–807. [Google Scholar] [CrossRef]
- Rajabinejad, H.; Bucişcanu, I.I.; Maier, S.S. Current approaches for raw wool waste management and unconventional valorization: A review. Environ. Eng. Manag. J. 2019, 18, 1. [Google Scholar]
- Bradshaw, T.; Hagen, K. Wool pellets are a viable alternative to commercial fertilizer for organic vegetable production. Agronomy 2022, 12, 1210. [Google Scholar] [CrossRef]
- Böhme, M.; Pinker, I.; Grüneberg, H.; Herfort, S. Sheep Wool as Fertiliser for Vegetables and Flowers in Organic Farming. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on 2010, Lisbon, Portugal, 22 August 2010; Volume 933, pp. 195–202. [Google Scholar]
- Zheljazkov, V.D.; Stratton, G.W.; Sturz, T. Uncomposted Wool and Hair-Wastes as Soil Amendments for High-Value Crops. Agron. J. 2008, 100, 1605–1614. [Google Scholar] [CrossRef]
- Karaca, U.Ç.Ç. The Effect of Sheep Wool Manure on Growth and Yield of Pepper (Capsicum annuum). Plant. Int. J. Agric. Nat. Sci. 2022, 15, 73–81. [Google Scholar]
- Vončina, A. Sheep wool and leather waste as fertilizers in organic production of asparagus (Asparagus officinalis L.). Acta Agric. Slov. 2013, 101, 191–200. [Google Scholar] [CrossRef]
- Komatsu, S.; Nishiuchi, T. Proteomic Analysis to Understand the Promotive Effect of Ethanol on Soybean Growth Under Salt Stress. Biology 2024, 13, 861. [Google Scholar] [CrossRef] [PubMed]
- Noor, J.; Ahmad, I.; Ullah, A.; Iqbal, B.; Anwar, S.; Jalal, A.; Okla, M.K.; Alaraidh, I.A.; Abdelgawad, H.; Fahad, S. Enhancing saline stress tolerance in soybean seedlings through optimal NH4 +/NO3 − ratios: A coordinated regulation of ions, hormones, and antioxidant potential. BMC Plant Biol. 2024, 24, 572. [Google Scholar] [CrossRef] [PubMed]
- Maiwan, N.; Tunçtürk, M.; Tunçtürk, R. Effect of humic acid applications on physiological and biochemical properties of soybean (Glycine max L.) grown under salt stress conditions. Yuz. Yıl Univ. J. Agric.Sci. 2022, 33, 1–9. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Way, D.A.; Sharkey, T.D. Plant heat stress: Concepts directing future research. Plant Cell Environ. 2021, 44, 1992–2005. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.O.; Arruda, V.R.S.D.; Barbosa, F.R.S.; Firmino, M.W.M.; Pedrosa, A.W.; Cunha, F.F.D. Water Management of Arabica Coffee Seedlings Cultivated with a Hydroretentive Polymer. Agronomy 2025, 15, 218. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Masdoumier, G.; Ghozlen, N.B.; Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant 2012, 146, 251–260. [Google Scholar] [CrossRef]
- Oral, E.; Tunçtürk, R.; Tunçtürk, M.; Nohutçu, L.; Şelem, E. The Effect of Mycorrhiza Applications on Some Biochemical Characteristics of Soybean (Glycine max L.) Grown Under Salt Stress Conditions. ISPEC J. Agric.Sci. 2024, 8, 551–559. [Google Scholar]
