Protocol Biopsies Reveal Progressive Arteriolar Thickening as a Predictor of Mortality in Kidney Transplant Recipients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Variables
2.3. Study Outcomes
2.4. Statistical Analysis
2.5. Institutional Review Board Statement and Ethical Statement
3. Results
3.1. Baseline Characteristics
3.2. Vascular Lesions
3.3. Interstitial Fibrosis and Tubular Atrophy (IFTA)
3.4. All-Cause Mortality
3.5. Cardiovascular Events
3.6. Other Clinical Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aah | Hyaline Arteriolar Thickening |
ah | Arteriolar Hyalinosis |
CKD | Chronic Kidney Disease |
ci | Interstitial Fibrosis |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
ct | Tubular Atrophy |
cv | Vascular Fibrous Intimal Thickening |
eGFR | Estimated Glomerular Filtration Rate |
ESKD | End-Stage Kidney Disease |
IFTA | Interstitial Fibrosis and Tubular Atrophy |
KTR | Kidney Transplant Recipient |
MACEs | Major Adverse Cardiovascular Events |
PTH | Parathyroid hormone |
References
- Kasiske, B.L.; Chakkera, H.A.; Roel, J. Explained and unexplained ischemic heart disease risk after renal transplantation. J. Am. Soc. Nephrol. 2000, 11, 1735. [Google Scholar] [CrossRef]
- Briggs, J.D. Causes of death after renal transplantation. Nephrol. Dial. Transplant. 2001, 16, 1545. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.L.; Pavkov, M.; Wang, Z.; Benoit, S.; Burrows, N.R.; Imperatore, G.; Albright, A.L.; Patzer, R. Long-term mortality among kidney transplant recipients with and without diabetes: A nationwide cohort study in the USA. BMJ Open Diabetes Res. Care 2021, 9, 1962. [Google Scholar] [CrossRef]
- Roufosse, C.; Naesens, M.; Haas, M.; Lefaucheur, C.; Mannon, R.B.; Afrouzian, M.; Alachkar, N.; Aubert, O.; Bagnasco, S.M.; Batal, I.; et al. The Banff 2022 Kidney Meeting Work Plan: Data-driven refinement of the Banff Classification for renal allografts. Am. J. Transplant. 2023, 24, 350–361. [Google Scholar] [CrossRef]
- Buckley, L.F.; Schmidt, I.M.; Verma, A.; Palsson, R.; Adam, D.; Shah, A.M.; Srivastava, A.; Waikar, S.S. Associations Between Kidney Histopathologic Lesions and Incident Cardiovascular Disease in Adults With Chronic Kidney Disease. JAMA Cardiol. 2023, 8, 357. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Katz, R.; Shlipak, M.G.; Weiner, D.; Tracy, R.; Jotwani, V.; Hughes-Austin, J.; Gabbai, F.; Hsu, C.Y.; Pfeffer, M.; et al. Urinary Markers of Fibrosis and Risk of Cardiovascular Events and Death in Kidney Transplant Recipients: The FAVORIT Trial. Am. J. Transplant. 2017, 17, 2640. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604. [Google Scholar] [CrossRef]
- Roufosse, C.; Simmonds, N.; Groningen, M.C.-V.; Haas, M.; Henriksen, K.J.; Horsfield, C.; Loupy, A.; Mengel, M.; Perkowska-Ptasińska, A.; Rabant, M.; et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation 2018, 102, 1795. [Google Scholar] [CrossRef]
