DynamX Bioadaptor as an Emerging and Promising Innovation in Interventional Cardiology
Abstract
1. Introduction
2. Classification of Stents Based on Material
3. General Characteristics of the DynamX Bioadaptor Device
4. Differences Compared to Current Technologies
5. Restoration of Physiological Vascular Functions and Mechanism of Action
5.1. Restoration of Vascular Pulsatility
5.2. Positive Remodeling and Lumen Expansion
5.3. Impact on Vascular Wall Biology
5.4. Impact on Atherosclerotic Plaque Volume
5.5. Significance for High-Risk Patients
6. Clinical Trial Results of the DynamX Bioadaptor
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD | Coronary artery disease |
PCI | Percutaneous coronary interventions |
BMS | Bare-metal stents |
DES | Drug-eluting stents |
BVS | Bioresorbable vascular scaffolds |
PBMA | Poly(n-butyl methacrylate) |
PEVA | Poly(ethylene-co-vinyl acetate) |
PVDF-HFP | Poly(vinylidene fluoride-co-hexafluoropropylene) |
PC | Phosphorylcholine |
DCB | Drug-coated balloons |
BRS | Biodegradable stents |
LLL | Late lumen loss |
OCT | Optical Coherence Tomography |
LAD | Left anterior descending artery |
TLF | Target lesion failure |
IVUS | Intravascular ultrasound |
NIH | Neointimal hyperplasia |
References
- Petch, J.; Tabja Bortesi, J.P.; Sheth, T.; Natarajan, M.; Pinilla-Echeverri, N.; Di, S.; Bangdiwala, S.I.; Mosleh, K.; Ibrahim, O.; Bainey, K.R.; et al. Coronary Computed Tomographic Angiography to Optimize the Diagnostic Yield of Invasive Angiography for Low-Risk Patients Screened with Artificial Intelligence: Protocol for the CarDIA-AI Randomized Controlled Trial. JMIR Res. Protoc. 2025, 14, e71726. [Google Scholar] [CrossRef]
- Ullah, M.; Wahab, A.; Khan, S.U.; Zaman, U.; Rehman, K.U.; Hamayun, S.; Naeem, M.; Ali, H.; Riaz, T.; Saeed, S.; et al. Stent as a Novel Technology for Coronary Artery Disease and Their Clinical Manifestation. Curr. Probl. Cardiol. 2023, 48, 101415. [Google Scholar] [CrossRef]
- Shahjehan, R.D.; Sharma, S.; Bhutta, B.S. Coronary Artery Disease. In StatPearls; Statpearls Publishing: Treasure Islands, FL, USA, 2024. [Google Scholar]
- Bansal, A.; Hiwale, K. Updates in the Management of Coronary Artery Disease: A Review Article. Cureus 2023, 15, e50644. [Google Scholar] [CrossRef] [PubMed]
- Koloi, A.; Loukas, V.S.; Hourican, C.; Sakellarios, A.I.; Quax, R.; Mishra, P.P.; Lehtimäki, T.; Raitakari, O.T.; Papaloukas, C.; Bosch, J.A.; et al. Predicting Early-Stage Coronary Artery Disease Using Machine Learning and Routine Clinical Biomarkers Improved by Augmented Virtual Data. Eur. Heart J. Digit. Health 2024, 5, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, M.V.; Gersh, B.J.; Alexander, K.P.; Granger, C.B.; Stone, G.W. Coronary Artery Disease in Patients ≥80 Years of Age. J. Am. Coll. Cardiol. 2018, 71, 2015–2040. [Google Scholar] [CrossRef] [PubMed]
- Błaziak, M.; Urban, S.; Wietrzyk, W.; Jura, M.; Świerczek, I.; Kuliczkowski, W. The Safety Profile of Deferred Revascularization in Patients with Coronary Artery Disease Undergoing Non-Hyperemic Functional Assessments. Adv. Interv. Cardiol. 2025, 21, 178–184. [Google Scholar] [CrossRef]
