Enrichment of Dairy-Type Lamb Diet with Microencapsulated Omega-3 Fish Oil: Effects on Growth, Carcass Quality and Meat Fatty Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dietary Treatments and Growth Performance
2.2. Carcass Sampling
2.3. Meat Traits
2.4. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Quality and Meat Traits
3.3. Lamb Meat Fatty Acids
4. Discussion
4.1. Growth Performance and Carcass Characteristics
4.2. Carcass and Meat Quality
4.3. Meat Fatty Acids Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Grigoli, A.; Bonanno, A.; Rabie Ashkezary, M.; Laddomada, B.; Alabiso, M.; Vitale, F.; Di Miceli, G. Meat Production from Dairy Breed Lambs Due to Slaughter Age and Feeding Plan Based on Wheat Bran. Animals 2019, 9, 892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponnampalam, E.N.; Knight, M.I.; Moate, P.J.; Jacobs, J.L. An alternative approach for sustainable sheep meat production: Implication for food security. J. Anim. Sci. Biotechnol. 2020, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Pewan, S.B.; Otto, J.R.; Kinobe, R.T.; Adegboye, O.A.; Malau-Aduli, A.E.O. Nutritional enhancement of health beneficial omega-3 long-chain polyunsaturated fatty acids in the muscle, liver, kidney, and heart of Tattykeel Australian white MARGRA lambs fed pellets fortified with omega-3 oil in a feedlot system. Biology 2021, 10, 912. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Budimir, K.; Mozzon, M.; Toderi, M.; D’Ottavio, P.; Trombetta, M.F. Effect of breed on fatty acid composition of meat and subcutaneous adipose tissue of light lambs. Animals 2020, 10, 535. [Google Scholar] [CrossRef] [Green Version]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kralik, G.; Škrtić, Z.; Suchý, P.; Straková, E.; Gajčević, Z. Feeding fish oil and linseed oil to laying hens to increase the n-3 PUFA in egg yolk. Acta Vet. Brno 2008, 77, 561–568. [Google Scholar] [CrossRef]
- De Marzo, D.; Laudadio, V.; Khan, R.U.; Tufarelli, V.; Maiorano, G. Feeding of Camelina sativa Seeds to Light-Type Gentile di Puglia Lambs: Effect on Productive Performance and Muscle Fatty Acid Composition. Anim. Biotechnol. 2022, 1–7. [Google Scholar] [CrossRef]
- Tedone, L.; Giannico, F.; Tufarelli, V.; Laudadio, V.; Selvaggi, M.; De Mastro, G.; Colonna, M.A. Camelina sativa (L. Crantz) Fresh Forage Productive Performance and Quality at Different Vegetative Stages: Effects of Dietary Supplementation in Ionica Goats on Milk Quality. Agriculture 2022, 12, 91. [Google Scholar] [CrossRef]
- Sharifi, M.; Bashtani, M.; Naserian, A.A.; Farhangfar, H.; Rasani, M.; Emami, A. Grape seed oil supplementation in lamb diet: Effect on meat oxidation stability and muscle fatty acids. Ital. J. Anim. Sci. 2019, 18, 1302–1309. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E. Growth performance and carcass characteristics of Australian prime lambs supplemented with pellets containing canola oil or flaxseed oil. Anim. Prod. Sci. 2017, 58, 2100–2108. [Google Scholar] [CrossRef]
