Rhizosphere Microbiota and Soil Nutrients Shape Fruit Lignan Composition of Schisandra chinensis Across Temperate Cultivation Sites in Northeast and Northwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Plant and Soil Samples
2.2. Detection of Soil Physicochemical Properties
2.3. Determination of Schisandra Lignan Content
2.4. Assessment of Microbial Diversity in Rhizosphere Soil
2.5. Data Analysis
3. Results
3.1. Physicochemical Characteristics of Rhizosphere Soil of S. chinensis
3.2. Variation in Lignan Content Among Schisandra chinensis Fruit Samples
3.3. Correlation Analysis Among Soil Physicochemical Properties and Lignan Components
3.4. Analysis of Microbial Diversity in the Rhizosphere of S. chinensis
3.5. Correlation Analysis Between Dominant Bacterial Genera, Soil Properties, and Lignan Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yang, Y.; Li, C.; Liu, Y.; Fan, S.; Yan, Y.; Tian, T.; Li, J.; Wang, Y.; Qin, H.; et al. Analysis of Lignan Content and Rhizosphere Microbial Diversity of Schisandra chinensis (Turcz.) Baill. Resources. Life 2024, 14, 946. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, 11th ed.; Volume I: Schisandra chinensis; National Pharmacopoeia Commission, Medical Science Press: Beijing, China, 2020. [Google Scholar]
- Jia, M.; Zhou, L.; Lou, Y.; Yang, X.; Zhao, H.; Ouyang, X.; Huang, Y. An analysis of the nutritional effects of Schisandra chinensis components based on mass spectrometry technology. Frontiers 2023, 10, 1227027. [Google Scholar] [CrossRef]
- Rybnikář, M.; Šmejkal, K.; Žemlička, M. Schisandra chinensis and its phytotherapeutical applications. Czech Slov. Farm. 2019, 68, 95–118. [Google Scholar] [CrossRef]
- Panossian, A.; Wikman, G. Pharmacology of Schisandra chinensis Bail: An overview of Russian research and uses in medicine. J. Ethnopharmacol. 2008, 118, 183. [Google Scholar] [CrossRef] [PubMed]
- Szopa, A.; Ekiert, R.; Ekiert, H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem. Rev. 2017, 16, 195–218. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Bernatoniene, J. Antioxidant effects of Schisandra chinensis fruits and their active constituents. Antioxidants 2021, 10, 620. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yuan, C. Schisandra chinensis: A comprehensive review on its phytochemicals and biological activities. Arab. J. Chem. 2021, 14, 103310. [Google Scholar] [CrossRef]
- Ehambarampillai, D.; Wan, M.L. A comprehensive review of Schisandra chinensis lignans: Pharmacokinetics, pharmacological mechanisms, and future prospects in disease prevention and treatment. Chin. Med. 2025, 20, 47. [Google Scholar] [CrossRef]
- Wu, Z.; Jia, M.; Zhao, W.; Huang, X.; Yang, X.; Chen, D.; Qiaolongbatu, X.; Li, X.; Wu, J.; Qian, F.; et al. Schisandrol A, the main active ingredient of Schisandrae Chinensis Fructus, inhibits pulmonary fibrosis through suppression of the TGF-β signaling pathway as revealed by UPLC-Q-TOF/MS, network pharmacology and experimental verification. J. Ethnopharmacol. 2022, 289, 115031. [Google Scholar] [CrossRef]
