Translating Metabolic Interventions into Breast Cancer Therapy: A Comprehensive Review
Abstract
1. Introduction
2. Methodology
3. Metabolic Syndrome and Breast Cancer
3.1. Epidemiological Evidence
3.2. Obesity-Induced Estrogen Production
3.3. Chronic Inflammation in Adipocytes
3.4. Insulin Resistance and Breast Cancer Risk
3.5. Current Models to Study Metabolic Dysregulation in Breast Cancer
4. IGF-1 Signaling in Breast Cancer
4.1. The IGF-1 Signaling Pathway
4.2. Effect of IGF-1 Signaling on Breast Cancer Biology
4.3. IGF-1 Dysregulation in Breast Cancer Treatment Resistance
5. Glucose Metabolism Reprograming in the Tumor Microenvironment
6. Targeting Glucose Metabolism in Breast Cancer
6.1. Metformin
6.2. Metformin Preclinical Evidence
6.3. Metformin Clinical Studies
6.4. SGLT2 Inhibitors
6.5. SGLT2i Preclinical Evidence
6.6. SGLT2i Clinical Studies
6.7. Glucagon-like Peptide-1 Receptor Agonists
6.8. GLP-1R Expression in Breast Cancer
6.9. Exendin-4
6.10. Liraglutide
6.11. Semaglutide
6.12. GLP-1RAs Clinical Studies
7. Limitations of Metabolic Therapy in Breast Cancer
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Obeagu, E.I.; Obeagu, G.U. Breast cancer: A review of risk factors and diagnosis. Medicine 2024, 103, e36905. [Google Scholar] [CrossRef]
- Pascual-Morena, C.; Garrido-Miguel, M.; Martinez-Garcia, I.; Luceron-Lucas-Torres, M.; Rodriguez-Gutierrez, E.; Berlanga-Macias, C.; Fernandez-Bravo-Rodrigo, J.; Patino-Cardona, S. Association of Dietary Advanced Glycation End Products with Overall and Site-Specific Cancer Risk and Mortality: A Systematic Review and Meta-Analysis. Nutrients 2025, 17, 1638. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef]
- Andre, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.C.; Oliveira, M.; Howell, S.J.; Dalenc, F.; Cortes, J.; Gomez Moreno, H.L.; Hu, X.; Jhaveri, K.; Krivorotko, P.; Loibl, S.; et al. Capivasertib in Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2023, 388, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A., 3rd; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 2012, 366, 520–529. [Google Scholar] [CrossRef]
- Jhaveri, K.L.; Im, S.A.; Saura, C.; Loibl, S.; Kalinsky, K.; Schmid, P.; Loi, S.; Thanopoulou, E.; Shankar, N.; Jin, Y.; et al. Overall Survival with Inavolisib in PIK3CA-Mutated Advanced Breast Cancer. N. Engl. J. Med. 2025, 393, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Weintraub, M.A.; Garcia, C.; Goncalves, M.D.; Sisk, A.E.; Casas, A.; Harding, J.J.; Harnicar, S.; Drilon, A.; Jhaveri, K.; et al. Characterization, management, and risk factors of hyperglycemia during PI3K or AKT inhibitor treatment. Cancer Med. 2022, 11, 1796–1804. [Google Scholar] [CrossRef]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. [Google Scholar] [CrossRef]
- Pliszka, M.; Szablewski, L. Associations between Diabetes Mellitus and Selected Cancers. Int. J. Mol. Sci. 2024, 25, 7476. [Google Scholar] [CrossRef]
- Dehesh, T.; Fadaghi, S.; Seyedi, M.; Abolhadi, E.; Ilaghi, M.; Shams, P.; Ajam, F.; Mosleh-Shirazi, M.A.; Dehesh, P. The relation between obesity and breast cancer risk in women by considering menstruation status and geographical variations: A systematic review and meta-analysis. BMC Womens Health 2023, 23, 392. [Google Scholar] [CrossRef]
- Gaudet, M.M.; Press, M.F.; Haile, R.W.; Lynch, C.F.; Glaser, S.L.; Schildkraut, J.; Gammon, M.D.; Douglas Thompson, W.; Bernstein, J.L. Risk factors by molecular subtypes of breast cancer across a population-based study of women 56 years or younger. Breast Cancer Res. Treat. 2011, 130, 587–597. [Google Scholar] [CrossRef]
- Elreda, L.; Kim, A.; Malik, M. Mitigating Breast Cancer Disparities by Addressing the Obesity Epidemic. Curr. Breast Cancer Rep. 2022, 14, 168–173. [Google Scholar] [CrossRef]
- Sankofi, B.M.; Valencia-Rincon, E.; Sekhri, M.; Ponton-Almodovar, A.L.; Bernard, J.J.; Wellberg, E.A. The impact of poor metabolic health on aggressive breast cancer: Adipose tissue and tumor metabolism. Front. Endocrinol. 2023, 14, 1217875. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.D.; Goncalves, M.D.; Cantley, L.C. Obesity and Cancer Mechanisms: Cancer Metabolism. J. Clin. Oncol. 2016, 34, 4277–4283. [Google Scholar] [CrossRef]
