Metabolic Dysfunction-Associated Steatotic Liver Disease in a Patient with Phelan–McDermid Syndrome
Abstract
1. Introduction
2. Patients and Methods
2.1. Clinical Presentation
2.2. Genetic Tests
2.3. Lymphoblastoid Cell Lines
2.4. Metabolic Profiling via Biolog Phenotype Mammalian Microarrays
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. PMS and MASLD Interplay
4.2. Strengths and Limitations
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
CYP2D6 | Cytochrome P450 2D6 |
HCC | Hepatocellular carcinoma |
HDL | High-density lipoproteins |
IGF-1 | Insulin-like growth factor 1 |
LCLs | Lymphoblastoid cell lines |
MASH | Metabolic dysfunction-associated steatohepatitis |
MASLD | Metabolic-associated steatotic liver disease |
NAFLD | Non-alcoholic fatty liver disease |
NADH | Nicotinamide adenine dinucleotide |
PDGF-AB | Platelet-derived growth factor-AB |
PMS | Phelan–McDermid Syndrome |
PNPLA3 | Patatin-like phospholipase domain containing 3 |
PM-Ms | Phenotype Mammalian Microarrays |
SLD | Steatotic liver disease |
SNP | Single nucleotide polymorphism |
T2DM | Type 2 diabetes mellitus |
References
- Schön, M.; Lapunzina, P.; Nevado, J.; Mattina, T.; Gunnarsson, C.; Hadzsiev, K.; Verpelli, C.; Bourgeron, T.; Jesse, S.; van Ravenswaaij-Arts, C.M.A.; et al. Definition and clinical variability of SHANK3-related Phelan-McDermid syndrome. Eur. J. Med. Genet. 2023, 66, 104754. [Google Scholar] [CrossRef] [PubMed]
- Frank, Y.; Levy, T.; Lozano, R.; Friedman, K.; Underwood, S.; Kostic, A.; Walker, H.; Kolevzon, A. Gait Abnormalities in Children with Phelan-McDermid Syndrome. J. Child Neurol. 2023, 38, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Cammarata-Scalisi, F.; Callea, M.; Martinelli, D.; Willoughby, C.E.; Tadich, A.C.; Araya Castillo, M.; Lacruz-Rengel, M.A.; Medina, M.; Grimaldi, P.; Bertini, E.; et al. Clinical and Genetic Aspects of Phelan-McDermid Syndrome: An Interdisciplinary Approach to Management. Genes 2022, 13, 504. [Google Scholar] [CrossRef]
- Delling, J.P.; Boeckers, T.M. Comparison of SHANK3 deficiency in animal models: Phenotypes, treatment strategies, and translational implications. J. Neurodev. Disord. 2021, 13, 55. [Google Scholar] [CrossRef]
- Boccuto, L.; Abenavoli, L.; Cascio, L.; Srikanth, S.; DuPont, B.; Mitz, A.R.; Rogers, R.C.; Phelan, K. Variability in Phelan-McDermid syndrome: The impact of the PNPLA3 p.I148M polymorphism. Clin. Genet. 2018, 94, 590–591. [Google Scholar] [CrossRef]
- Matuleviciene, A.; Siauryte, K.; Kuiper, E.; Grabrucker, A.M.; European Phelan-McDermid Syndrome Guideline Consortium. Consensus recommendations on chewing, swallowing and gastrointestinal problems in Phelan-McDermid syndrome. Eur. J. Med. Genet. 2023, 66, 104763. [Google Scholar] [CrossRef]
- Levy, T.; Farmer, C.; Srivastava, S.; Johnson, K.; Trayvick, J.; Brune, C.; Massa, A.; Silver, H.; Siper, P.M.; Zweifach, J.; et al. Genetic Subtypes of Phelan-McDermid Syndrome Exhibit Similar Rates of Change Despite Differences in Level of Impairment in Developmental Constructs. Am. J. Intellect. Dev. Disabil. 2025, 130, 395–413. [Google Scholar] [CrossRef] [PubMed]
- Nevado, J.; Escalada, B.; Muñoz-GªPorrero, Y.; Adan, C.; Tenorio-Castaño, J.; Lapunzina, P.D. Genotype-Phenotype Associations in Phelan-McDermid Syndrome: Insights into Novel Genes Beyond SHANK3. Int. J. Mol. Sci. 2025, 26, 4653. [Google Scholar] [CrossRef]