- Chun, J.N.; Cho, M.; So, I.; Jeon, J. The protective effects of Schisandra chinensis fruit extract and its lignans against cardio-vascular disease: A review of the molecular mechanisms. Fitoterapia 2014, 97, 224–233. [Google Scholar] [CrossRef]
- Li, J.; Zuo, Z. Science of Prescriptions; China Press of Traditional Chinese Medicine: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Jia, E.; Dong, J.; Ma, P. A new industrial model: The utilization of the traditional Chinese herb Schisandra chinensis (Turcz.) Baill. from soil to plate. Ind. Crops Prod. 2023, 191, 115900. [Google Scholar] [CrossRef]
- Chen, S.; Shi, J.; Zou, L.; Liu, X.; Tang, R.; Ma, J.; Wang, C.; Tan, M.; Chen, J. Quality evaluation of wild and cultivated Schisandrae chinensis fructus based on simultaneous determination of multiple bioactive constituents combined with multivariate statistical analysis. Molecules 2019, 24, 1335. [Google Scholar] [CrossRef] [PubMed]
- Du, C. Schisandra chinensis on the northern slopes of the Qinling mountains -current status of resource utilization and prospective directions for exploitation. China Homes 2013, 9, 88–89. (In Chinese) [Google Scholar]
- Wu, Y.; Ding, C.; Liu, C.; Dan, L.; Xu, H.; Li, X.; Li, Y.; Song, X.; Zhang, D. Schisandrol A, the Major Active Constitute in Schisandra chinensis: A Review of Its Preparation, Biological Activities, and Pharmacokinetics Analysis. Am. J. Chin. Med. 2024, 52, 717–752. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.; Tan, H.; Yu, T.; Fan, X.; Chen, P.; Zeng, H.; Huang, M.; Bi, H. Schisandrol B protects against acetaminophen-induced acute hepatotoxicity in mice via activation of the NRF2/ARE signaling pathway. Acta Pharmacol. Sin. 2016, 37, 382–399. [Google Scholar] [CrossRef]
- Chun, J.N.; Park, S.; Lee, S.; Kim, J.; Park, E.; Kang, M.; Kim, H.K.; Park, J.K.; So, I.; Jeon, J. Schisandrol B and schisandrin B inhibit TGFβ1-mediated NF-κB activation via a Smad-independent mechanism. Oncotarget 2017, 9, 3121–3130. [Google Scholar] [CrossRef]
- Xiao, Z.; Xiao, W.; Li, G. Research Progress on the Pharmacological Action of Schisantherin A. Evid. Based Complement. Alternat. Med. 2022, 2022, 6420865. [Google Scholar] [CrossRef]
- Fu, K.; Zhou, H.; Wang, C.; Gong, L.; Ma, C.; Zhang, Y.; Li, Y. A review: Pharmacology and pharmacokinetics of Schisandrin A. Phytother. Res. 2022, 36, 2375–2393. [Google Scholar] [CrossRef]
- Nasser, M.I.; Zhu, S.; Chen, C.; Zhao, M.; Huang, H.; Zhu, P. A comprehensive review on Schisandrin B and its biological properties. Oxidative Med. Cell. Longev. 2020, 14, 2172740. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, S.; Luo, G.; Cheng, B.C.; Zhang, C.; Wang, Y.; Qiu, X.; Zhou, X.; Wang, Q.; Song, X. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism 2022, 131, 155200. [Google Scholar] [CrossRef]