- Solez, K.; Axelsen, R.A.; Benediktsson, H.; Burdick, J.F.; Cohen, A.H.; Colvin, R.B.; Croker, B.P.; Droz, D.; Dunnill, M.S.; Halloran, P.F.; et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: The Banff working classification of kidney transplant pathology. Kidney Int. 1993, 44, 411. [Google Scholar] [CrossRef]
- Andersson, C.; Hansen, D.; Sørensen, S.S.; McGrath, M.; McCausland, F.R.; Torp-Pedersen, C.; Schou, M.; Køber, L.; A Pfeffer, M. Long-term cardiovascular events, graft failure, and mortality in kidney transplant recipients. Eur. J. Intern. Med. 2023, 121, 109–113. [Google Scholar] [CrossRef]
- Vogelzang, J.L.; van Stralen, K.J.; Noordzij, M.; Diez, J.A.; Carrero, J.J.; Couchoud, C.; Dekker, F.W.; Finne, P.; Fouque, D.; Heaf, J.G.; et al. Mortality from infections and malignancies in patients treated with renal replacement therapy: Data from the ERA-EDTA registry. Nephrol. Dial. Transplant. 2015, 30, 1028. [Google Scholar] [CrossRef] [PubMed]
- Weinrauch, L.A.; D’Elia, J.A.; Weir, M.R.; Bunnapradist, S.; Finn, P.V.; Liu, J.; Claggett, B.; Monaco, A.P. Infection and Malignancy Outweigh Cardiovascular Mortality in Kidney Transplant Recipients: Post Hoc Analysis of the FAVORIT Trial. Am. J. Med. 2018, 131, 165. [Google Scholar] [CrossRef]
- Smith, B.; Nair, S.; Wadei, H.; Mai, M.; Khamash, H.; Schinstock, C.; Liang, Y.; Abdelrheem, A.; Park, W.; Badley, A.; et al. Increased Mortality in Kidney Transplant Recipients During the Delta/Omicron Era of the COVID-19 Pandemic Despite Widespread Vaccination. Clin. Transplant. 2025, 39, e70071. [Google Scholar] [CrossRef] [PubMed]
- Von Rossum, A.; Laher, I.; Choy, J.C. Immune-Mediated Vascular Injury and Dysfunction in Transplant Arteriosclerosis. Front. Immunol. 2014, 5, 684. [Google Scholar] [CrossRef]
- Okamoto, T.; Hatakeyama, S.; Hamaya, T.; Matsuura, T.; Saito, M.; Nishida, H.; Maita, S.; Murakami, R.; Tomita, H.; Saitoh, H.; et al. Impact of timing of rejection episode on cardiovascular events in living donor kidney transplantation: A multicenter retrospective study. J. Nephrol. 2023, 36, 2613. [Google Scholar] [CrossRef] [PubMed]
- Smolgovsky, S.; Theall, B.; Wagner, N.; Alcaide, P. Fibroblasts and immune cells: At the crossroad of organ inflammation and fibrosis. Am. J. Physiol. Circ. Physiol. 2024, 326, H303–H316. [Google Scholar] [CrossRef]
- Cohen, C.; Mhaidly, R.; Croizer, H.; Kieffer, Y.; Leclere, R.; Vincent-Salomon, A.; Robley, C.; Anglicheau, D.; Rabant, M.; Sannier, A.; et al. WNT-dependent interaction between inflammatory fibroblasts and FOLR2+ macrophages promotes fibrosis in chronic kidney disease. Nat. Commun. 2024, 15, 743. [Google Scholar] [CrossRef]
- Tepperman, E.; Ramzy, D.; Prodger, J.; Sheshgiri, R.; Badiwala, M.; Ross, H.; Rao, V. Vascular effects of immunosuppression. Can. J. Surg. 2010, 53, 57. [Google Scholar]