- Doreau, M.; Ferlay, A. Digestion and utilisation of fatty acids by ruminants. Anim. Feed Sci. Technol. 1994, 45, 379–396. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Sinclair, A.J.; Hosking, B.J.; Egan, A.R. Effects of dietary lipid type on muscle fatty acid composition, carcass leanness, and meat toughness in lambs. J. Anim. Sci. 2022, 80, 628–636. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Small Ruminants; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Husveth, F.; Rozsa, L.; Magyar, L.; Bali, G.; Papocsi, P. N-3 fatty acid enrichment of table eggs by adding a fish oil preparation (Nordos Fat®) to the diet of laying hens. Arch. Für Geflügelkunde 2003, 67, 198–203. [Google Scholar]
- Tufarelli, V.; Introna, M.; Cazzato, E.; Mazzei, D.; Laudadio, V. Suitability of partly destoned exhausted olive cake as by-product feed ingredient for lamb production. J. Anim. Sci. 2013, 91, 872–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tufarelli, V.; Khan, R.U.; Laudadio, V. Feeding of wheat middlings in lamb total mixed rations: Effects on growth performance and carcass traits. Anim. Feed Sci. Technol. 2011, 170, 130–135. [Google Scholar] [CrossRef]
- Sarvar, E.N.; Moeini, M.; Poyanmehr, M.; Mikaeli, E. The effects of docking on growth traits, carcass characteristics and blood biochemical parameters of Sanjabi fat-tailed lambs. Asian-Australas. J. Anim. Sci. 2009, 22, 796–802. [Google Scholar] [CrossRef]
- Maiorano, G.; Wilkanowska, A.; Tavaniello, S.; Di Memmo, D.; De Marzo, D.; Gambacorta, M. Effect of intramuscular injections of DL-α-tocopheryl acetate on growth performance and extracellular matrix of growing lambs. Animal 2015, 9, 2060–2064. [Google Scholar] [CrossRef]
- Šicklep, M.; Čandek-Potokar, M. Pork color measurement as affected by bloom time and measurement location. J. Muscle Foods 2007, 18, 78–87. [Google Scholar]
- Folch, J.; Lees, M.; Sloan-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- SAS Institute. SAS/STAT 9.1.3 User’s Guide; SAS Institute: Cary, NC, USA, 2002–2003. [Google Scholar]
- Dugan, M.; Aldai, N.; Aalhus, J.; Rolland, D.; Kramer, J. Forming beef to provide healthier fatty acid profiles. Can. J. Anim. Sci. 2011, 91, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Białek, M.; Czauderna, M.; Białek, A. Partial replacement of rapeseed oil with fish oil, and dietary antioxidants supplementation affects concentrations of biohydrogenation products and conjugated fatty acids in rumen and selected lamb tissues. Anim. Feed. Sci. Technol. 2018, 241, 63–74. [Google Scholar] [CrossRef]
- Ferreira, E.M.; Pires, A.V.; Susin, I.; Gentil, R.S.; Parente, M.O.M.; Nolli, C.P.; Meneghini, R.C.M.; Mendes, C.Q.; Ribeiro, C.V.D.M. Growth, feed intake, carcass characteristics, and meat fatty acid profile of lambs fed soybean oil partially replaced by fish oil blend. Anim. Feed. Sci. Technol. 2014, 187, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Hernández-García, P.A.; Mendoza-Martínez, G.D.; Sánchez, N.; Martínez-García, J.A.; Plata-Pérez, F.X.; Lara-Bueno, A.; Ferraro, S.M. Effects of increasing dietary concentrations of fish oil on lamb performance, ruminal fermentation, and leptin gene expression in perirenal fat. Rev. Bras. De Zootec. 2017, 46, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Marinova, P.; Popava, T.; Banskalieve, V.; Raicheva, E.; Ignatova, M.; Vasileva, V. Effect of fish oil supplemented diet on the performance, carcass composition and quality in lambs. Bulg. J. Agric. Sci. 2007, 13, 729. [Google Scholar]