- Sarker, U.; Islam, M.T.; Oba, S. Salinity Stress Accelerates Nutrients, Dietary Fiber, Minerals, Phytochemicals and Antioxidant Activity in Amaranthus tricolor Leaves. PLoS ONE 2018, 13, 0206388. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Augmentation of Leaf Color Parameters, Pigments, Vitamins, Phenolic Acids, Flavonoids and Antioxidant Activity in Selected Amaranthus tricolor under Salinity Stress. Sci. Rep. 2018, 8, 12349. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Salinity Stress Enhances Color Parameters, Bioactive Leaf Pigments, Vitamins, Polyphenols, Flavonoids and Antioxidant Activity in Selected Amaranthus Leafy Vegetables. J. Sci. Food Agric. 2019, 99, 2275–2284. [Google Scholar] [CrossRef]
- Turkan, I.; Demiral, T. Review: Recent Developments in Understanding Salinity Tolerance. Environ. Exp. Bot. 2009, 67, 2–9. [Google Scholar] [CrossRef]
- Wahid, A.; Ghazanfar, A. Possible Involvement of Some Secondary Metabolites in Salt Tolerance of Sugarcane. J. Plant Physiol. 2006, 163, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Ben Abdallah, S.; Aung, B.; Amyot, L.; Lalin, I.; Lachâal, M.; Karray-Bouraoui, N.; Hannoufa, A. Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Phys. Plant. 2016, 38, 1–13. [Google Scholar] [CrossRef]
- Tang, D.; Shi, S.; Li, D.; Hu, C.; Liu, Y. Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. J. Arid. Environ. 2007, 71, 312–320. [Google Scholar] [CrossRef]
- Gara, L.D.; Pinto, M.C.; Tommasi, F. The antioxidant systems visávis reactive oxygen species during plant-pathogen interaction. Plant Physiol. Biochem. 2003, 41, 863–870. [Google Scholar] [CrossRef]
- Khan, F.; Siddiqi, T.O.; Mahmooduzzafar Ahmad, A. Morphological changes and antioxidant defence systems in soybean genotypes as affected by salt stress. J. Plant Interact. 2009, 4, 295–306. [Google Scholar] [CrossRef]
- Easwar Rao, D.; Viswanatha Chaitanya, K. Changes in the antioxidant intensities of seven different soybean (Glycine max (L.) Merr.) cultivars during drought. J. Food Biochem. 2020, 44, e13118. [Google Scholar]
- Chen, P.; Yan, K.; Shao, H.; Zhao, S. Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: Photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS ONE 2013, 8, e83227. [Google Scholar] [CrossRef]
- Trust, B.; Shin, N.; Jim, E.D.; Harry, D.S. Antioxidant activity of pearled wheat and roller milled fractions. Cereal Chem. 2005, 82, 390–393. [Google Scholar]
- Rao, A.; Ahmad, S.D.; Sabir, S.M.; Awan, S.; Shah, A.H.; Khan, M.F.; Khan, S.A.; Shafique, S.; Arif, S.; Abbas, S.R.; et al. Antioxidant activity and lipid peroxidation of selected wheat cultivars under salt stress. J. Med. Plants Res. 2013, 7, 155–164. [Google Scholar]
- Kokebie, D.; Enyew, A.; Masresha, G.; Fentie, T.; Mulat, E. Morphological, physiological, and biochemical responses of three different soybean (Glycine max L.) varieties under salinity stress conditions. Front. Plant Sci. 2024, 15, 1440445. [Google Scholar] [CrossRef] [PubMed]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotox. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nil, N. Changes in chlorophyll, ribulose biphosphate carboxylase–oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J. Hortic. Sci. Biotechnol. 2000, 75, 623–627. [Google Scholar] [CrossRef]
- Borghesi, E.; González-Miret, M.L.; Escudero-Gilete, M.L.; Malorgio, F.; Heredia, F.J.; Meléndez-Martínez, A.J. Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. J. Agric. Food Chem. 2011, 59, 11676–11682. [Google Scholar] [CrossRef]