- Redondo-Horcajo, M.; Romero, N.; Martínez-Acedo, P.; Martínez-Ruiz, A.; Quijano, C.; Lourenço, C.F.; Movilla, N.; Enríquez, J.A.; Rodríguez-Pascual, F.; Rial, E.; et al. Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: Role of mitochondrial superoxide. Cardiovasc. Res. 2010, 87, 356. [Google Scholar] [CrossRef]
- Diederich, D.; Skopec, J.; Diederich, A.; Dai, F.X. Cyclosporine produces endothelial dysfunction by increased production of superoxide. Hypertension 1994, 23 Pt 2, 957. [Google Scholar] [CrossRef]
- Flechner, S.M.; Kobashigawa, J.; Klintmalm, G. Calcineurin inhibitor-sparing regimens in solid organ transplantation: Focus on improving renal function and nephrotoxicity. Clin. Transplant. 2008, 22, 1–15. [Google Scholar] [CrossRef]
- Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. Inflammatory processes in renal fibrosis. Nat. Rev. Nephrol. 2014, 10, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Noronha, I.L.; Krüger, C.; Andrassy, K.; Ritz, E.; Waldherr, R. In situ production of TNF-alpha, IL-1 beta and IL-2R in ANCA-positive glomerulonephritis. Kidney Int. 1993, 43, 682. [Google Scholar] [CrossRef] [PubMed]
- Tipping, P.G.; Lowe, M.G.; Holdsworth, S.R. Glomerular macrophages express augmented procoagulant activity in experimental fibrin-related glomerulonephritis in rabbits. J. Clin. Investig. 1988, 82, 1253. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.K.; Zheng, G.; Hsu, T.-T.; Wang, Y.; Lee, V.W.; Tian, X.; Wang, Y.; Cao, Q.; Wang, Y.; Harris, D.C. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells. Am. J. Pathol. 2010, 176, 1256. [Google Scholar] [CrossRef]
- Kui Tan, T.; Zheng, G.; Hsu, T.T.; Ra Lee, S.; Zhang, J.; Zhao, Y.; Tian, X.; Wang, Y.; Min Wang, Y.; Cao, Q.; et al. Matrix metalloproteinase-9 of tubular and macrophage origin contributes to the pathogenesis of renal fibrosis via macrophage recruitment through osteopontin cleavage. Lab. Investig. 2013, 93, 434. [Google Scholar] [CrossRef]
- Elezaby, A.; Dexheimer, R.; Sallam, K. Cardiovascular effects of immunosuppression agents. Front. Cardiovasc. Med. 2022, 9, 981838. [Google Scholar] [CrossRef]
- Cheng, D.C.Y.; Climie, R.E.; Shu, M.; Grieve, S.M.; Kozor, R.; Figtree, G.A. Vascular aging and cardiovascular disease: Pathophysiology and measurement in the coronary arteries. Front. Cardiovasc. Med. 2023, 10, 1206156. [Google Scholar] [CrossRef]
- Alnsasra, H.; Asleh, R.; Oh, J.K.; Maleszewski, J.J.; Lerman, A.; Toya, T.; Chandrasekaran, K.; Bois, M.C.; Kushwaha, S.S. Impact of Sirolimus as a Primary Immunosuppressant on Myocardial Fibrosis and Diastolic Function Following Heart Transplantation. J. Am. Heart Assoc. 2021, 10, e018186. [Google Scholar] [CrossRef]
- Raichlin, E.; Chandrasekaran, K.; Kremers, W.K.; Frantz, R.P.; Clavell, A.L.; Pereira, N.L.; Rodeheffer, R.J.; Daly, R.C.; McGregor, C.G.A.; Edwards, B.S.; et al. Sirolimus as primary immunosuppressant reduces left ventricular mass and improves diastolic function of the cardiac allograft. Transplantation 2008, 86, 1395. [Google Scholar] [CrossRef]
