Expanding the Use of Continuous Glucose Monitoring in Type 2 Diabetes Mellitus: Impact on Glycemic Control and Metabolic Health
Abstract
1. Introduction
- To identify the general characteristics of patients with diabetes who used CGM;
- To evaluate the change in glycemic (HbA1c and fasting glucose) and metabolic (BMI and total cholesterol) indicators before and after CGM use;
- To examine whether the effectiveness of CGM differs according to socio-demographic and health behavioral characteristics of diabetic patients.
2. Materials and Methods
2.1. Study Design
2.2. Theoretical Background
2.2.1. Glycated Hemoglobin (HbA1c)
2.2.2. Fasting Plasma Glucose (FPG)
2.2.3. Body Mass Index (BMI)
2.2.4. Total Cholesterol
2.2.5. Continuous Glucose Monitoring System
2.3. Ethical Considerations for Participants
2.4. Data Collection and Statistical Analysis
3. Results
3.1. General Characteristics of Study Subjects
3.2. Changes in Glycemic and Metabolic Indicators Associated with the Use of CGM
3.3. Differences in CGM Effects on HbA1c According to Sociodemographic and Health Behavioral Characteristics
3.4. Differences in CGM Effects on Fasting Blood Glucose According to Sociodemographic and Health Behavioral Characteristics
3.5. Factors Influencing Fasting Glucose Variability Associated with Continuous Glucose Monitoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farmaki, P.; Damaskos, C.; Garmpis, N.; Garmpi, A.; Savvanis, S.; Diamantis, E. Complications of the type 2 diabetes mellitus. Curr. Cardiol. Rev. 2020, 16, 249–251. [Google Scholar] [PubMed]
- Ali, M.K.; Pearson-Stuttard, J.; Selvin, E.; Gregg, E.W. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia 2022, 65, 3–13. [Google Scholar] [CrossRef]
- Sattar, N.; Presslie, C.; Rutter, M.K.; McGuire, D.K. Cardiovascular and kidney risks in individuals with type 2 diabetes: Contemporary understanding with greater emphasis on excess adiposity. Diabetes Care 2024, 47, 531–543. [Google Scholar] [CrossRef]
- Lu, J.; Ma, X.; Zhou, J.; Zhang, L.; Mo, Y.; Ying, L.; Lu, W.; Zhu, W.; Bao, Y.; Vigersky, R.A.; et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care 2018, 41, 2370–2376. [Google Scholar] [CrossRef]
- Lu, J.; Wang, C.; Shen, Y.; Chen, L.; Zhang, L.; Cai, J.; Lu, W.; Zhu, W.; Hu, G.; Xia, T.; et al. Time in range in relation to all-cause and cardiovascular mortality in patients with type 2 diabetes: A prospective cohort study. Diabetes Care 2021, 44, 549–555. [Google Scholar] [CrossRef]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022, 65, 1925–1966. [Google Scholar] [CrossRef]
- Federation, I.D. IDF Diabetes Atlas. 2025. Available online: https://diabetesatlas.org/ (accessed on 24 July 2025).