- Nwabo Kamdje, A.H.; Seke Etet, P.F.; Kipanyula, M.J.; Vecchio, L.; Tagne Simo, R.; Njamnshi, A.K.; Lukong, K.E.; Mimche, P.N. Insulin-like growth factor-1 signaling in the tumor microenvironment: Carcinogenesis, cancer drug resistance, and therapeutic potential. Front. Endocrinol. 2022, 13, 927390. [Google Scholar] [CrossRef] [PubMed]
- Shum, H.C.E.; Wu, K.; Vadgama, J.; Wu, Y. Potential Therapies Targeting the Metabolic Reprogramming of Diabetes-Associated Breast Cancer. J. Pers. Med. 2023, 13, 157. [Google Scholar] [CrossRef] [PubMed]
- Chlebowski, R.T.; Aragaki, A.K.; Pan, K.; Simon, M.S.; Neuhouser, M.L.; Haque, R.; Rohan, T.E.; Wactawski-Wende, J.; Orchard, T.S.; Mortimer, J.E.; et al. Breast cancer incidence and mortality by metabolic syndrome and obesity: The Women’s Health Initiative. Cancer 2024, 130, 3147–3156. [Google Scholar] [CrossRef]
- Neeland, I.J.; Lim, S.; Tchernof, A.; Gastaldelli, A.; Rangaswami, J.; Ndumele, C.E.; Powell-Wiley, T.M.; Despres, J.P. Metabolic syndrome. Nat. Rev. Dis. Primers 2024, 10, 77. [Google Scholar] [CrossRef]
- Nahmias-Blank, D.; Maimon, O.; Meirovitz, A.; Sheva, K.; Peretz-Yablonski, T.; Elkin, M. Excess body weight and postmenopausal breast cancer: Emerging molecular mechanisms and perspectives. Semin. Cancer Biol. 2023, 96, 26–35. [Google Scholar] [CrossRef]
- Pang, Y.; Wei, Y.; Kartsonaki, C. Associations of adiposity and weight change with recurrence and survival in breast cancer patients: A systematic review and meta-analysis. Breast Cancer 2022, 29, 575–588. [Google Scholar] [CrossRef]
- Ewertz, M.; Jensen, M.B.; Gunnarsdottir, K.A.; Hojris, I.; Jakobsen, E.H.; Nielsen, D.; Stenbygaard, L.E.; Tange, U.B.; Cold, S. Effect of obesity on prognosis after early-stage breast cancer. J. Clin. Oncol. 2011, 29, 25–31. [Google Scholar] [CrossRef]
- Yuan, Y.; Pan, K.; Mortimer, J.; Chlebowski, R.T.; Luo, J.; Yan, J.E.; Yost, S.E.; Kroenke, C.H.; Adams-Campbell, L.; Nassir, R.; et al. Metabolic syndrome risk components and mortality after triple-negative breast cancer diagnosis in postmenopausal women in the Women’s Health Initiative. Cancer 2021, 127, 1658–1667. [Google Scholar] [CrossRef]
- Xiong, F.; Dai, Q.; Zhang, S.; Bent, S.; Tahir, P.; Van Blarigan, E.L.; Kenfield, S.A.; Chan, J.M.; Schmajuk, G.; Graff, R.E. Diabetes and incidence of breast cancer and its molecular subtypes: A systematic review and meta-analysis. Diabetes Metab. Res. Rev. 2024, 40, e3709. [Google Scholar] [CrossRef]
- Sudan, S.K.; Sharma, A.; Vikramdeo, K.S.; Davis, W.; Deshmukh, S.K.; Poosarla, T.; Holliday, N.P.; Prodduturvar, P.; Nelson, C.; Singh, K.P.; et al. Obesity and Early-Onset Breast Cancer and Specific Molecular Subtype Diagnosis in Black and White Women: NIMHD Social Epigenomics Program. JAMA Netw. Open 2024, 7, e2421846. [Google Scholar] [CrossRef]
- Richardson, L.C.; Henley, S.J.; Miller, J.W.; Massetti, G.; Thomas, C.C. Patterns and Trends in Age-Specific Black-White Differences in Breast Cancer Incidence and Mortality—United States, 1999–2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Kurylowicz, A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023, 11, 690. [Google Scholar] [CrossRef] [PubMed]
- Steiner, B.M.; Berry, D.C. The Regulation of Adipose Tissue Health by Estrogens. Front. Endocrinol. 2022, 13, 889923. [Google Scholar] [CrossRef] [PubMed]
- Yager, J.D.; Davidson, N.E. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 2006, 354, 270–282. [Google Scholar] [CrossRef]
- Bulun, S.E.; Chen, D.; Moy, I.; Brooks, D.C.; Zhao, H. Aromatase, breast cancer and obesity: A complex interaction. Trends Endocrinol. Metab. 2012, 23, 83–89. [Google Scholar] [CrossRef]
- Bowers, L.W.; Brenner, A.J.; Hursting, S.D.; Tekmal, R.R.; deGraffenried, L.A. Obesity-associated systemic interleukin-6 promotes pre-adipocyte aromatase expression via increased breast cancer cell prostaglandin E2 production. Breast Cancer Res. Treat. 2015, 149, 49–57. [Google Scholar] [CrossRef]