- Lim, J.H.; Park, K.J.; Kim, B.K.; Jeong, J.W.; Kim, H.J. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem. 2012, 135, 1065–1070. [Google Scholar] [CrossRef]
Organic Matter | 70–83 (%) |
Nitrogen (N) | 7–9 (%) |
Phosphorus (P) | 0.4 (%) |
pH | 5 (%) |
Humic + Fulvic Acid | 9–11 |
Calcium (Ca) | 42 (%) |
Magnesium (Mg) | 0.4 (%) |
Iron (Fe) | 400 (mg kg−1) |
Zinc (Zn) | 90 (mg kg−1) |
Wool Pellet Doses | Salt Doses | Parameters | |||||
---|---|---|---|---|---|---|---|
PL (cm) | RL (cm) | SFW (g) | RFW (g) | SDW (g) | RDW (g) | ||
Control | 0 | 32.00 | 24.50 g | 1.68 a | 0.99 f | 0.62 a | 0.13 e |
25 | 29.50 | 27.00 f | 1.30 de | 1.20 e | 0.47 d | 0.18 d | |
50 | 27.00 | 27.50 e | 1.28 ef | 1.26 de | 0.44 e | 0.19 d | |
100 | 28.25 | 29.50 b | 0.96 hi | 1.62 a | 0.44 e | 0.23 a | |
Control mean | 29.18 A | 27.12 A | 1.30 | 1.26 A | 0.49 A | 0.18 A | |
1% | 0 | 28.00 | 24.00 g | 1.51 ab | 1.22 de | 0.54 b | 0.18 d |
25 | 27.00 | 27.00 f | 1.38 b–d | 1.27 de | 0.49 c | 0.19 d | |
50 | 25.00 | 27.25 ef | 1.34 c–e | 1.34 c | 0.49 c | 0.20 c | |
100 | 27.25 | 30.50 a | 1.31 de | 1.39 b | 0.46 d | 0.22 b | |
1% mean | 26.81 B | 27.18 A | 1.38 | 1.30 A | 0.49 A | 0.19 A | |
2% | 0 | 28.75 | 24.50 g | 1.61 a | 1.29 c–e | 0.54 b | 0.19 cd |
25 | 24.25 | 27.25 ef | 1.44 b | 1.30 cd | 0.52 b | 0.18 d | |
50 | 23.50 | 28.00 d | 1.45 b | 1.30 cd | 0.53 b | 0.18 d | |
100 | 23.75 | 28.50 c | 0.93 i | 1.33 c | 0.41 f | 0.22 b | |
2% mean | 25.06 BC | 27.06 A | 1.35 | 1.30 A | 0.49 A | 0.19 A | |
4% | 0 | 24.75 | 20.75 j | 1.15 fg | 0.82 h | 0.30 g | 0.09 g |
25 | 23.75 | 20.50 j | 1.04 gh | 0.86 gh | 0.24 h | 0.10 g | |
50 | 21.25 | 21.50 i | 1.41 bc | 0.91 fg | 0.30 g | 0.11 f | |
100 | 23.50 | 23.00 h | 1.43 b | 1.39 b | 0.43 e | 0.19 d | |
4% mean | 23.31 C | 21.43 B | 1.25 | 0.99 B | 0.31 B | 0.12 B | |
Salt doses mean | 0 | 28.37 a | 23.43 c | 1.48 a | 1.07 c | 0.50 a | 0.14 c |
25 | 26.12 b | 25.43 b | 1.28 ab | 1.15 bc | 0.43 b | 0.16 b | |
50 | 25.68 b | 26.06 b | 1.36 a | 1.20 b | 0.44 b | 0.16 b | |
100 | 24.18 b | 27.87 a | 1.15 b | 1.43 a | 0.43 b | 0.21 a | |
CV (%) | 8.76 | 3.88 | 14.83 | 9.8 | 6.82 | 9.94 | |
WP | ** | ** | ns | ** | ** | ** | |
S | ** | ** | ** | ** | ** | ** | |
WP × S | ns | * | ** | ** | ** | ** |
Wool Pellet Doses | Salt Doses | Parameters | |||||
---|---|---|---|---|---|---|---|
LT (°C) | LA (cm2) | NBI (dx) | Chlorophyll (dx) | Flavonoid (dx) | MDA (nmol/g FW) | ||
Control | 0 | 19.85 | 9.42 e | 102.13 h | 40.48 b–d | 0.39 | 18.09 kl |
25 | 20.00 | 8.27 f | 73.88 l | 34.55 fg | 0.46 | 19.43 j | |
50 | 20.20 | 7.43 g | 91.43 k | 30.88 h | 0.43 | 20.24 i | |
100 | 20.30 | 6.82 i | 59.25 n | 28.93 i | 0.50 | 24.85 c | |
Control mean | 20.08 C | 7.98 D | 81.66 D | 33.70 B | 0.44 A | 20.65 B | |
1% | 0 | 20.40 | 12.23 b | 117.28 e | 50.43 a | 0.36 | 18.69 jk |
25 | 20.35 | 10.34 c | 96.05 i | 41.30 bc | 0.42 | 23.40 de | |
50 | 20.60 | 9.96 c | 74.23 l | 35.58 f | 0.41 | 24.61 c | |
100 | 20.80 | 8.42 f | 66.68 m | 37.30 e | 0.49 | 26.14 b | |
1% mean | 20.53 B | 10.23 A | 88.55 C | 41.15 A | 0.41 A | 23.21 A | |
2% | 0 | 21.50 | 13.46 a | 96.70 i | 40.05 b-d | 0.40 | 21.51 h |
25 | 21.45 | 8.97 e | 122.70 d | 39.50 c–e | 0.43 | 22.51 g | |