- Annett, R.W.; Carson, A.F.; Dawson, L.E.R.; Kilpatrick, D.J. Effects of dam breed and dietary source of n-3 polyunsaturated fatty acids on the growth and carcass characteristics of lambs sourced from hill sheep flocks. Animal 2011, 5, 1023–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priolo, A.; Micol, D.; Agabriel, J. Effects of grass feeding systems on ruminant meat colour and flavour. A review. Anim. Res. 2011, 50, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Ponnampalam, E.N.; Butler, K.L.; McDonagh, M.B.; Jacobs, J.L.; Hopkins, D.L. Relationship between muscle antioxidant status, forms of iron, polyunsaturated fatty acids and functionality (retail colour) of meat in lambs. Meat Sci. 2012, 90, 297–303. [Google Scholar] [CrossRef]
- Díaz, M.T.; Cañeque, V.; Sánchez, C.I.; Lauzurica, S.; Pérez, C.; Fernández, C.; Álvarez, I.; De la Fuente, J. Nutritional and sensory aspects of light lamb meat enriched in n−3 fatty acids during refrigerated storage. Food Chem. 2011, 124, 147–155. [Google Scholar] [CrossRef]
- Abuelfatah, K.; Zuki, A.B.Z.; Goh, Y.M.; Sazili, A.Q. Effects of Enriching Goat Meat with n-3 Polyunsaturated Fatty Acids on Meat Quality and Stability. Small Rumin. Res. 2016, 136, 36–42. [Google Scholar] [CrossRef]
- Kafantaris, I.; Kotsampasi, B.; Christodoulou, V.; Makri, S.; Stagos, D.; Gerasopoulos, K.; Kouretas, D. Effects of dietary grape pomace supplementation on performance, carcass traits and meat quality of lambs. In Vivo 2018, 32, 807–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworska, D.; Czauderna, M.; Przybylski, W.; Rozbicka-Wieczorek, A.J. Sensory quality and chemical composition of meat from lambs fed diets enriched with fish and rapeseed oils, carnosic acid and seleno-compounds. Meat Sci. 2016, 119, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Gao, D.; Zhang, Q.; Wang, Y.; Gao, A. Performance, meat quality, intramuscular fatty acid profile, rumen characteristics and serum parameters of lambs fed microencapsulated or conventional linseed oil. Czech J. Anim. Sci. 2022, 67, 365–373. [Google Scholar] [CrossRef]
- Bessa, R.J.; Alves, S.P.; Jerónimo, E.; Alfaia, C.M.; Prates, J.A.; Santos-Silva, J. Effect of lipid supplements on ruminal biohydrogenation intermediates and muscle fatty acids in lambs. Eur. J. Lipid Sci. Technol. 2007, 109, 868–878. [Google Scholar] [CrossRef]
- Jerónimo, E.; Alves, S.P.; Dentinho, M.T.P.; Martins, S.V.; Prates, J.A.M.; Vasta, V.; Santos-Silva, J.; Bessa, R.J.B. Effect of grape seed extract, Cistus ladanifer L.; and vegetable oil supplementation on fatty acid composition of abomasal digesta and intramuscular fat of lambs. J. Agric. Food Chem. 2010, 58, 10710–10721. [Google Scholar] [CrossRef]
- Popova, T.; Marinova, P.; Banskalieva, V.; Vasileva, V. Content and fatty acid composition of different fat depots of lambs receiving fish oil supplemented diet. Bulg. J. Agric. Sci. 2008, 14, 100–107. [Google Scholar]
Ingredients (% as-Fed Basis) | Diet | ||
---|---|---|---|
CON | MEOIL1 | MEOIL3 | |
Corn | 27.90 | 27.90 | 25.80 |
Barley | 18.50 | 18.50 | 18.00 |
Wheat bran | 8.50 | 8.50 | 9.10 |
Soybean meal, 44% CP | 8.50 | 8.50 | 8.50 |
Oat hay | 7.50 | 7.50 | 7.50 |
Wheat middlings | 7.00 | 7.00 | 7.50 |
Dehydrated beet pulp | 5.00 | 5.00 | 4.50 |
Soybean hulls | 5.00 | 5.00 | 4.50 |