- Anthony, C.; Imran, M.; Pouliopoulos, J.; Emmanuel, S.; Iliff, J.W.; Moffat, K.J.; Ross, J.; Graham, R.M.; Kotlyar, E.; Muthiah, K.; et al. Everolimus for the Prevention of Calcineurin-Inhibitor-Induced Left Ventricular Hypertrophy After Heart Transplantation (RADTAC Study). JACC Hear. Fail. 2021, 9, 301. [Google Scholar] [CrossRef]
- Pipeleers, L.; Abramowicz, D.; Broeders, N.; Lemoine, A.; Peeters, P.; Van Laecke, S.; Weekers, L.E.; Sennesael, J.; Wissing, K.M.; Geers, C.; et al. 5-Year outcomes of the prospective and randomized CISTCERT study comparing steroid withdrawal to replacement of cyclosporine with everolimus in de novo kidney transplant patients. Transpl. Int. 2021, 34, 313. [Google Scholar] [CrossRef]
- Holdaas, H.; de Fijter, J.W.; Cruzado, J.M.; Massari, P.; Nashan, B.; Kanellis, J.; Witzke, O.; Gutierrez-Dalmau, A.; Turkmen, A.; Wang, Z.; et al. Cardiovascular Parameters to 2 years After Kidney Transplantation Following Early Switch to Everolimus Without Calcineurin Inhibitor Therapy: An Analysis of the Randomized ELEVATE Study. Transplantation 2017, 101, 2612. [Google Scholar] [CrossRef]
- van Dijk, M.; van Roon, A.M.; Said, M.Y.; Bemelman, F.J.; Homan van der Heide, J.J.; de Fijter, H.W.; de Vries, A.P.; Bakker, S.J.; Sanders, J.S.F. Long-term cardiovascular outcome of renal transplant recipients after early conversion to everolimus compared to calcineurin inhibition: Results from the randomized controlled MECANO trial. Transpl. Int. 2018, 31, 1380. [Google Scholar] [CrossRef] [PubMed]
- Schlöndorff, D.; Banas, B. The mesangial cell revisited: No cell is an island. J. Am. Soc. Nephrol. 2009, 20, 1179. [Google Scholar] [PubMed]
- Morimoto, K.; Matsui, M.; Samejima, K.; Kanki, T.; Nishimoto, M.; Tanabe, K.; Murashima, M.; Eriguchi, M.; Akai, Y.; Iwano, M.; et al. Renal arteriolar hyalinosis, not intimal thickening in large arteries, is associated with cardiovascular events in people with biopsy-proven diabetic nephropathy. Diabet. Med. 2020, 37, 2143. [Google Scholar] [CrossRef]
- Moriya, T.; Yamagishi, T.; Yoshida, Y.; Matsubara, M.; Ouchi, M. Arteriolar hyalinosis is related to rapid GFR decline and long-standing GFR changes observed on renal biopsies in normo-microalbuminuric type 2 diabetic patients. J. Diabetes Its Complicat. 2021, 35, 107847. [Google Scholar] [CrossRef]
- Mencke, R.; Umbach, A.T.; Wiggenhauser, L.M.; Voelkl, J.; Olauson, H.; Harms, G.; Bulthuis, M.; Krenning, G.; Quintanilla-Martinez, L.; van Goor, H.; et al. Klotho Deficiency Induces Arteriolar Hyalinosis in a Trade-Off with Vascular Calcification. Am. J. Pathol. 2019, 189, 2503. [Google Scholar] [CrossRef]
- Lhotta, K.; Rumpelt, H.J.; König, P.; Mayer, G.; Kronenberg, F. Cigarette smoking and vascular pathology in renal biopsies. Kidney Int. 2002, 61, 648. [Google Scholar] [CrossRef] [PubMed]