- Howe, L.R.; Subbaramaiah, K.; Hudis, C.A.; Dannenberg, A.J. Molecular pathways: Adipose inflammation as a mediator of obesity-associated cancer. Clin. Cancer Res. 2013, 19, 6074–6083. [Google Scholar] [CrossRef]
- Rothenberger, N.J.; Somasundaram, A.; Stabile, L.P. The Role of the Estrogen Pathway in the Tumor Microenvironment. Int. J. Mol. Sci. 2018, 19, 611. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Wu, J.; Chang, J.; Peng, H.; Liu, Z.; Liu, P.; Han, X.; Sun, T.; Shang, D.; Yang, Y.; et al. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2025, 141, 100832. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Surmacz, E. Leptin and cancer. J. Cell. Physiol. 2006, 207, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.C.; Hsiao, M. Leptin and Cancer: Updated Functional Roles in Carcinogenesis, Therapeutic Niches, and Developments. Int. J. Mol. Sci. 2021, 22, 2870. [Google Scholar] [CrossRef] [PubMed]
- Macis, D.; Gandini, S.; Guerrieri-Gonzaga, A.; Johansson, H.; Magni, P.; Ruscica, M.; Lazzeroni, M.; Serrano, D.; Cazzaniga, M.; Mora, S.; et al. Prognostic effect of circulating adiponectin in a randomized 2 × 2 trial of low-dose tamoxifen and fenretinide in premenopausal women at risk for breast cancer. J. Clin. Oncol. 2012, 30, 151–157. [Google Scholar] [CrossRef]
- Nehme, R.; Diab-Assaf, M.; Decombat, C.; Delort, L.; Caldefie-Chezet, F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022, 10, 2958. [Google Scholar] [CrossRef]
- Bartella, V.; De Marco, P.; Malaguarnera, R.; Belfiore, A.; Maggiolini, M. New advances on the functional cross-talk between insulin-like growth factor-I and estrogen signaling in cancer. Cell. Signal. 2012, 24, 1515–1521. [Google Scholar] [CrossRef]
- Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar] [CrossRef]
- Garcia-Becerra, R.; Santos, N.; Diaz, L.; Camacho, J. Mechanisms of resistance to endocrine therapy in breast cancer: Focus on signaling pathways, miRNAs and genetically based resistance. Int. J. Mol. Sci. 2012, 14, 108–145. [Google Scholar] [CrossRef]
- Kahlert, S.; Nuedling, S.; van Eickels, M.; Vetter, H.; Meyer, R.; Grohe, C. Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway. J. Biol. Chem. 2000, 275, 18447–18453. [Google Scholar] [CrossRef] [PubMed]
- Hua, H.; Kong, Q.; Yin, J.; Zhang, J.; Jiang, Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: A challenge for cancer therapy. J. Hematol. Oncol. 2020, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Ferrari, E.; Brugnoli, F.; Terrazzan, A.; Ancona, P.; Volinia, S.; Bertagnolo, V.; Bergamini, C.M.; Spisni, A.; Pertinhez, T.A.; et al. Metabolic Profiling of Breast Cancer Cell Lines: Unique and Shared Metabolites. Int. J. Mol. Sci. 2025, 26, 969. [Google Scholar] [CrossRef]
- Gu, Z.; Wu, Q.; Shang, B.; Zhang, K.; Zhang, W. Organoid co-culture models of the tumor microenvironment promote precision medicine. Cancer Innov. 2024, 3, e101. [Google Scholar] [CrossRef]
- Giles, E.D.; Wellberg, E.A. Preclinical Models to Study Obesity and Breast Cancer in Females: Considerations, Caveats, and Tools. J. Mammary Gland Biol. Neoplasia 2020, 25, 237–253. [Google Scholar] [CrossRef]
- Hakuno, F.; Takahashi, S.I. IGF1 receptor signaling pathways. J. Mol. Endocrinol. 2018, 61, T69–T86. [Google Scholar] [CrossRef]
- Khan, M.Z.; Zugaza, J.L.; Torres Aleman, I. The signaling landscape of insulin-like growth factor 1. J. Biol. Chem. 2025, 301, 108047. [Google Scholar] [CrossRef] [PubMed]
- Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef]
- Li, R.; Pourpak, A.; Morris, S.W. Inhibition of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase as a novel cancer therapy approach. J. Med. Chem. 2009, 52, 4981–5004. [Google Scholar] [CrossRef]
- Christopoulos, P.F.; Msaouel, P.; Koutsilieris, M. The role of the insulin-like growth factor-1 system in breast cancer. Mol. Cancer 2015, 14, 43. [Google Scholar] [CrossRef]
- Law, J.H.; Habibi, G.; Hu, K.; Masoudi, H.; Wang, M.Y.; Stratford, A.L.; Park, E.; Gee, J.M.; Finlay, P.; Jones, H.E.; et al. Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res. 2008, 68, 10238–10246. [Google Scholar] [CrossRef]
