Gut Microbiota Composition Positively Correlates with Sports Performance in Competitive Non-Professional Female and Male Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Exercise Tests
2.3. Gut Microbiome Analysis
2.3.1. Stool Samples Collection
2.3.2. DNA Extraction
2.3.3. PCR Protocol
2.3.4. Sequencing
2.3.5. Analysis
3. Results
3.1. Participants’ Characteristics and Cardiopulmonary Exercise Tests
3.2. Microbiome Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mailing, L.J.; Allen, J.M.; Buford, T.W.; Fields, C.J.; Woods, J.A. Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exerc. Sport. Sci. Rev. 2019, 47, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Barton, W.; Penney, N.C.; Cronin, O.; Garcia-Perez, I.; Molloy, M.G.; Holmes, E.; O’Sullivan, O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 2018, 67, 625–633. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.T.; O’Sullivan, O.; Claesson, M.J.; Cotter, P.D. The Athlete Gut Microbiome and its Relevance to Health and Performance: A Review. Sports Med. 2022, 52 (Suppl. S1), 119–128. [Google Scholar] [CrossRef] [PubMed]
- Scheiman, J.; Luber, J.M.; Chavkin, T.A.; MacDonald, T.; Tung, A.; Pham, L.D.; Wibowo, M.C.; Wurth, R.C.; Punthambaker, S.; Tierney, B.T.; et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 2019, 25, 1104–1109. [Google Scholar] [CrossRef]
- Kim, Y.S.; Unno, T.; Kim, B.Y.; Park, M.S. Sex differences in gut microbiota. World J. Men’s Health 2020, 38, 48–60. [Google Scholar] [CrossRef]
- Mueller, S.; Saunier, K.; Hanisch, C.; Norin, E.; Alm, L.; Midtvedt, T.; Cresci, A.; Silvi, S.; Orpianesi, C.; Verdenelli, M.C.; et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Appl. Environ. Microbiol. 2006, 72, 1027–1033. [Google Scholar] [CrossRef]
- Li, M.; Wang, B.; Zhang, M.; Rantalainen, M.; Wang, S.; Zhou, H.; Zhang, Y.; Shen, J.; Pang, X.; Zhang, M.; et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl. Acad. Sci. USA 2008, 105, 2117–2122. [Google Scholar] [CrossRef]
- Sadik, R.; Abrahamsson, H.; Stotzer, P.O. Gender differences in gut transit shown with a newly developed radiological procedure. Scand. J. Gastroenterol. 2003, 38, 36–42. [Google Scholar] [CrossRef]
- Markle, J.G.; Frank, D.N.; Mortin-Toth, S.; Robertson, C.E.; Feazel, L.M.; Rolle-Kampczyk, U.R.; Bergen, M.V.; McCoy, K.D.; Macpherson, A.J.; Danska, L.S. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013, 339, 1084–1088. [Google Scholar] [CrossRef]
- Kaliannan, K.; Robertson, R.C.; Murphy, K.; Stanton, C.; Kang, C.; Wang, B.; Hao, L.; Bhan, A.K.; Kang, J.X. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome 2018, 6, 205. [Google Scholar] [CrossRef]
- Bonomini-Gnutzmann, R.; Plaza-Diaz, J.; Jorquera-Aguilera, C.; Rodriguez-Rodriguez, A.; Rodriguez-Rodriguez, F. Effect of Intensity and Duration of Exercise on Gut Microbiota in Humans: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 9518. [Google Scholar] [CrossRef] [PubMed]
- Shephard, R.J. Tests of maximum oxygen intake. A critical review. Sports Med. 1984, 1, 99–124. [Google Scholar] [CrossRef] [PubMed]
- Evans, H.J.; Ferrar, K.E.; Smith, A.E.; Parfitt, G.; Eston, R.G. A systematic review of methods to predict maximal oxygen uptake from submaximal, open circuit spirometry in healthy adults. J. Sci. Med. Sport. 2015, 18, 183–188. [Google Scholar] [CrossRef]
- Laursen, P.B.; Francis, G.T.; Abbiss, C.R.; Newton, M.J.; Nosaka, K. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med. Sci. Sports Exerc. 2007, 39, 1374–1379. [Google Scholar] [CrossRef]
- Earth Microbiome Project. 16S Illumina Amplicon Protocol. Available online: https://earthmicrobiome.org/protocols-and-standards/16s/ (accessed on 15 October 2023).