- Ariyoshi, N.; Nogi, M.; Ando, A.; Watanabe, H.; Umekawa, S. Hypophosphatemia-induced Cardiomyopathy. Am. J. Med. Sci. 2016, 352, 317. [Google Scholar] [CrossRef]
- Ariyoshi, N.; Nogi, M.; Ando, A.; Watanabe, H.; Umekawad, S. Cardiovascular consequences of hypophosphatemia. Panminerva Medica 2017, 59, 230. [Google Scholar] [CrossRef] [PubMed]
- van Londen, M.; Aarts, B.M.; Deetman, P.E.; van der Weijden, J.; Eisenga, M.F.; Navis, G.; Bakker, S.J.; de Borst, M.H.; NIGRAM Consortium. Post-Transplant Hypophosphatemia and the Risk of Death-Censored Graft Failure and Mortality after Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2017, 12, 1301. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.C.; Kim, D.G.; Yim, S.H.; Kim, H.J.; Kim, H.W.; Yang, J.; Kim, B.S.; Huh, K.H.; Kim, M.S.; Lee, J. Creatinine-cystatin C ratio and death with a functioning graft in kidney transplant recipients. Sci. Rep. 2024, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Osaka, T.; Hamaguchi, M.; Hashimoto, Y.; Ushigome, E.; Tanaka, M.; Yamazaki, M.; Fukui, M. Decreased the creatinine to cystatin C ratio is a surrogate marker of sarcopenia in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 139, 52. [Google Scholar] [CrossRef]
Variable | Study Population (n = 458) |
---|---|
Age, median (IQR) | 58 (48.8–67) |
Male sex, n (%) | 281 (61.4%) |
Race, n (%) | |
White | 435 (95%) |
Latin American | 16 (3.5%) |
Asian | 5 (1.1%) |
Black | 2 (0.4%) |
Smoking, n (%) | 46 (10%) |
Pre-transplant diabetes, n (%) | |
Type 1 | 24 (5.2%) |
Type 2 | 100 (21.8%) |
Pre-transplant hypertension, n (%) | 386 (84.3%) |
Pre-transplant BMI, Kg/m2, median (IQR) | 25.3 (6.93) |
Pre-transplant cardiovascular disease, n (%) | 81 (17.7%) |
Pre-transplant hypophosphatemia, n (%) | 43 (9.5%) |
Pre-transplant hyperphosphatemia, n (%) | 225 (49.5%) |
Pre-transplant vitamin D deficiency, n (%) | 200 (44.4%) |
Pre-transplant dyslipidemia, n (%) | 196 (42.8%) |
Deceased donor, n (%) | |
DCD | 150 (32.7%) |
DBD | 173 (37.8%) |
Dialysis vintage, months, median (IQR) | 30 (9.8–103.3) |
Variable | Overall n (%) | Unadjusted | Adjusted—Model 1 (eGFR) | Adjusted—Model 2 (DM and CV History) | Adjusted—Model 3 (Age and Dialysis Vintage) | Adjusted—Model 4 (Models 1–3) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
HR (CI 95%) | p-Value | HR (CI 95%) | p-Value | HR (CI 95%) | p-Value | HR (CI 95%) | p-Value | HR (CI 95%) | p-Value | ||
All-cause mortality | 58 (12.7%) | ||||||||||
3-m. Interstitial fibrosis > 5% | 148 (32.3%) | 2.5 (1.05–5.06) | 0.038 | 2.57 (0.88–7.51) | 0.084 | 2.47 (1.02–5.98) | 0.045 | 2.32 (0.96–5.6) | 0.06 | 2.34 (0.89–6.14) | 0.084 |
Progressive hyaline arteriolar thickening | 15 (9.4%) | 4.7 (1.21–18.32) | 0.026 | 5.03 (1.23–19.64) | 0.02 | 4.65 (1.17–18.47) | 0.029 | 5.65 (1.4–22.8) | 0.015 | 5.6 (1.36–23.19) | 0.017 |