- George, J. Pathophysiology of Coronary Artery Disease. In Interventional Cardiology Imaging; Abbas, A., Ed.; Springer: London, UK, 2015. [Google Scholar]
- Frąk, W.; Wojtasińska, A.; Lisińska, W.; Młynarska, E.; Franczyk, B.; Rysz, J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022, 10, 1938. [Google Scholar] [CrossRef]
- Gajewski, P.; Błaziak, M.; Urban, S.; Garus, M.; Braunschweig, F.; Caldeira, D.; Gawor, A.; Greenwood, J.P.; Guzik, M.; Halfwerk, F.R.; et al. Sex-Stratified Patterns of Emergency Cardiovascular Admissions Prior and during the COVID-19 Pandemic. Sci. Rep. 2023, 13, 17924. [Google Scholar] [CrossRef]
- Sokolski, M.; Gajewski, P.; Zymliński, R.; Biegus, J.; Berg, J.M.T.; Bor, W.; Braunschweig, F.; Caldeira, D.; Cuculi, F.; D’Elia, E.; et al. Impact of Coronavirus Disease 2019 (COVID-19) Outbreak on Acute Admissions at the Emergency and Cardiology Departments Across Europe. Am. J. Med. 2021, 134, 482–489. [Google Scholar] [CrossRef]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. Wytyczne ESC 2024 Dotyczące Postępowania w Przewlekłych Zespołach Wieńcowych. Kardiol. Pol. 2024, 82, 1–120. [Google Scholar]
- Nguyen, N.; Michelis, K.C. Pharmacotherapy, Lifestyle Modification, and Cardiac Rehabilitation after Myocardial Infarction or Percutaneous Intervention. US Cardiol. Rev. 2025, 19, e01. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zhou, G.; Wang, M.; Chen, Y. Research on Internet plus Continuing Nursing under Dual Heart Medical Model after Percutaneous Coronary Intervention. Medicine 2025, 104, e42778. [Google Scholar] [CrossRef] [PubMed]
- Popova, N.V.; Popov, V.A.; Revishvili, A.S. Coronary Revascularization in Stable Coronary Artery Disease. State of the Art. J. Updates Cardiovasc. Med. 2024, 11, 127–138. [Google Scholar] [CrossRef]
- Ahadi, F.; Azadi, M.; Biglari, M.; Bodaghi, M.; Khaleghian, A. Evaluation of Coronary Stents: A Review of Types, Materials, Processing Techniques, Design, and Problems. Heliyon 2023, 9, e13575. [Google Scholar] [CrossRef]
- Stefanini, G.G.; Byrne, R.A.; Windecker, S.; Kastrati, A. State of the Art: Coronary Artery Stents—Past, Present and Future. EuroIntervention 2017, 13, 706–716. [Google Scholar] [CrossRef]
- Sahu, R.A.; Nashine, A.; Mudey, A.; Sahu, S.A.; Prasad, R. Cardiovascular Stents: Types and Future Landscape. Cureus 2023, 15, e43438. [Google Scholar] [CrossRef]
- Gupta, K.; Meena, K. A Novel Double Arrowhead Auxetic Coronary Stent. Comput. Biol. Med. 2023, 166, 107525. [Google Scholar] [CrossRef]
- Ping-Yen Yan, B.; Tam, L.W.; Tsang, S.C.F.; Chi, W.K. TCTAP A-036 A Non-Randomized, Clinical Registry of the DynamX Novolimus Eluting Coronary Bioadaptor System in the Treatment of Patients with De Novo Native Coronary Artery Lesions—“DynamX Hong Kong Registry”. J. Am. Coll. Cardiol. 2021, 77, S21–S22. [Google Scholar] [CrossRef]
- Borhani, S.; Hassanajili, S.; Ahmadi Tafti, S.H.; Rabbani, S. Cardiovascular Stents: Overview, Evolution, and next Generation. Prog. Biomater. 2018, 7, 175. [Google Scholar] [CrossRef]