- Kim, T.W.; Hwang, S.; Park, M.S.; Kim, H.K.; Park, M.H. Schisandrin C: An active compound from the fruit of Schisandra chinensis in anti-infammation and anti-oxidation. Cell. Mol. Biolog. 2023, 69, 167–173. [Google Scholar]
- Zhang, X.; Ran, Q.; Han, Y.; Gan, L.; Zou, X.; Dong, C. The rhizosphere microecological mechanisms of stress-induced quality enhancement in medicinal plants. Plant Stress 2025, 17, 100965. [Google Scholar] [CrossRef]
- Liu, J.; Qian, Y.; Yang, W.; Yang, M.; Zhang, Y.; Duan, B.; Yang, Y.; Tao, A.; Xia, C. Elucidating the interaction of rhizosphere microorganisms and environmental factors influencing the quality of Polygonatum kingianum Coll. et Hemsl. Sci. Rep. 2024, 14, 19092. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Yang, J.; Gao, S.; Yao, R.; Wang, X. The Effect and Influence Mechanism of Soil Salinity on Phosphorus Availability in Coastal Salt-Affected Soils. Water 2022, 14, 2804. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Zhao, Y.; Shi, H. Effects of green manuring on chemical characteristics and microecology of tobacco-growing soil in central henan. BMC Microbiol. 2025, 25, 42. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, D.; Ma, W.; Guo, Y.; Wang, A.; Wang, Q.; Lee, D. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biotechnol. 2016, 100, 1421–1426. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.; Meetei, T.T. Influence of soil pH on nutrient availability: A Review. J. Emerg. Technol. Innov. Res. 2018, 5, 707–713. [Google Scholar]
- Li, Y. Screening of Rhizosphere Growth-Promotingbacteria from Schisandra chinensis and Theirgrowth-Promoting Effects. Master’s thesis, Northwest A&F University, Yangling, China, 2023. (In Chinese). [Google Scholar]
- Hao, R. Effects of Environmental Factors on Growth and Secondary Metabolism of Schisandra chinensis. Master’s thesis, Northwest A&F University, Yangling, China, 2024. (In Chinese). [Google Scholar]
- Bertin, C.; Yang, X.; Weston, L.A. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 2003, 256, 67–83. [Google Scholar] [CrossRef]
- Dar, T.A.; Uddin, M.; A.Khan, M.M.; Ali, A.; Varshney, L. Modulation of alkaloid content, growth and productivity of Trigonella foenum-graecum L. using irradiated sodium alginate in combination with soil applied phosphorus. J. Appl. Res. Med. Aromat. Plants 2016, 3, 200–210. [Google Scholar] [CrossRef]
- Ullrich, S.F.; Rothauer, A.; Hagels, H.; Kayser, O. Influence of light, temperature, and macronutrients on growth and scopolamine biosynthesis in duboisia species. Planta Med. 2017, 83, 937–945. [Google Scholar] [CrossRef]
- Chen, Q. Effects of Phenotypic Diversdity and Microtopography on Growth and Intrinsic Quality of Rheum Officinale. Master’s thesis, Nanjing Agricultural University, Nanjing, China, 2020. [Google Scholar]