- Srivastava, S.; Sahin, M.; Buxbaum, J.D.; Berry-Kravis, E.; Soorya, L.V.; Thurm, A.; Bernstein, J.A.; Asante-Otoo, A.; Bennett, W.E.; Betancur, C., Jr.; et al. Updated consensus guidelines on the management of Phelan-McDermid syndrome. Am. J. Med. Genet. A 2023, 191, 2015–2044. [Google Scholar] [CrossRef]
- Kolevzon, A.; Angarita, B.; Bush, L.; Wang, A.T.; Frank, Y.; Yang, A.; Rapaport, R.; Saland, J.; Srivastava, S.; Farrell, C.; et al. Phelan-McDermid syndrome: A review of the literature and practice parameters for medical assessment and monitoring. J. Neurodev. Disord. 2014, 6, 39. [Google Scholar] [CrossRef]
- Boccuto, L.; Mitz, A.; Abenavoli, L.; Sarasua, S.M.; Bennett, W.; Rogers, C.; DuPont, B.; Phelan, K. Phenotypic Variability in Phelan-McDermid Syndrome and Its Putative Link to Environmental Factors. Genes 2022, 13, 528. [Google Scholar] [CrossRef]
- Colaci, C.; Gambardella, M.L.; Scarlata, G.G.M.; Boccuto, L.; Colica, C.; Luzza, F.; Scarpellini, E.; Mendez-Sanchez, N.; Abenavoli, L. Dysmetabolic comorbidities and non-alcoholic fatty liver disease: A stairway to metabolic dysfunction-associated steatotic liver disease. Hepatoma Res. 2024, 10, 16. [Google Scholar] [CrossRef]
- Chan, W.K.; Chuah, K.H.; Rajaram, R.B.; Lim, L.L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Le, M.H.; Yeo, Y.H.; Li, X.; Li, J.; Zou, B.; Wu, Y.; Ye, Q.; Huang, D.Q.; Zhao, C.; Zhang, J.; et al. 2019 Global NAFLD Prevalence: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2022, 20, 2809–2817.e28. [Google Scholar] [CrossRef] [PubMed]
- Tsedendorj, Y.; Daramjav, D.; Enkhbat, Y.; Dondov, G.; Dashjamts, G.; Khayankhyarvaa, E.; Ganzorig, A.E.; Ulziitsogt, B.; Badamjav, T.; Batsaikhan, B.; et al. Genetic Risk of MASLD in Mongolians: Role of PNPLA3 and FTO SNPs. Curr. Issues Mol. Biol. 2025, 47, 605. [Google Scholar] [CrossRef] [PubMed]
- Gawrieh, S.; Yao, J.; Guo, X.; Diehl, A.M.; Rotter, J.I.; Chalasani, N.P. Biological age, PNPLA3 and risk of metabolic dysfunction-associated steatotic liver disease. Clin. Gastroenterol. Hepatol. 2025. ahead of print. [Google Scholar] [CrossRef]
- Romeo, S.; Valenti, L. Fifteen Years of PNPLA3: Transforming Hepatology Through Human Genetics. Liver Int. 2025, 45, e70240. [Google Scholar] [CrossRef]
- Lee, J.; Cha, J.H.; Cho, H.S.; Yang, K.; Yang, H.; Nam, H.; Byun, M.Y.; Cho, S.K.; Park, J.; Ko, H.W.; et al. The PNPLA3 I148M variant is associated with immune cell infiltration and advanced fibrosis in MASLD: A prospective genotype-phenotype study. J. Gastroenterol. 2025, 60, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Pitova, V.; Frankova, S.; Holinka, M.; Merta, D.; Vesela, S.; Hubacek, J.A.; Jirsa, M.; Sperl, J. PNPLA3 I148M variant is the main driver of weight gain after hepatitis C cure. Sci. Rep. 2025, 15, 25543. [Google Scholar] [CrossRef]
- Torre, P.; Motta, B.M.; Sarcina, T.; Festa, M.; Masarone, M.; Persico, M. Early Insights from Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Patients: An Observational Study on Polygenic Risk and Liver Biomarkers. Int. J. Mol. Sci. 2025, 26, 8426. [Google Scholar] [CrossRef] [PubMed]