- Tomberli, B.; Mattesini, A.; Baldereschi, G.I.; Di Mario, C. A Brief History of Coronary Artery Stents. Rev. Esp. Cardiol. 2018, 71, 312–319. [Google Scholar] [CrossRef]
- Vishnu, J.; Manivasagam, G.; Mantovani, D.; Udduttula, A.; Coathup, M.J.; Popat, K.C.; Ren, P.-G.; Prashanth, K.G. Balloon Expandable Coronary Stent Materials: A Systematic Review Focused on Clinical Success. In Vitr. Model. 2022, 1, 151–175. [Google Scholar] [CrossRef]
- Parker, W.; Iqbal, J. Comparison of Contemporary Drug-Eluting Coronary Stents—Is Any Stent Better than the Others? Heart Int. 2020, 14, 34. [Google Scholar] [CrossRef]
- Senst, B.; Goyal, A.; Basit, H.; Borger, J. Drug Eluting Stent Compounds. In StatPearls; StatPearls Publishing: Treasure Islands, FL, USA, 2025. [Google Scholar]
- Rykowska, I.; Nowak, I.; Nowak, R. Drug-Eluting Stents and Balloons—Materials, Structure Designs, and Coating Techniques: A Review. Molecules 2020, 25, 4624. [Google Scholar] [CrossRef] [PubMed]
- Shahrori, Z.M.F.; Frazzetto, M.; Mahmud, S.H.; Alghwyeen, W.; Cortese, B. Drug-Coated Balloons: Recent Evidence and Upcoming Novelties. J. Cardiovasc. Dev. Dis. 2025, 12, 194. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Li, J.; Fang, Z.; Feierkaiti, Y.; Zheng, X.; Jiang, X. The Factors Influencing the Efficiency of Drug-Coated Balloons. Front. Cardiovasc. Med. 2022, 9, 947776. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Zhao, L. Research into Biodegradable Polymeric Stents: A Review of Experimental and Modelling Work. Vessel. Plus 2018, 2, 12. [Google Scholar] [CrossRef]
- Zong, J.; He, Q.; Liu, Y.; Qiu, M.; Wu, J.; Hu, B. Advances in the Development of Biodegradable Coronary Stents: A Translational Perspective. Mater. Today Bio 2022, 16, 100368. [Google Scholar] [CrossRef]
- Peng, X.; Qu, W.; Jia, Y.; Wang, Y.; Yu, B.; Tian, J. Bioresorbable Scaffolds: Contemporary Status and Future Directions. Front. Cardiovasc. Med. 2020, 7, 589571. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Niu, J.; Shi, Y.; Zhu, Z.; Dai, D.; Chen, C.; Pei, J.; Yuan, G.; Zhang, R. Biosafety and Efficacy Evaluation of a Biodegradable Magnesium-Based Drug-Eluting Stent in Porcine Coronary Artery. Sci. Rep. 2021, 11, 7330. [Google Scholar] [CrossRef]
- Forrestal, B.; Case, B.C.; Yerasi, C.; Musallam, A.; Chezar-Azerrad, C.; Waksman, R. Bioresorbable Scaffolds: Current Technology and Future Perspectives. Rambam Maimonides Med. J. 2020, 11, e0016. [Google Scholar] [CrossRef]
- Erlinge, D.; Andersson, J.; Fröbert, O.; Törnerud, M.; Böhm, F.; Held, C.; Elek, C.; Sirhan, M.; Oldgren, J.; James, S. Rationale and Design of INFINITY-SWEDEHEART: A Registry-Based Randomized Clinical Trial Comparing Clinical Outcomes of the Sirolimus-Eluting DynamX Bioadaptor to the Zotarolimus-Eluting Resolute Onyx Stent. Am. Heart J. 2024, 277, 7330. [Google Scholar] [CrossRef]
- Webster, M.; Scott, D.; Menon, M.; McClean, D.; El-Jack, S.; Wilkins, G.; Harding, S.A. Percutaneous Coronary Intervention Using the DynamX Sirolimus-Eluting Bioadaptor: 12-Month Clinical and Imaging Outcomes. J. Interv. Cardiol. 2024, 1, 8876443. [Google Scholar] [CrossRef]