- Liu, J. Study of the Relationship Between the Quality of Polygonatum kingianum Coll. et Hemsl. and Ecological Factors or Rhizosphere Microbial Communities of in Different Production Areas. Master’s thesis, Dali University, Dali, China, 2023. (In Chinese). [Google Scholar]
- Zhang, T.; Xu, Z.X.; Wang, Y.; Gao, Q. Effects of soil properties and microbial community composition on ginsenosides accumulation in farmland ginseng. Frontiers 2024, 12, 1462342. [Google Scholar] [CrossRef]
- Li, X.; Sun, W.; Liu, Y.; Yang, S. Relations between active ingredient content and soil factors of Schisandra chinensis. Hortic. Seed 2024, 44, 68–71. (In Chinese) [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zhang, P.; Trivedi, P.; Riera, N.; Wang, Y.; Liu, X.; Fan, G.; Tang, J.; D.Coletta-Filho, H.; et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 2018, 9, 4894. [Google Scholar] [CrossRef]
- Yan, Z.; Jin, H.; Yang, X.; Min, D.; Xu, X.; Hua, C.; Qin, B. Effect of Rhizosphere soil microbial communities and environmental factors on growth and the active ingredients of Angelica sinensis in Gansu Province, China. Folia Microbiol. 2025, 70, 673–687. [Google Scholar] [CrossRef]
- Shi, Z.; Guo, X.; Lei, Z.; Wang, Y.; Yang, Z.; Niu, J.; Liang, J. Screening of high-efficiency nitrogen-fixing bacteria from the traditional Chinese medicine plant Astragalus mongolicus and its effect on plant growth promotion and bacterial communities in the rhizosphere. BMC Microbiol. 2023, 23, 292. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Pei, P.; Wang, P.; Guo, Q.; Yang, H.; Xue, X. Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity. Agronomy 2025, 15, 1879. [Google Scholar] [CrossRef]
- Niu, S.; Li, T.; Liu, L.; Bao, X.; Yang, X.; Song, H.; Li, Y.; Bai, J.; He, L.; Wang, Q.; et al. Mechanistic study on the mitigation of cadmium accumulation in Ligusticum sinense cv. Chuanxiong through plant growth-promoting rhizobacteria Arthrobacter sp. CX-2. Plant Stress 2025, 15, 100748. [Google Scholar] [CrossRef]
- Platamone, G.; Procacci, S.; Maccioni, O.; Borromeo, I.; Rossi, M.; Bacchetta, L.; Forni, C. Arthrobacter sp. Inoculation Improves Cactus Pear Growth, Quality of Fruits, and Nutraceutical Properties of Cladodes. Curr. Microbiol. 2023, 80, 266. [Google Scholar] [CrossRef]
- Awasthi, A.; Bharti, N.; Nair, P.; Singh, R.; Shukla, A.K.; Gupta, M.M.; Darokar, M.P.; Kalra, A. Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl. Soil Ecol. 2011, 49, 125–130. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Li, Y.; Guan, G.; Chen, S. Paenibacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth. PeerJ 2019, 7, e7445. [Google Scholar] [CrossRef]
Sample ID | Region | Coordinates | Sample ID | Region | Coordinates |
---|---|---|---|---|---|
Sc1 | Jingyu, Jilin | 42.22° N, 126.85° E | Sc11 | Jingyu, Jilin | 42.25° N, 126.95° E |