- Beck, R.W.; Bergenstal, R.M.; Riddlesworth, T.D.; Kollman, C.; Li, Z.; Brown, A.S.; Close, K.L. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care 2019, 42, 400–405. [Google Scholar] [CrossRef]
- Pleus, S.; Freckmann, G.; Schauer, S.; Heinemann, L.; Ziegler, R.; Ji, L.; Mohan, V.; Calliari, L.E.; Hinzmann, R. Self-monitoring of blood glucose as an integral part in the management of people with type 2 diabetes mellitus. Diabetes Ther. 2022, 13, 829–846. [Google Scholar] [CrossRef]
- Bhat, O.; Khan, D.A.; Yousuf, R. Automated glucose control: A review. Int. J. E-Health Med. Commun. 2021, 12, 1–18. [Google Scholar]
- Dicembrini, I.; Cosentino, C.; Monami, M.; Mannucci, E.; Pala, L. Effects of real-time continuous glucose monitoring in type 1 diabetes: A meta-analysis of randomized controlled trials. Acta Diabetol. 2021, 58, 401–410. [Google Scholar] [CrossRef]
- Poolsup, N.; Suksomboon, N.; Kyaw, A.M. Systematic review and meta-analysis of the effectiveness of continuous glucose monitoring (CGM) on glucose control in diabetes. Diabetol. Metab. Syndr. 2013, 5, 39. [Google Scholar] [CrossRef] [PubMed]
- Edelman, S.V.; Argento, N.B.; Pettus, J.; Hirsch, I.B. Clinical implications of real-time and intermittently scanned continuous glucose monitoring. Diabetes Care 2018, 41, 2265–2274. [Google Scholar] [CrossRef] [PubMed]
- Klonoff, D.C.; Ahn, D.; Drincic, A. Continuous glucose monitoring: A review of the technology and clinical use. Diabetes Res. Clin. Pract. 2017, 133, 178–192. [Google Scholar] [CrossRef]
- Polonsky, W.H.; Hessler, D.; Ruedy, K.J.; Beck, R.W. The impact of continuous glucose monitoring on markers of quality of life in adults with type 1 diabetes: Further findings from the DIAMOND randomized clinical trial. Diabetes Care 2017, 40, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Korean Ministry of Food and Drug Safety. 2023 Medical Device Approval Report. 2024. Available online: https://www.mfds.go.kr/brd/m_218/down.do?brd_id=data0013&seq=33580&data_tp=A&file_seq=1 (accessed on 17 April 2025).
- Kim, J.Y.; Jin, S.M.; Andrade, S.B.; Chen, B.; Kim, J.H. Real-World Continuous Glucose Monitoring Data from a Population with Type 1 Diabetes in South Korea: Nationwide Single-System Analysis. Diabetes Technol. Ther. 2024, 26, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Hur, K.Y.; Moon, M.K.; Park, J.S.; Kim, S.K.; Lee, S.H.; Yun, J.S.; Baek, J.H.; Noh, J.; Lee, B.W.; Oh, T.J.; et al. 2021 clinical practice guidelines for diabetes mellitus in Korea. Diabetes Metab. J. 2021, 45, 461–481. [Google Scholar] [CrossRef]
- Knapp, T.R. Why is the one-group pretest–posttest design still used? Clin. Nurs. Res. 2016, 25, 467–472. [Google Scholar] [CrossRef]
- Lewis, K.R.; McCrone, S.; Deiriggi, P.; Bendre, S. Effectiveness of continuous glucose monitoring in children, adolescents, and young adults with poorly controlled type 1 diabetes. J. Spec. Pediatr. Nurs. 2017, 22, e12162. [Google Scholar] [CrossRef]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark. Insights 2016, 11, BMI-S38440. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48 (Suppl. S1), S27–S49. [Google Scholar] [CrossRef]
- Sun, B.; Luo, Z.; Zhou, J. Comprehensive elaboration of glycemic variability in diabetic macrovascular and microvascular complications. Cardiovasc Diabetol. 2021, 20, 9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Y.; Li, D.; Vermund, S.H. Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. Int. J. Environ. Res. Public Health. 2024, 21, 757. [Google Scholar] [CrossRef]