- Verheye, S.; Vrolix, M.; Montorfano, M.; Zivelonghi, C.; Giannini, F.; Bedogni, F.; Dubois, C.; De Bruyne, B.; Costa, R.A.; Chamié, D.; et al. Twelve-Month Clinical and Imaging Outcomes of the Uncaging Coronary DynamX Bioadaptor System. EuroIntervention 2020, 16, E974–E981. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, S.; Takahashi, A.; Taniguchi, N.; Yamada, T.; Hata, T.; Nakajima, S.; Saito, S. Physiological Scaffold Remodeling in the Coronary Artery After 30 Months of Bioadaptor Implantation. JACC Case Rep. 2025, 30, 103089. [Google Scholar] [CrossRef] [PubMed]
- Arh, R.; Balevski, I.; Granda, S.; Bevc, S. Drug-Eluting Stent Use in Percutaneous Coronary Interventions—A Narrative Review. J. Clin. Med. 2025, 14, 4643. [Google Scholar] [CrossRef]
- Włodarczak, A.; Rola, P.; Włodarczak, S.; Szudrowicz, M.; Jaroszewska-Pozorska, J.; Barycki, M.; Furtan, Ł.; Kȩdzierska, M.; Doroszko, A.; Lesiak, M. Magnesium Bioresorbable Scaffold (Magmaris) versus Polymer Biodegradable Ultrathin Drug-Eluting Stent (Ultimaster) in Acute Coronary Syndrome. Mid-Term Outcomes (2 Years). Postep. Kardiol. Interw. 2024, 20, 67–75. [Google Scholar] [CrossRef]
- Saito, S.; Bennett, J.; Nef, H.M.; Webster, M.; Namiki, A.; Takahashi, A.; Kakuta, T.; Yamazaki, S.; Shibata, Y.; Scott, D.; et al. Percutaneous Coronary Treatment with Bioadaptor Implant vs Drug-Eluting Stent: 2-Year Outcomes from BIOADAPTOR RCT. JACC Cardiovasc. Interv. 2025, 18, 988–997. [Google Scholar] [CrossRef]
- Gallinoro, E.; Almendarez, M.; Alvarez-Velasco, R.; Barbato, E.; Avanzas, P. Bioresorbable Stents: Is the Game Over? Int. J. Cardiol. 2022, 361, 20–28. [Google Scholar] [CrossRef]
- Verheye, S.; Vrolix, M.; Montorfano, M.; Giannini, F.; Bedogni, F.; Dubois, C.; De Bruyne, B.; Costa, R.A.; Chamié, D.; Costa, J.R.; et al. Final 36-Month Outcomes from the Multicenter DynamX Study Evaluating a Novel Thin-Strut Novolimus-Eluting Coronary Bioadaptor System and Supporting Preclinical Data. Rev. Cardiovasc. Med. 2023, 24, 221. [Google Scholar] [CrossRef]
- Madhavan, M.V.; Kirtane, A.J.; Redfors, B.; Généreux, P.; Ben-Yehuda, O.; Palmerini, T.; Benedetto, U.; Biondi-Zoccai, G.; Smits, P.C.; von Birgelen, C.; et al. Stent-Related Adverse Events >1 Year After Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2020, 75, 590–604. [Google Scholar] [CrossRef]
- Kuramitsu, S.; Iwabuchi, M.; Haraguchi, T.; Domei, T.; Nagae, A.; Hyodo, M.; Yamaji, K.; Soga, Y.; Arita, T.; Shirai, S.; et al. Incidence and Clinical Impact of Stent Fracture after Everolimus-Eluting Stent Implantation. Circ. Cardiovasc. Interv. 2012, 5, 663–671. [Google Scholar] [CrossRef]
- Ali, Z.A.; Gao, R.; Kimura, T.; Onuma, Y.; Kereiakes, D.J.; Ellis, S.G.; Chevalier, B.; Vu, M.T.; Zhang, Z.; Simonton, C.A.; et al. Three-Year Outcomes with the Absorb Bioresorbable Scaffold: Individual-Patient-Data Meta-Analysis from the ABSORB Randomized Trials. Circulation 2018, 137, 464–479. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, D.; Cook, S. Absorb BRS for In-Stent Restenosis: The Final Bow before (Scaffold) Collapse? Open Heart 2021, 8, e001838. [Google Scholar] [CrossRef] [PubMed]