- Eskridge, W.; Cryer, D.R.; Schattenberg, J.M.; Gastaldelli, A.; Malhi, H.; Allen, A.M.; Noureddin, M.; Sanyal, A.J. Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Dysfunction-Associated Steatohepatitis: The Patient and Physician Perspective. J. Clin. Med. 2023, 12, 6216. [Google Scholar] [CrossRef]
- Hashim, M.M.A.; Khan, M.A.M.; Ashraf, M.U.; Mohsin, S.; Zahoor, K.; Niazi, J.; Khan, A.; Muzaffar, S.; Makhdumi, M.; Ibad, O.A.; et al. Pathological Evolution and Internal Medicine Management of Nonalcoholic Fatty Liver Disease (NAFLD) in the Era of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cureus 2025, 17, e86963. [Google Scholar] [CrossRef] [PubMed]
- Sherman, D.J.; Liu, L.; Mamrosh, J.L.; Xie, J.; Ferbas, J.; Lomenick, B.; Ladinsky, M.S.; Verma, R.; Rulifson, I.C.; Deshaies, R.J. The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. Proc. Natl. Acad. Sci. USA 2024, 121, e2318619121. [Google Scholar] [CrossRef]
- Sullivan, K.M.; Dean, A.; Soe, M.M. On Academics: OpenEpi: A web-based epidemiologic and statistical calculator for public health. Public Health Rep. 2009, 124, 471–474. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 78, 1966–1986. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef]
- Menotti, A.; Puddu, P.E. Ancel Keys, the Mediterranean Diet, and the Seven Countries Study: A Review. J. Cardiovasc. Dev. Dis. 2025, 12, 141. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, Y.; Huang, J.; Hu, H. Efficacy of ursodeoxycholic acid in nonalcoholic fatty liver disease: An updated meta-analysis of randomized controlled trials. Asia Pac. J. Clin. Nutr. 2020, 29, 696–705. [Google Scholar]
- Perva, I.T.; Simina, I.E.; Bende, R.; Motofelea, A.C.; Chirita Emandi, A.; Andreescu, N.; Sima, A.; Vlad, A.; Sporea, I.; Zimbru, C.; et al. Use of a Micronutrient Cocktail to Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Adults with Obesity: A Randomized, Double-Blinded Pilot Clinical Trial. Medicina 2024, 60, 1366. [Google Scholar] [CrossRef]
- Dyar, B.; Meaddough, E.; Sarasua, S.M.; Rogers, C.; Phelan, K.; Boccuto, L. Genetic Findings as the Potential Basis of Personalized Pharmacotherapy in Phelan-McDermid Syndrome. Genes 2021, 12, 1192. [Google Scholar] [CrossRef]
- Kane, M. CYP2D6 Overview: Allele and Phenotype Frequencies. In Medical Genetics Summaries [Internet]; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; 15 October 2021 [Updated 17 January 2025]; National Center for Biotechnology Information: Bethesda, MD, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK574601/ (accessed on 28 September 2025).
- Nahid, N.A.; Johnson, J.A. CYP2D6 pharmacogenetics and phenoconversion in personalized medicine. Expert Opin. Drug Metab. Toxicol. 2022, 18, 769–785. [Google Scholar] [CrossRef]
- Kozlitina, J.; Sookoian, S. Global Epidemiological Impact of PNPLA3 I148M on Liver Disease. Liver Int. 2025, 45, e16123. [Google Scholar] [CrossRef]
- Lindén, D.; Tesz, G.; Loomba, R. Targeting PNPLA3 to Treat MASH and MASH Related Fibrosis and Cirrhosis. Liver Int. 2025, 45, e16186. [Google Scholar] [CrossRef]
- Josephine, B. Arrowhead Pharmaceuticals Gains Full Rights to NASH Candidate ARO-PNPLA3 with Promising Phase 1 Results; Arrowhead Pharmaceuticals Inc.: Pasadena, CA, USA, 2024; Available online: https://ir.arrowheadpharma.com/news-releases/news-release-details/arrowhead-pharmaceuticals-gains-full-rights-nash-candidate-aro (accessed on 28 September 2025).