- Fluidigm Corporation. Access Array System for Illumina Sequencing Systems: User Guide; Fluidigm Corporation: South San Francisco, CA, USA, 2019. [Google Scholar]
- Illumina, Inc. MiSeq System Guide; Illumina: San Diego, CA, USA, 2018. [Google Scholar]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Youngblut, N.D.; Cuesta-Zuluaga, J.; Ley, R.E. Incorporating genome-based phylogeny and functional similarity into diversity assessments helps to resolve a global collection of human gut metagenomes. Environ Microbiol 2022, 24, 3966–3984. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, J.; Liang, H.; Ye, L.; Lan, L.; Lu, F.; Wang, Q.; Lei, T.; Yang, X.; Cui, P.; et al. Differences in Alpha Diversity of Gut Microbiota in Neurological Diseases. Front. Neurosci. 2022, 16, 879318. [Google Scholar] [CrossRef]
- de Gouveia, M.L.M.; Bernalier-Donadille, A.; Jubelin, G. Enterobacteriaceae in the Human Gut: Dynamics and Ecological Roles in Health and Disease. Biology 2024, 13, 142. [Google Scholar] [CrossRef]
- Baldelli, V.; Scaldaferri, F.; Putignani, L.; Del Chierico, F. The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases. Microorganisms 2021, 9, 697. [Google Scholar] [CrossRef]
- Lambert, J.E.; Myslicki, J.P.; Bomhof, M.R.; Belke, D.D.; Shearer, J.; Reimer, R.A. Exercise training modifies gut microbiota in normal and diabetic mice. Appl. Physiol. Nutr. Metab. 2015, 40, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Munukka, E.; Ahtiainen, J.P.; Puigbo, P.; Jalkanen, S.; Pahkala, K.; Keskitalo, A.; Kujala, U.M.; Pietila, S.; Hollmen, M.; Elo, L.; et al. Six-Week Endurance Exercise Alters Gut Metagenome That is not Reflected in Systemic Metabolism in Over-weight Women. Front. Microbiol. 2018, 9, 2323. [Google Scholar] [CrossRef] [PubMed]
- Torquati, L.; Gajanand, T.; Cox, E.R.; Willis, C.R.G.; Zaugg, J.; Keating, S.E.; Coombes, J.S. Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes. Eur. J. Sport Sci. 2023, 23, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Paez, A.; Del Pugar, E.M.G.; Lopez-Almela, I.; Moya-Perez, A.; Codoner-Franch, P.; Sanz, Y. Depletion of Blautia Species in the Microbiota of Obese Children Relates to Intestinal Inflammation and Metabolic Phenotype Worsening. mSystems 2020, 5, e00857-19. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Wang, Y.; Chen, X.; Wang, C.; Chen, X.; Yuan, X.; Liu, L.; Yang, J.; Zhou, X. Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in colonic macrophages. J. Exp. Clin. Cancer Res. 2022, 41, 1. [Google Scholar] [CrossRef]
- Esquivel-Elizondo, S.; Ilhan, Z.E.; Garcia-Pena, E.I.; Krajmalnik-Brown, R. Insights into Butyrate Production in a Controlled Fermentation System via Gene Predictions. mSystems 2017, 2, e00051-17. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Wen, Z.; Liu, W.; Meng, L.; Huang, H. Oscillospira—A candidate for the next-generation probiotics. Gut Microbes 2021, 13, 1987783. [Google Scholar] [CrossRef]
- Gomez-Arango, L.F.; Barrett, H.L.; McIntyre, H.D.; Callaway, L.K.; Morrison, M.; Nitert, M.D. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 2016, 68, 974–981. [Google Scholar] [CrossRef]
- Annelies Geirnaert, A.; Steyaert, A.; Eeckhaut, V.; Debruyne, B.; Arends, J.B.A.; Immerseel, F.V.; Boon, N.; de Wiele, T.V. Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe 2014, 30, 70–74. [Google Scholar] [CrossRef]