- Haam, J.H.; Kim, B.T.; Kim, E.M.; Kwon, H.; Kang, J.H.; Park, J.H.; Kim, K.K.; Rhee, S.Y.; Kim, Y.H.; Lee, K.Y. Diagnosis of obesity: 2022 update of clinical practice guidelines for obesity by the Korean Society for the Study of Obesity. J. Obes. Metab. Syndr. 2023, 32, 121. [Google Scholar] [CrossRef]
- Zhu, X.; Hu, J.; Guo, H.; Ji, D.; Yuan, D.; Li, M.; Yan, T.; Xue, C.; Ma, H.; Zhou, X. Effect of metabolic health and obesity phenotype on risk of diabetes mellitus: A population-based longitudinal study. Diabetes Metab. Syndr. Obes. 2021, 14, 3485–3498. [Google Scholar] [CrossRef]
- Wang, L.; Yan, N.; Zhang, M.; Pan, R.; Dang, Y.; Niu, Y. The association between blood glucose levels and lipids or lipid ratios in type 2 diabetes patients: A cross-sectional study. Front. Endocrinol. 2022, 13, 969080. [Google Scholar] [CrossRef]
- Kluemper, J.R.; Smith, A.; Wobeter, B. Diabetes: The role of continuous glucose monitoring. Drugs Context 2022, 11, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.; Oliver, N. Self-monitoring of blood glucose requirements with the use of intermittently scanned continuous glucose monitoring. Diabetes Technol. Ther. 2020, 22, 235–238. [Google Scholar] [CrossRef]
- Di Leo, G.; Sardanelli, F. Statistical significance: P value, 0.05 threshold, and applications to radiomics—Reasons for a conservative approach. Eur. Radiol. Exp. 2020, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Welsh, Z.; Ells, S.; Seibold, A. The impact of flash glucose monitoring on glycaemic control as measured by HbA1c: A meta-analysis of clinical trials and real-world observational studies. Diabetes Ther. 2020, 11, 83–95. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Signoriello, S.; Maio, A.; Chiodini, P.; Bellastella, G.; Scappaticcio, L.; Longo, M.; Giugliano, D.; Esposito, K. Effects of continuous glucose monitoring on metrics of glycemic control in diabetes: A systematic review with meta-analysis of randomized controlled trials. Diabetes Care 2020, 43, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Jung, I.; Park, S.Y.; Yu, J.H.; Seo, J.A.; Kim, J.; Kim, K.J.; Kim, N.H.; Yoo, H.J.; Kim, S.G. Clinical and lifestyle determinants of continuous glucose monitoring metrics in insulin-treated patients with type 2 diabetes mellitus. Diabetes Metab. J. 2023, 47, 826–836. [Google Scholar] [CrossRef]
- Kraaijeveld, S.R. Continuous glucose monitoring as a matter of justice. In Hec Forum; Springer: Dordrecht, The Netherlands, 2021; Volume 33, pp. 345–370. [Google Scholar]
- Klupa, T.; Czupryniak, L.; Dzida, G.; Fichna, P.; Jarosz-Chobot, P.; Gumprecht, J.; Mysliwiec, M.; Szadkowska, A.; Bomba-Opon, D.; Czajkowski, K.; et al. Expanding the role of continuous glucose monitoring in modern diabetes care beyond type 1 disease. Diabetes Ther. 2023, 14, 1241–1266. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 7. Diabetes Technology: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48 (Suppl. 1), S146–S166. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.M. Using continuous glucose monitoring in clinical practice. Clin. Diabetes A Publ. Am. Diabetes Assoc. 2020, 38, 429. [Google Scholar] [CrossRef]