- Endogenous, H.; Breast Cancer Collaborative, G.; Key, T.J.; Appleby, P.N.; Reeves, G.K.; Roddam, A.W. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: Pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010, 11, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Wu, J.; Huang, O.; He, J.; Zhu, L.; Chen, W.; Li, Y.; Chen, X.; Shen, K. IGF-1 Interacted With Obesity in Prognosis Prediction in HER2-Positive Breast Cancer Patients. Front. Oncol. 2020, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Hartog, H.; Boezen, H.M.; de Jong, M.M.; Schaapveld, M.; Wesseling, J.; van der Graaf, W.T. Prognostic value of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 blood levels in breast cancer. Breast 2013, 22, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Duggan, C.; Wang, C.Y.; Neuhouser, M.L.; Xiao, L.; Smith, A.W.; Reding, K.W.; Baumgartner, R.N.; Baumgartner, K.B.; Bernstein, L.; Ballard-Barbash, R.; et al. Associations of insulin-like growth factor and insulin-like growth factor binding protein-3 with mortality in women with breast cancer. Int. J. Cancer 2013, 132, 1191–1200. [Google Scholar] [CrossRef]
- Belachew, E.B.; Sewasew, D.T. Molecular Mechanisms of Endocrine Resistance in Estrogen-Positive Breast Cancer. Front. Endocrinol. 2021, 12, 599586. [Google Scholar] [CrossRef]
- Lu, Y.; Zi, X.; Zhao, Y.; Mascarenhas, D.; Pollak, M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J. Natl. Cancer Inst. 2001, 93, 1852–1857. [Google Scholar] [CrossRef]
- Werner, H.; Bruchim, I. IGF-1 and BRCA1 signalling pathways in familial cancer. Lancet Oncol. 2012, 13, e537–e544. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Wang, W.; Li, X.; Sun, X.; Zhao, Y.; Wang, Q.; Li, Y.; Hu, F.; Ren, H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol. Cancer 2024, 23, 261. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Wang, W.; Sheldon, M.; Sun, Y.; Yao, F.; Ma, L. Role of Glucose Metabolic Reprogramming in Breast Cancer Progression and Drug Resistance. Cancers 2023, 15, 3390. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhang, N.; Yan, T.; Wei, J.; Hao, L.; Sun, C.; Zhao, H.; Jiang, S. Lactate-mediated metabolic reprogramming of tumor-associated macrophages: Implications for tumor progression and therapeutic potential. Front. Immunol. 2025, 16, 1573039. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.M.; O’Connell, J.T.; Vo, A.P.; Cain, M.P.; Tampe, D.; Bizarro, L.; Sugimoto, H.; McGow, A.K.; Asara, J.M.; Lovisa, S.; et al. Epigenetic Reprogramming of Cancer-Associated Fibroblasts Deregulates Glucose Metabolism and Facilitates Progression of Breast Cancer. Cell Rep. 2020, 31, 107701. [Google Scholar] [CrossRef]
- Yu, T.; Yang, G.; Hou, Y.; Tang, X.; Wu, C.; Wu, X.A.; Guo, L.; Zhu, Q.; Luo, H.; Du, Y.E.; et al. Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene 2017, 36, 2131–2145. [Google Scholar] [CrossRef]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef]
- Gong, Z.; Aragaki, A.K.; Chlebowski, R.T.; Manson, J.E.; Rohan, T.E.; Chen, C.; Vitolins, M.Z.; Tinker, L.F.; LeBlanc, E.S.; Kuller, L.H.; et al. Diabetes, metformin and incidence of and death from invasive cancer in postmenopausal women: Results from the women’s health initiative. Int. J. Cancer 2016, 138, 1915–1927. [Google Scholar] [CrossRef]
- Soranna, D.; Scotti, L.; Zambon, A.; Bosetti, C.; Grassi, G.; Catapano, A.; La Vecchia, C.; Mancia, G.; Corrao, G. Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: A meta-analysis. Oncologist 2012, 17, 813–822. [Google Scholar] [CrossRef]
- Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 2008, 8, 915–928. [Google Scholar] [CrossRef]
- Choi, Y.K.; Park, K.G. Metabolic roles of AMPK and metformin in cancer cells. Mol. Cells 2013, 36, 279–287. [Google Scholar] [CrossRef]
- Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur. J. Med. Chem. 2016, 109, 314–341. [Google Scholar] [CrossRef]
- Anisimov, V.N.; Egormin, P.A.; Bershtein, L.M.; Zabezhinskii, M.A.; Piskunova, T.S.; Popovich, I.G.; Semenchenko, A.V. Metformin decelerates aging and development of mammary tumors in HER-2/neu transgenic mice. Bull. Exp. Biol. Med. 2005, 139, 721–723. [Google Scholar] [CrossRef]