- Bossard, M.; Madanchi, M.; Avdijaj, D.; Attinger-Toller, A.; Cioffi, G.M.; Seiler, T.; Tersalvi, G.; Kobza, R.; Schüpfer, G.; Cuculi, F. Long-Term Outcomes After Implantation of Magnesium-Based Bioresorbable Scaffolds—Insights from an All-Comer Registry. Front. Cardiovasc. Med. 2022, 9, 856930. [Google Scholar] [CrossRef] [PubMed]
- Serruys, P.W.; Chevalier, B.; Sotomi, Y.; Cequier, A.; Carrié, D.; Piek, J.J.; Van Boven, A.J.; Dominici, M.; Dudek, D.; McClean, D.; et al. Comparison of an Everolimus-Eluting Bioresorbable Scaffold with an Everolimus-Eluting Metallic Stent for the Treatment of Coronary Artery Stenosis (ABSORB II): A 3 Year, Randomised, Controlled, Single-Blind, Multicentre Clinical Trial. Lancet 2016, 388, 2479–2491. [Google Scholar] [CrossRef]
- Cai, J.Z.; Zhu, Y.X.; Wang, X.Y.; Bourantas, C.V.; Iqbal, J.; Zhu, H.; Cummins, P.; Dong, S.J.; Mathur, A.; Zhang, Y.J. Comparison of New-Generation Drug-Eluting Stents versus Drug-Coated Balloon for in-Stent Restenosis: A Meta-Analysis of Randomised Controlled Trials. BMJ Open 2018, 8, e017231. [Google Scholar] [CrossRef]
- Marlevi, D.; Edelman, E.R. Vascular Lesion–Specific Drug Delivery Systems: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 2413–2431. [Google Scholar] [CrossRef]
- Chaddad, R.; El-Mokdad, R.; Lazar, L.; Cortese, B. DCBs as an Adjuvant Tool to DES for Very Complex Coronary Lesions. Rev. Cardiovasc. Med. 2022, 23, 13. [Google Scholar] [CrossRef]
- Sanchez-Jimenez, E.; El-Mokdad, R.; Chaddad, R.; Cortese, B. Drug-Coated Balloon for the Management of Coronary Chronic Total Occlusions. Rev. Cardiovasc. Med. 2022, 23, 42. [Google Scholar] [CrossRef]
- Fung, C.-Y.; Chung, T.S.; Wong, S.-F. TCTAP C-165 The First Long-Term Imaging Analysis of the Use of Bioadaptor in Chronic Total Occlusion Intervention: Insights from a Single-Centre Adapt-CTO Registry. J. Am. Coll. Cardiol. 2025, 85, S358–S359. [Google Scholar] [CrossRef]
- Saito, S.; Bennett, J.; Nef, H.M.; Webster, M.; Namiki, A.; Takahashi, A.; Kakuta, T.; Yamazaki, S.; Shibata, Y.; Scott, D.; et al. First Randomised Controlled Trial Comparing the Sirolimus-Eluting Bioadaptor with the Zotarolimus-Eluting Drug-Eluting Stent in Patients with de Novo Coronary Artery Lesions: 12-Month Clinical and Imaging Data from the Multi-Centre, International, BIODAPTOR-RCT. eClinicalMedicine 2023, 65, 102304. [Google Scholar] [CrossRef]
- Kawai-Kowase, K.; Owens, G.K. Multiple Repressor Pathways Contribute to Phenotypic Switching of Vascular Smooth Muscle Cells. Am. J. Physiol. Cell Physiol. 2007, 292, C59–C69. [Google Scholar] [CrossRef]
- Kansal, M.M.; Wolska, B.; Verheye, S.; Vidovich, M.I. Adaptive Coronary Artery Rotational Motion Through Uncaging of a Drug-Eluting Bioadaptor Aiming to Reduce Stress on the Coronary Artery. Cardiovasc. Revasc. Med. 2022, 39, 52–57. [Google Scholar] [CrossRef]