- Reed, J.; Dong, T.; Eaton, E.; Friswold, J.; Porges, J.; Al-Kindi, S.G.; Rajagopalan, S.; Neeland, I.J. Continuous glucose monitoring for glycaemic control and cardiovascular risk reduction in patients with type 2 diabetes not on insulin therapy: A clinical trial. Diabetes. Obes. Metab. 2024, 26, 2881–2889. [Google Scholar] [CrossRef]
- De Ridder, F.; Charleer, S.; Jacobs, S.; Bolsens, N.; Ledeganck, K.J.; Van Aken, S.; Vanbesien, J.; Gies, I.; Casteels, K.; Massa, G.; et al. Effect of nationwide reimbursement of real-time continuous glucose monitoring on HbA1c, hypoglycemia and quality of life in a pediatric type 1 diabetes population: The RESCUE-pediatrics study. Front. Pediatr. 2022, 10, 991633. [Google Scholar] [CrossRef]
- Lind, N.; Christensen, M.B.; Nørgaard, K. A combined diabetes and continuous glucose monitoring education program for adults with type 2 diabetes. PEC Innov. 2024, 5, 100324. [Google Scholar] [CrossRef]
- Battelino, T.; Lalic, N.; Hussain, S.; Ceriello, A.; Klobucar, S.; Davies, S.J.; Topsever, P.; Heverly, J.; Ulivi, F.; Brady, K. The use of continuous glucose monitoring in people living with obesity, intermediate hyperglycemia or type 2 diabetes. Diabetes Res. Clin. Pract. 2025, 223, 112111. [Google Scholar] [CrossRef]
- Kim, J.Y.; Ilham, S.; Alshannaq, H.; Pollock, R.F.; Ahmed, W.; Norman, G.J.; Jin, S.M.; Kim, J.H. Real-time continuous glucose monitoring vs. self-monitoring of blood glucose: Cost-utility in South Korean type 2 diabetes patients on intensive insulin. J. Med. Econ. 2024, 27, 1245–1252. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Introduction and Methodology: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48 (Suppl. 1), S1–S5. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, J.; Romano, A.; Rodríguez, I.; Sanchís, P.; Puga, M.; Masmiquel, L. Influence of obesity on blood glucose control using continuous glucose monitoring data among patients with type 1 diabetes. Endocrinol. Diabetes Y Nutr. (Engl. Ed.) 2024, 71, 202–207. [Google Scholar]
- Marigliano, M.; Eckert, A.J.; Guness, P.K.; Herbst, A.; Smart, C.E.; Witsch, M.; Maffeis, C.; SWEET Study Group. Association of the use of diabetes technology with HbA1c and BMI-SDS in an international cohort of children and adolescents with type 1 diabetes: The SWEET project experience. Pediatr. Diabetes 2021, 22, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Di Mario, C.; Genovese, S.; Lanza, G.A.; Mannucci, E.; Marenzi, G.; Sciatti, E.; Pitocco, D. Role of continuous glucose monitoring in diabetic patients at high cardiovascular risk: An expert-based multidisciplinary Delphi consensus. Cardiovasc. Diabetol. 2022, 21, 164. [Google Scholar] [CrossRef]
- Frank, J.R.; Blissett, D.; Hellmund, R.; Virdi, N. Budget impact of the flash continuous glucose monitoring system in Medicaid diabetes beneficiaries treated with intensive insulin therapy. Diabetes Technol. Ther. 2021, 23, S36–S44. [Google Scholar] [CrossRef]
Group | Pre-Test | → | Treatment or Intervention | → | Post-Test |
---|---|---|---|---|---|
All subjects | O1 | X2 | O3 |
Variable | n (%) | Mean ± SD |
---|---|---|
Gender | ||
Male | 325 (63.7) | |
Female | 185 (36.3) | |
Age 1 | 59.71 ± 11.37 | |
<65 | 316 (62.0) | |
≥65 | 194 (38.0) | |
BMI 2 | 25.12 ± 3.87 | |
Low weight (<18.5) | 11 (2.2) | |
Normal (18.5–24.9) | 244 (47.8) | |
Obesity (≥25) | 255 (50.0) | |
Diabetes type | ||
Type 1 | 13 (2.5) | |
Type 2 | 497 (97.5) | |
Smoking | ||
Non-smoking | 405 (79.4) | |
Current-smoking | 46 (9.0 | |
Ex-smoking | 59 (11.6) | |
Drinking | ||
Non-drinker | 450 (88.2) | |