- Checkley, L.A.; Rudolph, M.C.; Wellberg, E.A.; Giles, E.D.; Wahdan-Alaswad, R.S.; Houck, J.A.; Edgerton, S.M.; Thor, A.D.; Schedin, P.; Anderson, S.M.; et al. Metformin Accumulation Correlates with Organic Cation Transporter 2 Protein Expression and Predicts Mammary Tumor Regression In Vivo. Cancer Prev. Res. 2017, 10, 198–207. [Google Scholar] [CrossRef]
- Giles, E.D.; Jindal, S.; Wellberg, E.A.; Schedin, T.; Anderson, S.M.; Thor, A.D.; Edwards, D.P.; MacLean, P.S.; Schedin, P. Metformin inhibits stromal aromatase expression and tumor progression in a rodent model of postmenopausal breast cancer. Breast Cancer Res. 2018, 20, 50. [Google Scholar] [CrossRef]
- Caciolla, J.; Bisi, A.; Belluti, F.; Rampa, A.; Gobbi, S. Reconsidering Aromatase for Breast Cancer Treatment: New Roles for an Old Target. Molecules 2020, 25, 5351. [Google Scholar] [CrossRef]
- Song, J.; Du, J.; Han, L.; Lin, X.; Fan, C.; Chen, G. The Effect of Metformin on Triple-Negative Breast Cancer Cells and Nude Mice. Altern. Ther. Health Med. 2023, 29, 389–395. [Google Scholar] [PubMed]
- Tapia, E.; Villa-Guillen, D.E.; Chalasani, P.; Centuori, S.; Roe, D.J.; Guillen-Rodriguez, J.; Huang, C.; Galons, J.P.; Thomson, C.A.; Altbach, M.; et al. A randomized controlled trial of metformin in women with components of metabolic syndrome: Intervention feasibility and effects on adiposity and breast density. Breast Cancer Res. Treat. 2021, 190, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, P.J.; Chen, B.E.; Gelmon, K.A.; Whelan, T.J.; Ennis, M.; Lemieux, J.; Ligibel, J.A.; Hershman, D.L.; Mayer, I.A.; Hobday, T.J.; et al. Effect of Metformin vs Placebo on Invasive Disease-Free Survival in Patients With Breast Cancer: The MA.32 Randomized Clinical Trial. JAMA 2022, 327, 1963–1973. [Google Scholar] [CrossRef] [PubMed]
- Martin-Castillo, B.; Pernas, S.; Dorca, J.; Alvarez, I.; Martinez, S.; Perez-Garcia, J.M.; Batista-Lopez, N.; Rodriguez-Sanchez, C.A.; Amillano, K.; Dominguez, S.; et al. A phase 2 trial of neoadjuvant metformin in combination with trastuzumab and chemotherapy in women with early HER2-positive breast cancer: The METTEN study. Oncotarget 2018, 9, 35687–35704. [Google Scholar] [CrossRef]
- Kim, J.; Lim, W.; Kim, E.K.; Kim, M.K.; Paik, N.S.; Jeong, S.S.; Yoon, J.H.; Park, C.H.; Ahn, S.H.; Kim, L.S.; et al. Phase II randomized trial of neoadjuvant metformin plus letrozole versus placebo plus letrozole for estrogen receptor positive postmenopausal breast cancer (METEOR). BMC Cancer 2014, 14, 170. [Google Scholar] [CrossRef]
- Ligorio, F.; Vingiani, A.; Torelli, T.; Sposetti, C.; Drufuca, L.; Iannelli, F.; Zanenga, L.; Depretto, C.; Folli, S.; Scaperrotta, G.; et al. Early downmodulation of tumor glycolysis predicts response to fasting-mimicking diet in triple-negative breast cancer patients. Cell Metab. 2025, 37, 330–344.e7. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, M.D.; Iyengar, N.M. Fueling metabolic disruption via FMD to boost chemotherapy in TNBC. Cell Metab. 2025, 37, 305–306. [Google Scholar] [CrossRef]
- Tentolouris, A.; Vlachakis, P.; Tzeravini, E.; Eleftheriadou, I.; Tentolouris, N. SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. Int. J. Environ. Res. Public Health 2019, 16, 2965. [Google Scholar] [CrossRef]
- Rohrborn, D.; Wronkowitz, N.; Eckel, J. DPP4 in Diabetes. Front. Immunol. 2015, 6, 386. [Google Scholar] [CrossRef]
- Teichgraber, V.; Monasterio, C.; Chaitanya, K.; Boger, R.; Gordon, K.; Dieterle, T.; Jager, D.; Bauer, S. Specific inhibition of fibroblast activation protein (FAP)-alpha prevents tumor progression in vitro. Adv. Med. Sci. 2015, 60, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhu, J.; Yu, S.J.; Ma, H.L.; Chen, J.; Ding, X.F.; Chen, G.; Liang, Y.; Zhang, Q. Sodium-glucose co-transporter-2 (SGLT-2) inhibition reduces glucose uptake to induce breast cancer cell growth arrest through AMPK/mTOR pathway. Biomed. Pharmacother. 2020, 132, 110821. [Google Scholar] [CrossRef]