- Fröbert, O.; Lagerqvist, B.; Carlsson, J.; Lindbäck, J.; Stenestrand, U.; James, S.K. Differences in Restenosis Rate with Different Drug-Eluting Stents in Patients with and Without Diabetes Mellitus: A Report from the SCAAR (Swedish Angiography and Angioplasty Registry). J. Am. Coll. Cardiol. 2009, 53, 1660–1667. [Google Scholar] [CrossRef]
- Erlinge, D.; Andersson, J.; Fröbert, O.; Törnerud, M.; Hamid, M.; Kellerth, T.; Grimfjärd, P.; Winnberg, O.; Jurga, J.; Wagner, H.; et al. Bioadaptor Implant versus Contemporary Drug-Eluting Stent in Percutaneous Coronary Interventions in Sweden (INFINITY-SWEDEHEART): A Single-Blind, Non-Inferiority, Registry-Based, Randomised Controlled Trial. Lancet 2024, 404, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.T.; Wong, S.F.; Chow, H.C.; Chung, T.S. TCTAP A-012 12-Month Clinical Outcomes of ST Segment Elevation Myocardial Infarction Treated with DynamX Bioadaptor During Primary Percutaneous Intervention—A Single Centre Experience. J. Am. Coll. Cardiol. 2025, 85, S9–S10. [Google Scholar] [CrossRef]
- Verheye, S.; Morice, M.C.; Zivelonghi, C.; Mehmedbegovic, Z.; Neylon, A.; Bhat, V.; Colombo, A. 24-Month Clinical Follow-Up and Mechanistic Insights from Intravascular Imaging Following Coronary Implantation of the Novel DynamX Bioadaptor Platform. Cardiovasc. Revasc. Med. 2023, 46, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Amjad, H.; Ullah, A.; Shakoor, M.; Tanveer, F.; Qureshi, M.; Jahan, F.; Manzoor, H.; Mahmoud, M.H.; Masharifa Ahamed, F.; Halder, A.; et al. Comparative Efficacy and Long-Term Outcomes of Drug-Eluting Stents vs. Bare-Metal Stents in Coronary Artery Disease: A Systematic Review. Cureus 2025, 17, e86617. [Google Scholar] [CrossRef] [PubMed]
- Changal, K.H.; Mir, T.; Khan, S.; Nazir, S.; Elzanatey, A.; Meenakshisundaram, C.; Mubbasher, S.; Sheikh, M.A. Drug-Eluting Stents Versus Bare-Metal Stents in Large Coronary Artery Revascularization: Systematic Review and Meta-Analysis. Cardiovasc. Revasc. Med. 2021, 23, 42–49. [Google Scholar] [CrossRef]
- Hazin, F.M.; Jamil, D.; Sharma, C.; Yasin, J.; Jamil, G.; Alkaabi, J. Re-Catheterization in a Young Patient with Acute Myocardial Infarction: Is It Preventable? Am. J. Transl. Res. 2023, 15, 281–287. [Google Scholar]
- Ho, H.H.; Li, K.F.C.; Low, J.B.; Khaing, T.; Lee, J.; Khoo, D.Z.L.; Loh, J.K.K.; Jafary, F.H. TCTAP A-012 First Report on 30-Day Outcomes of Patients Treated with DynamX Bioadaptor Drug-Eluting Stent in Primary Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2022, 79, S7. [Google Scholar] [CrossRef]
- Ho, H.H.; Li, C.; Jun, R.; Low, B.; Khaing, T.; Khialani, B.; Lee, J.; Zin, D.; Khoo, L.; Kwok, J.; et al. TCTAP A-016 1 Year Clinical Outcomes of Patients Treated with DynamX Bioadaptor Drug Eluting Stent in Primary Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2024, 83, S10. [Google Scholar] [CrossRef]
- Capodanno, D. Coronary Stenting with Bioadaptors. Lancet 2024, 404, 1705–1707. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/study/NCT06074549?rank=1&term=AREA%5BSponsorSearch%5D(COVERAGE%5BFullMatch%5DEXPANSION%5BNone%5D(%22Elixir%20Medical%20Corporation%22))&utm_source=chatgpt.com (accessed on 30 August 2025).