Sc2 | Jingyu, Jilin | 42.39° N, 126.92° E | Sc12 | Jingyu, Jilin | 42.36° N, 126.92° E |
Sc3 | Jingyu, Jilin | 42.32° N, 126.99° E | Sc13 | Jingyu, Jilin | 42.40° N, 126.91° E |
Sc4 | Jingyu, Jilin | 42.19° N, 126.99° E | Sc14 | Jingyu, Jilin | 42.28° N, 127.01° E |
Sc5 | Jingyu, Jilin | 42.31° N, 126.95° E | Sc15 | Zhashui, Shaanxi | 33.52° N, 109.15° E |
Sc6 | Jingyu, Jilin | 42.30° N, 126.95° E | Sc16 | Zhashui, Shaanxi | 33.49° N, 109.15° E |
Sc7 | Jingyu, Jilin | 42.25° N, 126.96° E | Sc17 | Zhashui, Shaanxi | 33.54° N, 109.12° E |
Sc8 | Jingyu, Jilin | 42.28° N, 127.01° E | Sc18 | Zhashui, Shaanxi | 33.69° N, 109.20° E |
Sc9 | Jingyu, Jilin | 42.20° N, 126.97° E | Sc19 | Zhashui, Shaanxi | 33.51° N, 109.12° E |
Sc10 | Jingyu, Jilin | 42.29° N, 126.95° E | Sc20 | Zhashui, Shaanxi | 33.53° N, 109.12° E |
Time (t/s) | Velocity of Flow (mL/min) | A (%) | B (%) |
---|---|---|---|
0 | 1.0 | 45 | 55 |
20 | 1.0 | 25 | 75 |
40 | 1.0 | 22 | 78 |
45 | 1.0 | 22 | 78 |
47 | 1.0 | 5 | 95 |
52 | 1.0 | 5 | 95 |
55 | 1.0 | 45 | 55 |
60 | 1.0 | 45 | 55 |
Cultivation Sites (n = 3) | pH | OM (%) | TP (mg/Kg) | AP (mg/Kg) | TK (mg/Kg) | AK (mg/Kg) | TN (mg/Kg) | AN (mg/Kg) |
---|---|---|---|---|---|---|---|---|
Sc1 | 6.46 ± 0.11 a | 15.6 ± 0.36 b | 2209.27 ± 24.25 bcd | 54.31 ± 0.99 f | 12,856.6 ± 353.67 def | 89.23 ± 1.43 de | 6989.75 ± 470.1 b | 514.64 ± 13.58 bc |
Sc2 | 6.05 ± 0.1 cde | 11.73 ± 0.13 de | 2357.41 ± 45.31 ab | 133.18 ± 3.2 c | 12,965.66 ± 400.4 cdef | 43.43 ± 0.61 ghi | 5542.25 ± 167.12 cd | 436.8 ± 16.8 de |
Sc3 | 5.8 ± 0.08 ef | 7.57 ± 0.15 h | 1976.85 ± 29.49 bcdef | 157.01 ± 2.73 b | 13,069.11 ± 438.22 cdef | 32.28 ± 1.03 i | 3466.88 ± 179.25 g | 266.56 ± 17.24 i |
Sc4 | 6.37 ± 0.02 ab | 11.52 ± 0.25 de | 1689 ± 15.44 cdefg | 25.78 ± 3.01 jk | 13,944.34 ± 440.03 bcdef | 36.37 ± 1.09 hi | 5216.79 ± 153.26 de | 388.64 ± 42.55 efg |
Sc5 | 5.86 ± 0.3 def | 11.44 ± 0.63 de | 2263.85 ± 895.6 bc | 70.93 ± 3.9 e | 14,505.34 ± 71.65 bcde | 84.08 ± 1.27 de | 5144.39 ± 578.1 def | 446.88 ± 34.47 d |
Sc6 | 5.85 ± 0.01 def | 12.14 ± 0.43 d | 1353.73 ± 33.88 fg | 22.33 ± 0.55 k | 14,702.99 ± 602.7 bcd | 42.46 ± 0.97 ghi | 5687.56 ± 114.14 cd | 463.68 ± 7.7 cd |
Sc7 | 6.13 ± 0.04 bcd | 9.03 ± 0.58 g | 1299.27 ± 52.61 g | 10.03 ± 1.31 l | 14,323.76 ± 315.24 bcde | 244.3 ± 17.51 a | 4561 ± 114.74 f | 347.20 ± 18.51 fgh |
Sc8 | 6.02 ± 0.01 de | 24.55 ± 0.86 a | 1828.82 ± 30.21 bcdefg | 46.83 ± 5.14 fg | 12,995.07 ± 306.12 cdef | 161.54 ± 1.9 b | 11,371.56 ± 165.04 a | 688.24 ± 13.05 a |
Sc9 | 6.38 ± 0.02 ab | 10.74 ± 0.22 ef | 1457.45 ± 17.9 efg | 23.15 ± 1.2 k | 14,160.45 ± 449.49 bcdef | 122.06 ± 1.76 c | 5046.32 ± 138.57 def | 336.56 ± 3.5 gh |
Sc10 | 6.34 ± 0.02 abc | 9.77 ± 0.12 fg | 1592.32 ± 35.89 defg | 46.19 ± 6.15 fg | 13,436.85 ± 346.94 cdef | 113.78 ± 2.44 c | 4735.23 ± 93.8 ef | 333.76 ± 11.19 h |
Sc11 | 5.27 ± 0.05 i | 23.69 ± 0.68 a | 1976.76 ± 67.06 bcdef | 69.03 ± 1.45 e | 10,435.99 ± 505.67 g | 48.25 ± 1.37 gh | 10,906.8 ± 156.98 a | 533.68 ± 15.24 b |