12-m. Vascular fibrous intimal thickening > 25% | 45 (18.4%) | 3.13 (1.23–7.56) | 0.01 | 2.94 (1.14–7.56) | 0.026 | 3.78 (1.49–9.6) | 0.005 | 2.62 (1.08–6.38) | 0.034 | 3.33 (1.27–8.7) | 0.015 |
Non-fatal cardiovascular events | 44 (9.6%) | ||||||||||
3-m. Vascular fibrous intimal thickening > 50% | 18 (6.3%) | 5.98 (1.34–26.66) | 0.019 | 5.31 (1.13–24.92) | 0.034 | 9.65 (1.98–47.06) | 0.005 | 3.03 (0.62–14.74) | 0.17 | 5.17 (0.86–31.26) | 0.073 |
Cardiovascular death | 10 (2.2%) | ||||||||||
3-m. Vascular fibrous intimal thickening > 50% | 3 (1%) | 18.23 (1.64–203.26) | 0.018 | 24.61 (1.44–420) | 0.027 | 14.47 (1.31–160.4) | 0.029 | 20.44 (0.47–886) | 0.117 | 21.38 (0.35–1308) | 0.145 |
MACE | 49 (10.7%) | ||||||||||
3-m. Vascular fibrous intimal thickening > 50% | 19 (6.6%) | 5.09 (1.16–22.39) | 0.031 | 5.05 (1.08–23.65) | 0.04 | 8.64 (1.8–41.34) | 0.007 | 2.21 (0.45–10.79) | 0.33 | 3.84 (0.62–23.95) | 0.15 |
Variable | Dead n = 58 (12.7%) | Living n = 400 (87.3%) | Univariate Analysis | Multivariable Analysis | ||
---|---|---|---|---|---|---|
p-Value | Odds Ratio or Mean/Median Difference (CI 95%) | p-Value | Exponentiated ß-Coefficient (CI 95%) | |||
Age, median (IQR) | 68 (61.5–70.3) | 56 (47–65) | <0.001 | 10.47 (13.93–7.02) | <0.001 | 1.08 (1.05–1.11) |
Male sex, n (%) | 37 (63.7%) | 244 (61%) | 0.683 | 0.89 (0.5–1.57) | ||
Smoking, n (%) | 9 (15.5%) | 37 (9.3%) | 0.138 | 1.8 (0.82–3.96) | ||
Dyslipidemia, n (%) | 31 (53.4%) | 165 (41.3%) | 0.079 | 1.64 (0.94–2.84) | ||
Deceased donor, n (%) | 49 (84.5%) | 274 (68.5%) | 0.013 | 2.26 (1.14–4.47) | 0.9 | 0.99 (0.79–1.22) |
3-month eGFR, median (IQR) | 39 (25.8–55.3) | 47 (33–64) | 0.022 | 3.45 (−2.71–9.61) | 0.036 | 0.99 (0.97–0.99) |
12-month eGFR, median (IQR) | 41 (31.5–55.5) | 49 (36–65) | 0.041 | 5 (−0.73–10.73) | 0.06 | 0.98 (0.97–1) |
Dialysis vintage, months, median (IQR) | 34 (14.8–66.5) | 29 (98.3) | 0.807 | 3.87 (−27.19–34.94) | 0.72 | 1 (0.99–1) |
Pre-transplant hypertension, n (%) | 54 (93.1%) | 332 (83%) | 0.048 | 2.77 (0.97–7.9) | ||
Pre-transplant BMI, Kg/m2, mean ± SD | 25.47 ± 4.5 | 25.91 ± 5.36 | 0.55 | 0.44 (−1.02–1.91) | ||
Pre-transplant diabetes, n (%) | 26 (44.8%) | 98 (24.5%) | 0.001 | 2.5 (1.42–4.41) | 0.002 | 2.31 (1.37–3.9) |
Pre-transplant cardiovascular disease, n (%) | 20 (34.5%) | 61 (15.3%) | < 0.001 | 2.93 (1.6–5.37) | 0.01 | 2.06 (1.19–3.55) |
Pre-transplant hypophosphatemia, n (%) | 10 (17.2%) | 33 (8.3%) | 0.006 | 2.9 (1.33–6.33) | 0.46 | 1.35 (0.61–2.99) |
Variable | MACEs n = 49 (10.7%) | No MACEs n = 409 (89.3%) | Univariate Analysis | Multivariable Analysis | ||
---|---|---|---|---|---|---|
p-Value | Odds Ratio or Mean/Median Difference (CI 95%) | p-Value | Exponentiated ß-Coefficient (CI 95%) | |||
Age, median (IQR) | 65 (58–69.5) | 56 (48–66) | <0.001 | −7.56 (−11.35–−3.76) | <0.001 | 1.05 (1.03–1.08) |
Male sex, n (%) | 35 (71.4%) | 246 (60.1%) | 0.13 | 0.6 (0.32–1.16) | ||