- Komatsu, S.; Nomiyama, T.; Numata, T.; Kawanami, T.; Hamaguchi, Y.; Iwaya, C.; Horikawa, T.; Fujimura-Tanaka, Y.; Hamanoue, N.; Motonaga, R.; et al. SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation. Endocr. J. 2020, 67, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Akingbesote, N.D.; Norman, A.; Zhu, W.; Halberstam, A.A.; Zhang, X.; Foldi, J.; Lustberg, M.B.; Perry, R.J. A precision medicine approach to metabolic therapy for breast cancer in mice. Commun. Biol. 2022, 5, 478. [Google Scholar] [CrossRef]
- Mariam, Z.; Niazi, S.K. Glucagon-like peptide agonists: A prospective review. Endocrinol. Diabetes Metab. 2024, 7, e462. [Google Scholar] [CrossRef]
- Hinnen, D. Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes. Diabetes Spectr. 2017, 30, 202–210. [Google Scholar] [CrossRef]
- Bendotti, G.; Montefusco, L.; Lunati, M.E.; Usuelli, V.; Pastore, I.; Lazzaroni, E.; Assi, E.; Seelam, A.J.; El Essawy, B.; Jang, J.; et al. The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists. Pharmacol. Res. 2022, 182, 106320. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, Q.W.; Yang, X.Y.; Yang, W.; Li, D.R.; Jin, J.Y.; Zhang, H.C.; Zhang, X.F. GLP-1 receptor agonists for the treatment of obesity: Role as a promising approach. Front. Endocrinol. 2023, 14, 1085799. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.S.; Ibrahim, R.S.; Arabi, B.; Brockmueller, A.; Shakibaei, M.; Busselberg, D. The effect of GLP-1R agonists on the medical triad of obesity, diabetes, and cancer. Cancer Metastasis Rev. 2024, 43, 1297–1314. [Google Scholar] [CrossRef] [PubMed]
- Iwaya, C.; Nomiyama, T.; Komatsu, S.; Kawanami, T.; Tsutsumi, Y.; Hamaguchi, Y.; Horikawa, T.; Yoshinaga, Y.; Yamashita, S.; Tanaka, T.; et al. Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-kappaB Activation. Endocrinology 2017, 158, 4218–4232. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Iwaya, C.; Kawanami, T.; Hamaguchi, Y.; Horikawa, T.; Shigeoka, T.; Yanase, T.; Kawanami, D.; Nomiyama, T. Combined treatment with glucagon-like peptide-1 receptor agonist exendin-4 and metformin attenuates breast cancer growth. Diabetol. Int. 2022, 13, 480–492. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Duan, X.X.; Yuan, M.C.; Yu, J.; Hu, X.; Han, X.; Lan, L.; Liu, B.W.; Wang, Y.; Qin, J.F. Glucagon-like peptide-1 receptor activation by liraglutide promotes breast cancer through NOX4/ROS/VEGF pathway. Life Sci. 2022, 294, 120370. [Google Scholar] [CrossRef]
- Kolterman, O.G.; Buse, J.B.; Fineman, M.S.; Gaines, E.; Heintz, S.; Bicsak, T.A.; Taylor, K.; Kim, D.; Aisporna, M.; Wang, Y.; et al. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J. Clin. Endocrinol. Metab. 2003, 88, 3082–3089. [Google Scholar] [CrossRef]
- Fidan-Yaylali, G.; Dodurga, Y.; Secme, M.; Elmas, L. Antidiabetic exendin-4 activates apoptotic pathway and inhibits growth of breast cancer cells. Tumour. Biol. 2016, 37, 2647–2653. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, X.; Zhou, Z.; Sun, B.; Gu, W.; Liu, J.; Zhang, H. Liraglutide inhibits the proliferation and promotes the apoptosis of MCF-7 human breast cancer cells through downregulation of microRNA-27a expression. Mol. Med. Rep. 2018, 17, 5202–5212. [Google Scholar] [CrossRef]
- Alanteet, A.; Attia, H.; Alfayez, M.; Mahmood, A.; Alsaleh, K.; Alsanea, S. Liraglutide attenuates obese-associated breast cancer cell proliferation via inhibiting PI3K/Akt/mTOR signaling pathway. Saudi Pharm. J. 2024, 32, 101923. [Google Scholar] [CrossRef] [PubMed]
- Stanisavljevic, I.; Pavlovic, S.; Simovic Markovic, B.; Jurisevic, M.; Krajnovic, T.; Mijatovic, S.; Spasojevic, M.; Mitrovic, S.; Corovic, I.; Jovanovic, I. Semaglutide decelerates the growth and progression of breast cancer by enhancing the acquired antitumor immunity. Biomed. Pharmacother. 2024, 181, 117668. [Google Scholar] [CrossRef] [PubMed]
- Kalinsky, K.; Crew, K.D.; Refice, S.; Xiao, T.; Wang, A.; Feldman, S.M.; Taback, B.; Ahmad, A.; Cremers, S.; Hibshoosh, H.; et al. Presurgical trial of metformin in overweight and obese patients with newly diagnosed breast cancer. Cancer Investig. 2014, 32, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Meyerhardt, J.A.; Irwin, M.L.; Jones, L.W.; Zhang, S.; Campbell, N.; Brown, J.C.; Pollak, M.; Sorrentino, A.; Cartmel, B.; Harrigan, M.; et al. Randomized Phase II Trial of Exercise, Metformin, or Both on Metabolic Biomarkers in Colorectal and Breast Cancer Survivors. JNCI Cancer Spectr. 2020, 4, pkz096. [Google Scholar] [CrossRef]