Sc12 | 5.86 ± 0.05 def | 13.37 ± 0.2 c | 1996.15 ± 37.58 bcde | 69.64 ± 2.47 e | 12,734.5 ± 930.17 def | 52.83 ± 3.83 g | 5954.34 ± 332.6 c | 393.12 ± 8.89 ef |
Sc13 | 6.14 ± 0.02 bcd | 14.72 ± 0.17 b | 1992.82 ± 35.65 bcde | 26.23 ± 1.56 jk | 12,237.94 ± 308.34 fg | 95.00 ± 3.18 d | 7422.4 ± 140.85 b | 533.12 ± 13.99 b |
Sc14 | 5.39 ± 0.08 hi | 9.6 ± 0.11 fg | 2973.87 ± 32.68 a | 299.16 ± 3.27 a | 12,552.12 ± 308.08 ef | 67.58 ± 3.1 f | 4560.08 ± 119.66 f | 359.8 ± 8.74 fgh |
Sc15 | 5.86 ± 0.19 def | 3.3 ± 0.28 ij | 1411.22 ± 65.82 efg | 89.23 ± 1.43 d | 13,482.83 ± 1367.12 cdef | 89.72 ± 1.89 de | 1476.3 ± 10.07 h | 120.68 ± 19.34 j |
Sc16 | 5.79 ± 0.07 ef | 2.98 ± 0.09 j | 1247.62 ± 45.81 g | 43.43 ± 0.61 gh | 13,102.11 ± 221.67 cdef | 77.64 ± 6.01 ef | 1450.93 ± 10.41 h | 119.00 ± 6.42 j |
Sc17 | 5.57 ± 0.04 fgh | 2.84 ± 0.19 j | 1237.15 ± 54.88 g | 32.28 ± 1.03 ij | 14,898.4 ± 1621.75 bc | 68.83 ± 2.18 f | 1395.72 ± 33.9 h | 126.00 ± 19.81 j |
Sc18 | 5.77 ± 0.05 ef | 2.98 ± 0.33 j | 1263.7 ± 32.01 g | 36.37 ± 1.09 hi | 15,791.65 ± 647.39 ab | 69.48 ± 0.72 f | 1415.19 ± 38.98 h | 114.24 ± 4.44 j |
Sc19 | 5.76 ± 0.04 efg | 4.29 ± 0.3 i | 1379.72 ± 41.36 efg | 84.08 ± 1.27 d | 17,536.44 ± 247.9 a | 116.14 ± 5.28 c | 1981.05 ± 34.07 h | 146.72 ± 5.4 j |
Sc20 | 5.47 ± 0.07 ghi | 4.44 ± 0.12 i | 1325.6 ± 47.91 g | 42.46 ± 0.97 gh | 17,646.84 ± 513.83 a | 76.23 ± 1.94 ef | 1619.38 ± 9.25 h | 126.00 ± 4.2 j |
CV(%) | 5.91 | 59.54 | 28.32 | 93.48 | 12.69 | 56.35 | 59.65 | 49.42 |
Cultivation Sites (n = 3) | Total Lignans (mg/g) | Schisandrol A (mg/g) | Schisandrol B (mg/g) | Schisantherin A (mg/g) | Schisandrin A (mg/g) | Schisandrin B (mg/g) | Schisandrin C (mg/g) |
---|---|---|---|---|---|---|---|
Sc1 | 9.05 ± 0.35 i | 4.85 ± 0.05 klm | 1.45 ± 0.12 gh | 0.43 ± 0.04 e | 0.73 ± 0.10 g | 1.29 ± 0.09 ij | 0.29 ± 0.01 ij |
Sc2 | 8.99 ± 0.351 i | 4.61 ± 0.05 lm | 1.26 ± 0.09 gh | 0.40 ± 0.03 e | 0.29 ± 0.03 h | 2.04 ± 0.15 g | 0.39 ± 0.02 gh |
Sc3 | 12.96 ± 0.21 fg | 6.09 ± 0.11 ghi | 1.05 ± 0.02 hi | 0.48 ± 0.05 de | 0.77 ± 0.02 fg | 4.07 ± 0.04 d | 0.50 ± 0.01 f |
Sc4 | 17.85 ± 0.41 bc | 7.82 ± 0.12 bcd | 3.90 ± 0.04 b | 0.67 ± 0.30 cde | 1.39 ± 0.04 cd | 3.40 ± 23.74 e | 0.67 ± 0.00 e |
Sc5 | 14.35 ± 1.18 ef | 8.58 ± 1.07 ab | 1.09 ± 0.05 hi | 1.37 ± 0.06 b | 1.42 ± 0.03 cd | 1.73 ± 0.02 ghi | 0.16 ± 0.01 mn |
Sc6 | 11.17 ± 0.481 h | 5.69 ± 0.08 hij | 2.30 ± 0.19 f | 0.74 ± 0.07 cde | 0.71 ± 0.09 g | 1.47 ± 0.10 hij | 0.25 ± 0.02 jk |
Sc7 | 16.15 ± 0.24 cd | 6.78 ± 0.09 efg | 1.63 ± 0.03 g | 0.58 ± 0.06 cde | 1.25 ± 0.09 cde | 5.17 ± 0.04 c | 0.74 ± 0.01 d |
Sc8 | 17.12 ± 0.37 c | 8.03 ± 0.18 bc | 2.81 ± 0.03 de | 1.38 ± 0.11 b | 1.78 ± 0.06 b | 2.91 ± 0.08 ef | 0.22 ± 0.00 klm |
Sc9 | 11.34 ± 0.15 gh | 5.77 ± 0.10 hij | 0.73 ± 0.04 i | 0.50 ± 0.04 de | 2.45 ± 0.05 a | 1.60 ± 0.03 ghi | 0.29 ± 0.00 ij |