- Seko, Y.; Yamaguchi, K.; Shima, T.; Iwaki, M.; Takahashi, H.; Kawanaka, M.; Tanaka, S.; Mitsumoto, Y.; Yoneda, M.; Nakajima, A.; et al. Clinical Utility of Genetic Variants in PNPLA3 and TM6SF2 to Predict Liver-Related Events in Metabolic Dysfunction-Associated Steatotic Liver Disease. Liver Int. 2025, 45, e16124. [Google Scholar] [CrossRef] [PubMed]
- Speliotes, E.K.; Schneider, C.V. PNPLA3 I148M Interacts With Environmental Triggers to Cause Human Disease. Liver Int. 2025, 45, e16106. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Iino, C.; Sasada, T.; Soma, G.; Furusawa, K.; Yoshida, K.; Sawada, K.; Mikami, T.; Nakaji, S.; Sakuraba, H.; et al. Epidemiological Study on the Interaction between the PNPLA3 (rs738409) and Gut Microbiota in Metabolic Dysfunction-Associated Steatotic Liver Disease. Genes 2024, 15, 1172. [Google Scholar] [CrossRef] [PubMed]
- Armandi, A.; Bugianesi, E. Dietary and pharmacological treatment in patients with metabolic-dysfunction associated steatotic liver disease. Eur. J. Intern. Med. 2024, 122, 20–27. [Google Scholar] [CrossRef]
- Kokkorakis, M.; Muzurović, E.; Volčanšek, Š.; Chakhtoura, M.; Hill, M.A.; Mikhailidis, D.P.; Mantzoros, C.S. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol. Rev. 2024, 76, 454–499. [Google Scholar] [CrossRef]
- Bolbocean, C.; Andújar, F.N.; McCormack, M.; Suter, B.; Holder, J.L., Jr. Health-Related Quality of Life in Pediatric Patients with Syndromic Autism and their Caregivers. J. Autism Dev. Disord. 2022, 52, 1334–1345. [Google Scholar] [CrossRef]
- Landlust, A.M.; Koza, S.A.; Carbin, M.; Walinga, M.; Robert, S.; Cooke, J.; Vyshka, K.; European Phelan-McDermid syndrome consortium; van Balkom, I.D.C. van Ravenswaaij-Arts, C. Parental perspectives on Phelan-McDermid syndrome: Results of a worldwide survey. Eur. J. Med. Genet. 2023, 66, 104771. [Google Scholar] [CrossRef] [PubMed]
Domain | Clinical Manifestations |
---|---|
Neurological/Developmental | Intellectual disability Developmental delay Language delay or absent speech Motor impairment Hypotonia Seizures Sleep disturbances Autism spectrum disorder/autistic traits |
Systemic | Gastrointestinal diseases Kidney diseases Lymphedema |
Hepatic/Metabolic | MASLD Metabolic syndrome |
Other features | Minor dysmorphic traits |
MASLD Criterium | Value | Satisfied |
---|---|---|
SLD | Moderate SLD | Yes |
BMI ≥ 25 kg/m2 or waist circumference > 94 cm | BMI 26.57 kg/m2 Waist circumference 101 cm | Yes |
Fasting serum glucose ≥ 100 mg/dL or diagnosis of T2DM | 93 mg/dL | No |
Blood pressure ≥ 135/85 mmHg | 120/80 mmHg | No |
Triglycerides ≥ 150 mg/dL | 111 mg/dL | No |
HDL ≤ 40 mg/dL | 62 mg/dL | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boccuto, L.; Scarlata, G.G.M.; Moffitt, B.A.; Sarasua, S.M.; Phelan, K.; Rogers, C.; Abenavoli, L. Metabolic Dysfunction-Associated Steatotic Liver Disease in a Patient with Phelan–McDermid Syndrome. Life 2025, 15, 1586. https://doi.org/10.3390/life15101586
Boccuto L, Scarlata GGM, Moffitt BA, Sarasua SM, Phelan K, Rogers C, Abenavoli L. Metabolic Dysfunction-Associated Steatotic Liver Disease in a Patient with Phelan–McDermid Syndrome. Life. 2025; 15(10):1586. https://doi.org/10.3390/life15101586
Chicago/Turabian StyleBoccuto, Luigi, Giuseppe Guido Maria Scarlata, Bridgette A. Moffitt, Sara M. Sarasua, Katy Phelan, Curtis Rogers, and Ludovico Abenavoli. 2025. "Metabolic Dysfunction-Associated Steatotic Liver Disease in a Patient with Phelan–McDermid Syndrome" Life 15, no. 10: 1586. https://doi.org/10.3390/life15101586
APA StyleBoccuto, L., Scarlata, G. G. M., Moffitt, B. A., Sarasua, S. M., Phelan, K., Rogers, C., & Abenavoli, L. (2025). Metabolic Dysfunction-Associated Steatotic Liver Disease in a Patient with Phelan–McDermid Syndrome. Life, 15(10), 1586. https://doi.org/10.3390/life15101586