- Pimentel, I.; Lohmann, A.E.; Ennis, M.; Dowling, R.J.O.; Cescon, D.; Elser, C.; Potvin, K.R.; Haq, R.; Hamm, C.; Chang, M.C.; et al. A phase II randomized clinical trial of the effect of metformin versus placebo on progression-free survival in women with metastatic breast cancer receiving standard chemotherapy. Breast 2019, 48, 17–23. [Google Scholar] [CrossRef]
- Yee, D.; Isaacs, C.; Wolf, D.M.; Yau, C.; Haluska, P.; Giridhar, K.V.; Forero-Torres, A.; Jo Chien, A.; Wallace, A.M.; Pusztai, L.; et al. Ganitumab and metformin plus standard neoadjuvant therapy in stage 2/3 breast cancer. NPJ Breast Cancer 2021, 7, 131. [Google Scholar] [CrossRef]
- Sodhi, M.; Rezaeianzadeh, R.; Kezouh, A.; Etminan, M. Risk of Gastrointestinal Adverse Events Associated with Glucagon-like Peptide-1 Receptor Agonists for Weight Loss. JAMA 2023, 330, 1795–1797. [Google Scholar] [CrossRef]
- Parsons, K.; Montalvo, M.; Fischbach, N.; Taylor, M.; Alfaro, S.; Lustberg, M. The Impact and Safety of GLP-1 Agents and Breast Cancer. Cancer Med. 2025, 14, e70932. [Google Scholar] [CrossRef]
- Confederat, L.G.; Dragostin, O.M.; Condurache, M.I. SGLT2 Inhibitors and the Risk of Urogenital Infections: A Concise Review. J. Clin. Med. 2025, 14, 1960. [Google Scholar] [CrossRef]
NCT ID | Reference | Patient Population | Therapy | Phase | Number of Patients Enrolled | Major Clinical Findings | Metabolic Benefit | Status |
---|---|---|---|---|---|---|---|---|
NCT01589367 | Kim et al. (2014) [81] | Postmenopausal ER+ early-stage BC, neoadjuvant setting | Letrozole ± metformin | Phase II | 208 | Overall clinical response rate of 61.4%, no statistical significance between the metformin + letrozole vs. placebo + letrozole cohort (66.7% versus 56.4%, p = 0.193). | N/A | Completed |
NCT01980823 | — | Newly diagnosed operable breast cancer (“window of opportunity”) | Metformin + atorvastatin | Early Phase I | 23 | Determine if dual combination treatment significantly impacts Ki-67 proliferation index pre-surgery, results pending | N/A | Completed |
NCT00930579 | Kalinsky et al. (2015) [103] | Newly diagnosed DCIS or stage I-III early invasive BC in non-diabetic women with BMI ≥ 25 | Metformin | Phase II (pre-surgical) | 35 | No change in Ki-67 proliferation index | Significant improvement in BMI and reductions in leptin and cholesterol with metformin | Completed |
NCT01793948 | — | Overweight/obese women at elevated breast cancer risk | Metformin vs. placebo | Phase 0 | 24 | Biomarker analysis in prevention setting, results pending | N/A | Completed |
NCT01340300 | Meyerhardt et al. (2019) [104] | Stage I-III breast or colorectal cancer survivors post adjuvant treatment | Exercise ± metformin | Phase II | 139 | N/A (primary endpoint is metabolic profile) | Both exercise and metformin led to significantly reduced levels of fasting insulin and improvements in BMI compared to the control group | Completed |
NCT01101438 | Goodwin et al. (2022) [79] | Early-stage BC, adjuvant setting | Metformin vs. placebo | Phase III | 3649 | No improvement in IDFS; exploratory analyses show that metformin use was associated with longer IDFS and OS in HER2+ BC | N/A | Completed |
NCT02028221 | Tapia et al. (2021) [78] | Premenopausal women with BMI ≥ 25 at risk for BC | Metformin vs. placebo | Phase II | 151 | Compared to placebo, metformin did not change % breast density and dense breast volume but led to a numerical but not significant decrease in non-dense breast volume | Favorable changes in measures of adiposity and borderline breast density reduction in metformin group | Completed |
NCT01310231 | Pimentel et al. (2019) [105] | Metastatic breast cancer in non-diabetic women | Standard chemotherapy + metformin | Phase II | 40 | No significance found on response rate, PFS, or OS | N/A | Completed |