- Koike, S.; Ueno, M.; Miura, H.; Saegusa, A.; Inouchi, K.; Inabu, Y.; Sugino, T.; Guan, L.L.; MOba, M.; Kobayashi, Y. Rumen microbiota and its relation to fermentation in lactose-fed calves. J. Dairy Sci. 2021, 104, 10744–10752. [Google Scholar] [CrossRef]
- Allen, J.M.; Mailing, L.J.; Niemiro, G.M.; Moore, R.; Cook, M.D.; White, B.A.; Holscher, H.D.; Woods, J.A. Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 2018, 50, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Estaki, M.; Pither, J.; Baumeister, P.; Little, J.P.; Gill, S.K.; Ghosh, S.; Ahmadi-Vand, Z.; Marsden, K.R.; Gibson, D.L. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 2016, 4, 42. [Google Scholar] [CrossRef]
- Bongiovanni, T.; Li Yin, M.O.; Heaney, L.M. The Athlete and Gut Microbiome: Short-chain Fatty Acids as Potential Ergogenic Aids for Exercise and Training. Int. J. Sports Med. 2021, 42, 1143–1158. [Google Scholar] [PubMed]
- Sales, K.M.; Reimer, R.A. Unlocking a novel determinant of athletic performance: The role of the gut microbiota, short-chain fatty acids, and “biotics” in exercise. J. Sport Health Sci. 2023, 12, 36–44. [Google Scholar] [CrossRef]
- Cataldi, S.; Poli, L.; Sahin, F.N.; Patti, A.; Santacroce, L.; Bianco, A.; Greco, G.; Ghinassi, B.; Baldassarre, A.D.; Fischetti, F. The Effects of Physical Activity on the Gut Microbiota and the Gut-Brain Axis in Preclinical and Human Models: A Narrative Review. Nutrients 2022, 14, 3293. [Google Scholar] [CrossRef] [PubMed]
- Dalton, A.; Mermier, C.; Zuhl, M. Exercise influence on the microbiome-gut-brain axis. Gut Microbes 2019, 10, 555–568. [Google Scholar] [CrossRef]
- Dridi, B.; Khelaifia, S.; Fardeau, M.L.; Ollivier, B.; Drancourt, M. Tungsten-enhanced growth of Methanosphaera_stadtmanae. BMC Res. Notes 2012, 5, 238. [Google Scholar] [CrossRef]
- Ghoshal, U.C.; Srivastava, D.; Verma, A.; Misra, A. Slow Transit Constipation Associated With Excess Methane Production and Its Improvement Following Rifaximin Therapy: A Case Report. J. Neurogastroenterol. Motil. 2011, 17, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, K.; Chang, C.; Pimentel, M. Methanogens, methane, and gastrointestinal motility. J. Neurogastroenterol. Motil. 2014, 20, 31–40. [Google Scholar] [CrossRef]
- Pimentel, M.; Lin, H.C.; Enayati, P.; van den Burg, B.; Lee, H.R.; Chen, J.H.; Park, S. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G1089–G1095. [Google Scholar] [CrossRef]
- Wardenaar, F.; Schott, K.D.; Mohr, A.E.; Ortega-Santos, C.P.; Connolly, J.E. An Exploratory Study Investigating the Prevalence of Gastrointestinal Symptoms in Collegiate Division I American Football Athletes. Int. J. Environ. Res. Public Health 2023, 20, 6453. [Google Scholar] [CrossRef] [PubMed]
- Clauss, M.; Gerard, P.; Mosca, A.; Leclerc, M. Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Front. Nutr. 2021, 8, 637010. [Google Scholar] [CrossRef] [PubMed]
- Malaguti, M.; Editor, A. Dietary Patterns in Runners with Gastrointestinal Disorders. Nutrients 2021, 13, 448. [Google Scholar] [CrossRef] [PubMed]
Runners (n = 22) | Controls (n = 18) | Overall (N = 40) | p Value Runners vs. Controls | |
---|---|---|---|---|
Gender | ||||
Females | 9 (40.9%) | 9 (50.0%) | 18 (45%) | |
Males | 13 (59.1%) | 9 (50.0%) | 22 (55%) | |
BMI | ||||