Smoking, n (%) | 3 (6.2%) | 43 (10.5%) | 0.33 | 0.56 (0.17–1.86) | ||
Dyslipidemia, n (%) | 25 (51%) | 171 (41.8%) | 0.22 | 1.45 (0.80–2.63) | ||
Deceased donor, n (%) | 40 (81.6%) | 283 (69.2%) | 0.07 | 1.84 (0.92–3.69) | ||
DBD, n (%) | 25 (51%) | 148 (36.2%) | ||||
DCD, n (%) | 15 (30.6%) | 135 (33%) | ||||
12-month PTH, median (IQR) | 321.45 ± 297.52 | 224.98 ± 232.75 | 0.05 | −96.48 (−173.39–−19.57) | 0.016 | 1 (1–1.002) |
3-month eGFR, median (IQR) | 43.5 (30–59) | 47 (32–63.5) | 0.27 | 3.45 (−2.71–9.61) | ||
12-month eGFR, median (IQR) | 44 (35.3–54.8) | 49 (36–66) | 0.09 | 5 (−0.73–10.73) | ||
Dialysis vintage, months, median (IQR) | 57 (31–191.5) | 27 (7.5–84) | 0.02 | −53.58 (−86.64–−20.51) | 0.003 | 1 (1–1.01) |
Pre-transplant hypertension, n (%) | 47 (95.9%) | 2 (0.4%) | 0.02 | 4.85 (1.15–20.45) | 0.051 | 4.08 (0.99–16.8) |
Pre-transplant BMI, Kg/m2, mean ± SD | 26.04 ± 4.66 | 25.84 ± 5.33 | 0.8 | −0.2 (−1.79–1.39) | ||
Pre-transplant diabetes, n (%) | 24 (48.9%) | 25 (6.1%) | < 0.001 | 2.97 (1.62–5.43) | <0.001 | 2.89 (1.62–4.98) |
Pre-transplant cardiovascular disease, n (%) | 25 (51%) | 56 (13.7%) | < 0.001 | 6.57 (3.51–12.29) | <0.001 | 4.3 (2.45–7.53) |
Pre-transplant hypophosphatemia, n (%) | 10 (20.4%) | 33 (8.1%) | 0.006 | 2.9 (1.33–6.33) | 0.01 | 2.5 (1.25–5.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Espinosa, D.; Hermida, E.; Leal-Cúpich, A.; García, A.; Larque, A.B.; Cuadrado-Payán, E.; Guillén-Olmos, E.; Moncada, M.; Ventura-Aguiar, P.; Cucchiari, D.; et al. Protocol Biopsies Reveal Progressive Arteriolar Thickening as a Predictor of Mortality in Kidney Transplant Recipients. Life 2025, 15, 1635. https://doi.org/10.3390/life15101635
Rodríguez-Espinosa D, Hermida E, Leal-Cúpich A, García A, Larque AB, Cuadrado-Payán E, Guillén-Olmos E, Moncada M, Ventura-Aguiar P, Cucchiari D, et al. Protocol Biopsies Reveal Progressive Arteriolar Thickening as a Predictor of Mortality in Kidney Transplant Recipients. Life. 2025; 15(10):1635. https://doi.org/10.3390/life15101635
Chicago/Turabian StyleRodríguez-Espinosa, Diana, Evelyn Hermida, Agustín Leal-Cúpich, Adriana García, Ana Belén Larque, Elena Cuadrado-Payán, Elena Guillén-Olmos, Marina Moncada, Pedro Ventura-Aguiar, David Cucchiari, and et al. 2025. "Protocol Biopsies Reveal Progressive Arteriolar Thickening as a Predictor of Mortality in Kidney Transplant Recipients" Life 15, no. 10: 1635. https://doi.org/10.3390/life15101635
APA StyleRodríguez-Espinosa, D., Hermida, E., Leal-Cúpich, A., García, A., Larque, A. B., Cuadrado-Payán, E., Guillén-Olmos, E., Moncada, M., Ventura-Aguiar, P., Cucchiari, D., Esforzado, N., Revuelta, I., Diekmann, F., Torregrosa, J. V., & Broseta, J. J. (2025). Protocol Biopsies Reveal Progressive Arteriolar Thickening as a Predictor of Mortality in Kidney Transplant Recipients. Life, 15(10), 1635. https://doi.org/10.3390/life15101635