Sc10 | 13.32 ± 0.13 ef | 6.27 ± 0.02 fgh | 1.27 ± 0.05 gh | 0.48 ± 0.26 de | 1.82 ± 0.01 b | 3.14 ± 60.02 ef | 0.34 ± 0.01 hi |
Sc11 | 12.97 ± 0.10 fg | 6.93 ± 0.03 ef | 3.40 ± 0.05 c | 0.80 ± 0.03 cd | 0.99 ± 0.05 efg | 0.67 ± 0.06 k | 0.17 ± 0.01 lmn |
Sc12 | 22.70 ± 0.28 a | 9.11 ± 0.08 a | 3.24 ± 0.11 cd | 0.68 ± 0.02 cde | 1.43 ± 0.01 c | 6.96 ± 0.11 a | 1.27 ± 0.02 b |
Sc13 | 14.17 ± 0.24 ef | 6.27 ± 0.10 fgh | 3.19 ± 0.00 cd | 0.44 ± 0.02 e | 1.08 ± 0.06 def | 2.68 ± 0.06 f | 0.50 ± 0.00 f |
Sc14 | 16.48 ± 0.46 cd | 8.29 ± 0.29 ab | 1.22 ± 0.01 gh | 0.58 ± 0.07 cde | 0.77 ± 0.10 fg | 4.95 ± 0.14 c | 0.67 ± 0.02 e |
Sc15 | 14.76 ± 0.91 de | 4.48 ± 0.12 lm | 1.25 ± 0.09 gh | 0.62 ± 0.06 cde | 1.33 ± 0.29 cd | 6.21 ± 0.42 b | 0.86 ± 0.05 c |
Sc16 | 11.32 ± 052 gh | 5.44 ± 0.06 ijk | 2.21 ± 0.17 f | 0.72 ± 0.07 cde | 0.85 ± 0.12 fg | 1.87 ± 0.13 gh | 0.23 ± 0.01 jkl |
Sc17 | 18.89 ± 0.95 b | 7.39 ± 0.12 cde | 3.03 ± 0.25 cd | 0.56 ± 0.05 cde | 1.37 ± 0.19 cd | 5.17 ± 0.37 c | 1.37 ± 0.06 a |
Sc18 | 14.21 ± 0.84 ef | 4.34 ± 0.14 m | 4.81 ± 0.38 a | 0.88 ± 0.08 c | 0.72 ± 0.14 g | 2.96 ± 0.21 ef | 0.50 ± 0.00 f |
Sc19 | 14.18 ± 0.78 ef | 5.25 ± 0.05 jkl | 2.82 ± 0.22 de | 0.73 ± 0.07 cde | 0.99 ± 0.14 efg | 3.94 ± 0.29 d | 0.46 ± 0.02 fg |
Sc20 | 13.91 ± 0.64 ef | 7.18 ± 0.18 de | 2.54 ± 0.20 ef | 2.24 ± 0.22 a | 0.78 ± 0.10 fg | 1.03 ± 0.07 jk | 0.13 ± 0.01 n |
CV(%) | 23.00 | 22.11 | 49.07 | 57.84 | 43.32 | 56.01 | 68.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lu, W.; Li, J.; Yang, Y.; Fan, S.; Wang, Y.; Qin, H.; Shu, N.; Zhang, B.; Li, C.; et al. Rhizosphere Microbiota and Soil Nutrients Shape Fruit Lignan Composition of Schisandra chinensis Across Temperate Cultivation Sites in Northeast and Northwest China. Life 2025, 15, 1555. https://doi.org/10.3390/life15101555
Wang Y, Lu W, Li J, Yang Y, Fan S, Wang Y, Qin H, Shu N, Zhang B, Li C, et al. Rhizosphere Microbiota and Soil Nutrients Shape Fruit Lignan Composition of Schisandra chinensis Across Temperate Cultivation Sites in Northeast and Northwest China. Life. 2025; 15(10):1555. https://doi.org/10.3390/life15101555
Chicago/Turabian StyleWang, Yanli, Wenpeng Lu, Jiaqi Li, Yiming Yang, Shutian Fan, Yue Wang, Hongyan Qin, Nan Shu, Baoxiang Zhang, Changyu Li, and et al. 2025. "Rhizosphere Microbiota and Soil Nutrients Shape Fruit Lignan Composition of Schisandra chinensis Across Temperate Cultivation Sites in Northeast and Northwest China" Life 15, no. 10: 1555. https://doi.org/10.3390/life15101555
APA StyleWang, Y., Lu, W., Li, J., Yang, Y., Fan, S., Wang, Y., Qin, H., Shu, N., Zhang, B., Li, C., Zhu, J., Wang, J., Yang, S., & Xu, P. (2025). Rhizosphere Microbiota and Soil Nutrients Shape Fruit Lignan Composition of Schisandra chinensis Across Temperate Cultivation Sites in Northeast and Northwest China. Life, 15(10), 1555. https://doi.org/10.3390/life15101555