Mean (SD) | 23.2 (2.61) | 23.9 (4.01) | 23.5 (3.31) | p = 0.47 |
Median (min, max) | 22.9 (19.1, 28.7) | 22.6 (18.9, 33.0) | 22.75 (18.9, 33.0) | |
Weekly training volume (km) | ||||
Mean (SD) | 67 (15.6) | 5 (0) | 36 (74.8) | p < 0.001 |
Median (min, max) | 60 (50.0, 90.0) | 5 (5.0, 5.0) | 30 (5.0, 90.0) | |
Cardiopulmonary indices | ||||
VT1 (mL/kg/min) | 35.86 ± 4.4 | 26.47 ± 3.9 | p < 0.001 | |
VT2 (mL/kg/min) | 43.2 ± 5.7 | 31.7 ± 4.5 | p < 0.001 | |
VO2max (mL/kg/min) | 46 ± 6.7 | 36.7 ± 5.4 | p < 0.001 | |
TEE (min) | 15.43 ± 6.7 | 7.4 ± 3.1 | p < 0.001 | |
Lactate max (mmol/L) | 8 ± 1.6 | 7.2 ± 2.8 | p = 0.2 |
Female Runners (n = 9) | Male Runners (n = 13) | |
---|---|---|
BMI Mean (SD) | 21.06 (1.46) | 24.61 (2.2) |
Weekly training volume (km) Mean (SD) | 61.11 (12.6) | 71.15 (16.6) |
Cardiopulmonary indices | ||
VT1 (mL/kg/min) | 34.25 ± 4.37 | 36.97 ± 4.38 |
VT2 (mL/kg/min) | 40.52 ± 4.33 | 45.06 ± 5.93 |
VO2max (mL/kg/min) | 43.87 ± 5.4 | 47.5 ± 7.4 |
TEE (min) | 15.20 ± 7.83 | 15.59 ± 6.22 |
Lactate max (mmol/L) | 7.71 ± 1.52 | 8.33 ± 1.79 |
Bacteria | Correlated with Weekly Training Volume [km] | Correlated with VO2max [mL/kg/min] | Correlated with Lactate Blood Levels [mmol/L] | Correlated with Time to Exhaustion [min] |
---|---|---|---|---|
g_Methanosphaera | r = 0.51 | r = 0.41 | ||
p-adj = 0.05 | p-adj = 0.007 | |||
g_Mitsuokella | r = 0.41 | r = 0.41 | ||
p-adj = 0.05 | p-adj = 0.03 | |||
g_Prevotellaceae | r = 0.41 | r = 0.63 | ||
p-adj = 0.05 | p-adj = 0.01 | |||
g_Megamonas | r = 0.43 | r = 0.45 | ||
p-adj = 0.04 | p-adj = 0.03 | |||
g_Rothia | r = 0.41 | r = 0.65 | ||
p-adj = 0.05 | p-adj = 0.002 | |||
g_Oscillospira | r = 0.43 | |||
p-adj = 0.02 | ||||
g_Bacteroides | r = 0.46 | |||
p-adj = 0.02 | ||||
g_Odoribacter | r = 0.41 | |||
p-adj = 0.05 | ||||
s_Blautia massiliensis | r = 0.69 | r = 0.69 | ||
p-adj = 0.006 | p-adj = 0.005 | |||
s_Butyricicoccus_pullicaecorum | r = 0.42 | r = 0.56 | ||
p-adj = 0.05 | p-adj = 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalmon, G.; Ibrahim, R.; Israel-Elgali, I.; Grad, M.; Shlayem, R.; Shapira, G.; Shomron, N.; Youngster, I.; Scheinowitz, M. Gut Microbiota Composition Positively Correlates with Sports Performance in Competitive Non-Professional Female and Male Runners. Life 2024, 14, 1397. https://doi.org/10.3390/life14111397
Shalmon G, Ibrahim R, Israel-Elgali I, Grad M, Shlayem R, Shapira G, Shomron N, Youngster I, Scheinowitz M. Gut Microbiota Composition Positively Correlates with Sports Performance in Competitive Non-Professional Female and Male Runners. Life. 2024; 14(11):1397. https://doi.org/10.3390/life14111397
Chicago/Turabian StyleShalmon, Guy, Rawan Ibrahim, Ifat Israel-Elgali, Meitar Grad, Rani Shlayem, Guy Shapira, Noam Shomron, Ilan Youngster, and Mickey Scheinowitz. 2024. "Gut Microbiota Composition Positively Correlates with Sports Performance in Competitive Non-Professional Female and Male Runners" Life 14, no. 11: 1397. https://doi.org/10.3390/life14111397
APA StyleShalmon, G., Ibrahim, R., Israel-Elgali, I., Grad, M., Shlayem, R., Shapira, G., Shomron, N., Youngster, I., & Scheinowitz, M. (2024). Gut Microbiota Composition Positively Correlates with Sports Performance in Competitive Non-Professional Female and Male Runners. Life, 14(11), 1397. https://doi.org/10.3390/life14111397