- DAIC. Available online: https://www.dicardiology.com/content/elixir-medical-granted-fda-breakthrough-device-designation-dynamx-bioadaptor?utm_source=chatgpt.com (accessed on 1 September 2025).
- Vasan, A.; Friend, J. Medical Devices for Low- and Middle-Income Countries: A Review and Directions for Development. J. Med. Device 2020, 14, 010803. [Google Scholar] [CrossRef]
- Malkin, R.A. Barriers for Medical Devices for the Developing World. Expert. Rev. Med. Devices 2007, 4, 759–763. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Chen, Y.-H. TCTAP C-138 A Novel Design with a Rare Complication: DynamX Bioadaptor Dislodgement. J. Am. Coll. Cardiol. 2024, 83, S276–S279. [Google Scholar] [CrossRef]
DES | DynamX Bioadaptor | |
---|---|---|
Construction | Permanent metal scaffold [24] | Stent with a de-caging mechanism [37] |
Remodeling | Vessel caging, which may limit adaptive remodeling [40] | Allows for favorable remodeling [42] |
Lumen Diameter | Reduction in the vessel lumen diameter over time [35] | Preservation of vessel lumen diameter even after endothelial coverage [35,54] |
Study | Year | n | Methods | Aim | Outcomes | |
---|---|---|---|---|---|---|
1. | Saito et al. [54] | 2023 | 445 | Patients with coronary artery lesions, and without myocardial infarction in 34 hospitals were enrolled. | Clinical comparison between DES and Bioadaptor after 1 year. | DynamX presented similar effectiveness in terms of TLF, but also showed improved efficacy in parameters such as LLL, vesel function, and reduced risk of adverse events. |
2. | Saito et al. [40] (follow-up) | 2025 | 440 | Patients with coronary artery lesions, and without myocardial infarction in 34 hospitals were enrolled. | Clinical comparison between DES and Bioadaptor after 2 years. | This follow-up confirmed benefits from using DynamX. Bioadaptor also showed lower TLF rate than DES. |
3. | Erlinge et al. [34] | 2024 | 2400 | Patients with ischemic heart disease with coronary artery lesions from Sweden were enrolled. | Evaluation of safety and effectiveness of DynamX compared to Resolute Onyx stent. | DynamX demonstrated outstanding performance compared to DES, with lower rates of target vessel failure, target lesion failure, ischemia-driven target lesion revascularization, and myocardial infarction. |
4. | Verheye et al. [42] | 2023 | 50 | Patients with coronary artery lesions from Belgium were enrolled. | Evaluation of safety and effectiveness of DynamX. | DynamX presented great clinical outcomes, such as absent of target-vessel myocardial infarction, and only one target lesion revascularization up to 36 months. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soczyńska, J.; Butyńska, K.; Dudek, M.; Gawełczyk, W.; Woźniak, S.; Gajewski, P. DynamX Bioadaptor as an Emerging and Promising Innovation in Interventional Cardiology. Life 2025, 15, 1549. https://doi.org/10.3390/life15101549
Soczyńska J, Butyńska K, Dudek M, Gawełczyk W, Woźniak S, Gajewski P. DynamX Bioadaptor as an Emerging and Promising Innovation in Interventional Cardiology. Life. 2025; 15(10):1549. https://doi.org/10.3390/life15101549
Chicago/Turabian StyleSoczyńska, Julia, Kamila Butyńska, Mateusz Dudek, Wiktor Gawełczyk, Sławomir Woźniak, and Piotr Gajewski. 2025. "DynamX Bioadaptor as an Emerging and Promising Innovation in Interventional Cardiology" Life 15, no. 10: 1549. https://doi.org/10.3390/life15101549
APA StyleSoczyńska, J., Butyńska, K., Dudek, M., Gawełczyk, W., Woźniak, S., & Gajewski, P. (2025). DynamX Bioadaptor as an Emerging and Promising Innovation in Interventional Cardiology. Life, 15(10), 1549. https://doi.org/10.3390/life15101549