Current-drinker | 56 (11.0) | |
Ex-drinker | 4 (0.8) |
Variable | Baseline | Post-CGM | t | p-Value |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
HbA1C 1 | 8.09 ± 0.06 | 7.48± 0.05 | 10.297 | <0.001 |
Fasting glucose 2 | 152.41 ± 2.54 | 137.16 ± 1.85 | 5.861 | <0.001 |
BMI 3 | 25.16 ± 0.17 | 25.64 ± 0.51 | −0.990 | 0.323 |
Total cholesterol 4 | 149.77 ± 1.66 | 146.95 ± 1.53 | 2.108 | 0.036 |
Variable | HbA1c Variation | t, F | p-Value |
---|---|---|---|
Mean ± SD | |||
Gender | −1.412 | 0.158 | |
Male | −0.67 ± 1.45 | ||
Female | −0.50 ± 1.12 | ||
Age 1 | −0.539 | 0.590 | |
<65 | −0.64 ± 1.42 | ||
≥65 | −0.57 ± 1.21 | ||
BMI 2 | 0.645 | 0.525 | |
Low weight (<18.5) | −0.51 ± 0.91 | ||
Normal (18.5–24.9) | −0.68 ± 1.28 | ||
Obesity (≥25) | −0.55 ± 1.41 | ||
Diabetes type | 1.289 | 0.198 | |
Type 1 | −0.14 ± 1.03 | ||
Type 2 | −0.62 ± 1.35 | ||
Smoking | 1.502 | 0.224 | |
Non-smoking | −0.93 ± 1.75 | ||
Current-smoking | −0.57 ± 1.29 | ||
Ex-smoking | −0.61 ± 1.27 | ||
Drinking | 1.294 | 0.275 | |
Non-drinker | −0.51 ± 1.56 | ||
Current-drinker | −0.61 ± 1.31 | ||
Ex-drinker | −1.63 ± 1.24 |
Variable | Fasting Glucose Variation | t, F | p-Value |
---|---|---|---|
Mean ± SD | |||
Gender | −2.259 | 0.024 | |
Male | −19.67 ± 61.66 | ||
Female | −7.49 ± 52.58 | ||
Age 1 | 0.025 | 0.980 | |
<65 | −15.20 ± 59.80 | ||
≥65 | −15.34 ± 57.20 | ||
BMI 2 | 0.590 | 0.555 | |
Low weight (<18.5) | −13.273 ± 37.40 | ||
Normal (18.5–24.9) | −18.21 ± 60.46 | ||
Obesity (≥25) | −12.51 ± 57.91 | ||
Diabetes type | 2.544 | 0.011 | |
Type 1 | 25.46 ± 60.06 | ||
Type 2 | −16.32 ± 58.42 | ||
Smoking | 0.587 | 0.556 | |
Non-smoking | −14.02 ± 60.43 | ||
Current-smoking | −16.39 ± 58.46 | ||
Ex-smoking | 22.83 ± 46.42 | ||
Drinking | 0.173 | 0.842 | |
Non-drinker | −19.34 ± 71.17 | ||
Current-drinker | −14.70 ± 57.20 | ||
Ex-drinker | −20.75 ± 55.51 |
Variable | B | S.E | β | t | p-Value | VIF | |
---|---|---|---|---|---|---|---|
(Constant) | −52.65 | 26.26 | −2.005 | 0.045 | |||
Gender | Female | 11.78 | 5.76 | 0.10 | 2.045 | 0.041 | 1.15 |
Age (years) | 0.21 | 0.24 | 0.04 | 0.846 | 0.398 | 1.15 | |
BMI (kg/m2) | 0.78 | 0.72 | 0.05 | 1.076 | 0.283 | 1.09 | |
Diabetes type | Type 1 | 47.82 | 17.23 | 0.13 | 2.776 | 0.006 | 1.10 |
Smoking | Current smoker | 4.33 | 9.46 | 0.02 | 0.458 | 0.647 | 1.10 |
Ex-smoker | −2.70 | 8.52 | −0.01 | −0.317 | 0.751 | 1.11 | |
R2/Adjusted R2 | 0.026/0.014 | ||||||
F(df), p-value | 2.238(6), 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-J.; Seo, B.-J.; Cho, J.-H. Expanding the Use of Continuous Glucose Monitoring in Type 2 Diabetes Mellitus: Impact on Glycemic Control and Metabolic Health. Life 2025, 15, 1543. https://doi.org/10.3390/life15101543
Lee M-J, Seo B-J, Cho J-H. Expanding the Use of Continuous Glucose Monitoring in Type 2 Diabetes Mellitus: Impact on Glycemic Control and Metabolic Health. Life. 2025; 15(10):1543. https://doi.org/10.3390/life15101543
Chicago/Turabian StyleLee, Mi-Joon, Bum-Jeun Seo, and Jae-Hyoung Cho. 2025. "Expanding the Use of Continuous Glucose Monitoring in Type 2 Diabetes Mellitus: Impact on Glycemic Control and Metabolic Health" Life 15, no. 10: 1543. https://doi.org/10.3390/life15101543
APA StyleLee, M.-J., Seo, B.-J., & Cho, J.-H. (2025). Expanding the Use of Continuous Glucose Monitoring in Type 2 Diabetes Mellitus: Impact on Glycemic Control and Metabolic Health. Life, 15(10), 1543. https://doi.org/10.3390/life15101543