NCT06763328 | — | ER- stage I–III invasive BC | Metformin | Phase III | 200 | Determine if metformin can prevent or reverse insulin resistance in BC patients after chemotherapy, results pending | Results pending | Recruiting |
NCT04248998 | Ligorio et al. (2025) [82] | Localized TNBC | Cyclic fasting-mimicking diets ± metformin | Phase II | 30 | Overall pCR rate of 56.6% was markedly higher than the historical range of 26–39% reported in prior Phase II/III neoadjuvant chemotherapy trials | N/A | Active, not recruiting |
NCT05023967 (TEAM study) | — | Non-diabetic patients with early-stage breast cancer (prevention/biomarker setting) | Time-restricted eating (nightly fasting) + extended-release metformin vs. control | Phase IIb | 120 | Determine whether nightly fasting + metformin reduces tumor cell proliferation and related biomarkers (e.g., Ki-67) | Results pending | Recruiting |
NCT01042379 (I-SPY Trial) | Yee et al. (2021) [106] | High-risk stage II/III HER2- operable breast cancer (neoadjuvant platform; multiple experimental arms) | One reported arm: Paclitaxel + ganitumab + metformin (PGM) → AC vs. paclitaxel → AC (SOC) | Phase II (adaptive platform) | 5000 | PGM showed numerically higher pCR in HR-/HER2- patients (32% vs. 21%) but did not meet graduation thresholds; no EFS improvement | N/A | Recruiting; PGM arm completed within platform |
NCT05090358 | — | HR+HER2-, PIK3CA-mutant metastatic BC on alpelisib + fulvestrant | Canagliflozin vs. diet | Phase II | 15 | Primary endpoint: proportion of patients who remain free from grade 3–4 hyperglycemia at 12 weeks; secondary endpoints: ORR and PFS at 6 and 12 months. Results pending. | Results pending | Active, not recruiting |
NCT05989347 | — | Early-stage HER2- BC in hyperinsulinemic women | Dapagliflozin + neoadjuvant therapy | Phase I | 20 | Assess changes in fasting plasma glucose and insulin levels as surrogate markers for insulin resistance. Results pending. | Results pending | Recruiting |
NCT06304857 | — | Non-diabetic patients with early-stage invasive BC receiving anthracyclines | Dapagliflozin vs. placebo | Phase III | 188 | Evaluate whether dapagliflozin can prevent anthracycline-related cardiotoxicity | Results pending | Recruiting |
NCT05025735 | — | PIK3CA-mutant metastatic HR+HER2- BC | Dapagliflozin + alpelisib + fulvestrant | Phase II | 25 | Evaluate whether the addition of dapagliflozin to alpelisib and fulvestrant leads to significant reduction in all-grade hyperglycemia | Results pending | Recruiting |
NCT06518837 | — | HR+HER2- early-stage BC patients receiving adjuvant treatment | Tirzepatide, a dual GLP-1/GIP receptor agonist | Phase II | 40 | Primary objective is to determine the proportion of patients achieving a clinically meaningful weight reduction of ≥5% from baseline; secondary endpoints include 3-year IDFS and changes in BMI, fat distribution, metabolic biomarkers, and ctDNA | Results pending | Recruiting |
NCT06517212 | — | Overweight or obese patients with early-stage, HR+HER2-, node-positive breast cancer and detectable minimal residual disease via ctDNA | Tirzepatide | Phase II | 48 | Aims to assess whether tirzepatide-induced weight loss leads to metabolic, hormonal, and immunologic changes that result in clearance of ctDNA and reduce progression to overt metastasis | Results pending | Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Shiao, S.L.; Yuan, Y. Translating Metabolic Interventions into Breast Cancer Therapy: A Comprehensive Review. Life 2025, 15, 1634. https://doi.org/10.3390/life15101634
Chen L, Shiao SL, Yuan Y. Translating Metabolic Interventions into Breast Cancer Therapy: A Comprehensive Review. Life. 2025; 15(10):1634. https://doi.org/10.3390/life15101634
Chicago/Turabian StyleChen, Luxi, Stephen L. Shiao, and Yuan Yuan. 2025. "Translating Metabolic Interventions into Breast Cancer Therapy: A Comprehensive Review" Life 15, no. 10: 1634. https://doi.org/10.3390/life15101634
APA StyleChen, L., Shiao, S. L., & Yuan, Y. (2025). Translating Metabolic Interventions into Breast Cancer Therapy: A Comprehensive Review. Life, 15(10), 1634. https://doi.org/10.3390/life15101634