50 | 21.45 | 8.41 f | 113.83 f | 42.20 b | 0.42 | 22.85 fg | |
100 | 22.45 | 7.04 h | 111.53 g | 37.35 e | 0.43 | 23.30 e | |
2% mean | 21.71 A | 9.46 B | 111.18 B | 39.77 A | 0.42 A | 22.54 A | |
4% | 0 | 21.35 | 12.08 b | 141.48 b | 39.50 b–e | 0.27 | 17.24 l |
25 | 21.40 | 10.38 c | 125.68 c | 40.23 b–d | 0.33 | 23.95 d | |
50 | 21.40 | 7.01 hi | 144.43 a | 33.75 g | 0.36 | 23.11 ef | |
100 | 21.35 | 4.93 j | 94.45 j | 38.55 de | 0.42 | 26.51 a | |
4% mean | 21.37 A | 8.59 C | 126.50 A | 38.00 A | 0.34 B | 22.70 A | |
Salt doses mean | 0 | 20.77 | 11.79 a | 114.39 a | 42.61 a | 0.35 c | 18.88 c |
25 | 20.80 | 9.48 b | 104.57 b | 38.89 b | 0.40 b | 22.32 b | |
50 | 20.91 | 8.20 c | 105.97 b | 35.6 b | 0.40 b | 22.70 b | |
100 | 21.22 | 6.79 d | 82.97 c | 35.53 b | 0.45 a | 25.19 a | |
CV (%) | 2.12 | 7.61 | 2.09 | 10.19 | 9.92 | 4.78 | |
WP | ** | ** | ** | ** | ** | ** | |
S | ns | ** | ** | ** | ** | ** | |
WP × S | ns | ** | ** | * | ns | ** |
Wool Pellet Doses | Salt Doses | Parameters | |||
---|---|---|---|---|---|
TAA (µmol TE/g) | TPC (mg GAE/g) | Carotenoid (μg/g FW) | MDA (nmol/g FW) | ||
Control | 0 | 14.86 | 115.50 d | 0.72 h | 18.09 kl |
25 | 16.91 | 127.42 c | 3.11 a | 19.43 j | |
50 | 17.03 | 130.35 b | 2.33 d | 20.24 i | |
100 | 19.94 | 143.35 a | 3.00 b | 24.85 c | |
Control mean | 17.18 A | 129.16 A | 2.29 A | 20.65 B | |
1% | 0 | 10.94 | 96.57 f | 0.25 l | 18.69 jk |
25 | 12.32 | 98.92 f | 1.66 f | 23.40 de | |
50 | 13.75 | 109.92 e | 2.71 c | 24.61 c | |
100 | 13.96 | 111.07 e | 2.07 e | 26.14 b | |
1% mean | 12.74 B | 104.12 B | 1.67 B | 23.21 A | |
2% | 0 | 8.22 | 61.57 i | 0.33 k | 21.51 h |
25 | 9.24 | 62.42 i | 0.80 g | 22.51 g | |
50 | 10.86 | 62.85 i | 0.63 j | 22.85 fg | |
100 | 10.46 | 64.78 h | 0.28 l | 23.30 e | |
2% mean | 9.69 C | 62.91 C | 0.43 C | 22.54 A | |
4% | 0 | 6.07 | 60.85 i | 0.74 h | 17.24 l |
25 | 7.44 | 61.21 i | 0.17 m | 23.95 d | |
50 | 8.50 | 66.21 gh | 0.13 n | 23.11 ef | |
100 | 8.89 | 66.92 g | 0.67 i | 26.51 a | |
4% mean | 7.72 D | 63.80 C | 0.43 C | 22.70 A | |
Salt doses mean | 0 | 10.02 d | 83.62 d | 0.43 c | 18.88 c |
25 | 11.47 c | 87.49 c | 1.44 b | 22.32 b | |
50 | 12.53 b | 92.34 b | 1.45 b | 22.70 b | |
100 | 13.31 a | 96.53 a | 1.51 a | 25.19 a | |
CV (%) | 7.73 | 4.65 | 1.68 | 4.78 | |
WP | ** | ** | ** | ** | |
S | ** | ** | ** | ** | |
WP × S | ns | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nohutçu, L. The Influence of Wool Pellet Application on Alleviating Salt-Induced Stress in Soybean (Glycine max L.). Life 2025, 15, 328. https://doi.org/10.3390/life15030328
Nohutçu L. The Influence of Wool Pellet Application on Alleviating Salt-Induced Stress in Soybean (Glycine max L.). Life. 2025; 15(3):328. https://doi.org/10.3390/life15030328
Chicago/Turabian StyleNohutçu, Lütfi. 2025. "The Influence of Wool Pellet Application on Alleviating Salt-Induced Stress in Soybean (Glycine max L.)" Life 15, no. 3: 328. https://doi.org/10.3390/life15030328
APA StyleNohutçu, L. (2025). The Influence of Wool Pellet Application on Alleviating Salt-Induced Stress in Soybean (Glycine max L.). Life, 15(3), 328. https://doi.org/10.3390/life15030328