Sunflower meal | 4.00 | 4.00 | 4.50 |
Field bean | 3.50 | 3.50 | 3.50 |
Calcium carbonate | 2.00 | 2.00 | 2.00 |
Soybean oil | 1.00 | - | - |
Microencapsulated oil | - | 1.00 | 3.00 |
Dicalcium phosphate | 0.50 | 0.50 | 0.50 |
Sodium chloride | 0.25 | 0.25 | 0.25 |
Vitamin-mineral premix 1 | 0.25 | 0.25 | 0.25 |
Calcium sulphate | 0.20 | 0.20 | 0.20 |
Yeast | 0.20 | 0.20 | 0.20 |
Magnesium carbonate | 0.10 | 0.10 | 0.10 |
Sodium bicarbonate | 0.10 | 0.10 | 0.10 |
Chemical composition (%) | |||
Dry matter | 89.97 | 89.65 | 89.41 |
Crude protein | 14.95 | 14.88 | 14.85 |
Ether extract | 3.50 | 3.54 | 4.95 |
Neutral detergent fiber | 19.01 | 19.10 | 18.78 |
Acid detergent fiber | 10.80 | 10.87 | 10.68 |
Ash | 6.90 | 6.93 | 6.90 |
Metabolizable energy, MJ/kg DM | 11.02 | 11.05 | 11.17 |
Fatty Acids | % | |
---|---|---|
Total lipids | 84.16 | |
Lauric acid | C12:0 | 0.12 |
Myristic acid | C14:0 | 3.10 |
Palmitic acid | C16:0 | 16.12 |
Palmitoleic acid | C16:1 | 0.48 |
Stearic acid | C18:0 | 37.72 |
Oleic acid | C18:1 | 4.64 |
Linoleic acid | C18:2 n-6 | 2.45 |
Linolenic acid | C18:3 n-3 | 11.00 |
Eicosanoic acid | C20:0 | 1.07 |
Gadoleic acid | C20:1 | 0.21 |
Dihomo-γ-linolenic acid | C20:3 n-6 | 0.18 |
Arachidonic acid | C20:4 n-6 | 1.19 |
Eicosapentaenoic acid | C20:5 n-3 | 5.98 |
Docosapentaenoic acid | C22:5 n-3 | 2.48 |
Docosahexaenoic acid | C22:6 n-3 | 11.15 |
Not identified | - | 2.11 |
Total fatty acids | 100.00 | |
Σ SFA | 58.13 | |
Σ MUFA | 5.33 | |
Σ n-6 PUFA | 3.82 | |
Σ n-3 PUFA | 30.61 |
Item | Diet | SEM | p-Value | ||
---|---|---|---|---|---|
CON | MEOIL1 | MEOIL3 | |||
Initial BW, kg | 14.4 | 14.5 | 14.4 | 0.276 | 0.898 |
Final BW, kg | 26.2 b | 26.7 b | 28.8 a | 1.723 | 0.027 |
Average daily BW gain, g/d | 197 | 203 | 207 | 12.01 | 0.061 |
Average daily feed intake, g/d | 1153 | 1160 | 1185 | 19.49 | 0.177 |
Feed conversion ratio, g DM/g gain | 5.85 b | 5.71 a | 5.72 a | 0.198 | 0.029 |
Item | Diet | ||||
---|---|---|---|---|---|
CON | MEOIL1 | MEOIL3 | SEM | p-Value | |
Slaughtering data | |||||
Empty BW, kg | 25.0 b | 25.6 b | 27.3 a | 0.269 | 0.034 |
Hot carcass dressing 1 | 57.2 b | 58.1 a | 58.5 a | 0.598 | 0.041 |
Cold carcass dressing 1 | 56.2 b | 57.3 a | 57.4 a | 0.422 | 0.046 |
Skin 1 | 11.21 | 10.84 | 11.02 | 0.101 | 0.098 |
Head 1 | 5.13 | 5.34 | 5.57 | 0.087 | 0.111 |
Offal 1,2 | 4.69 | 5.01 | 5.19 | 0.065 | 0.099 |
Carcass measurements, cm | |||||
External carcass length | 75.0 | 76.2 | 75.8 | 0.602 | 0.121 |
Internal carcass length | 60.5 | 60.7 | 61.0 | 0.430 | 0.098 |
Leg length | 31.2 | 31.5 | 31.7 | 0.401 | 0.215 |
Chest width | 21.1 | 21.7 | 21.2 | 0.392 | 0.259 |
Meat cuts | |||||
Right-half carcass, kg | 5.24 | 5.79 | 6.12 | 0.067 | 0.098 |
Neck 3 | 10.49 | 9.78 | 10.15 | 0.125 | 0.087 |
Shoulder 3 | 17.74 | 18.85 | 18.45 | 0.177 | 0.061 |
Leg 3 | 31.26 | 31.77 | 31.86 | 0.298 | 0.101 |
Loin 3 | 8.01 b | 9.84 a | 9.11 a | 0.102 | 0.043 |
Brisket 3 | 12.05 | 12.44 | 12.50 | 0.163 | 0.091 |
Ribs 3 | 12.91 | 12.83 | 12.68 | 0.190 | 0.101 |
Carcass composition | |||||
Lean 4 | 0.603 | 0.604 | 0.596 | 0.065 | 0.076 |
Bone 4 | 0.088 | 0.093 | 0.095 | 0.088 | 0.159 |
Dissectible fat 4 | 0.309 | 0.303 | 0.309 | 0.176 | 0.112 |
Item | Diet | ||||
---|---|---|---|---|---|
CON | MEOIL1 | MEOIL3 | SEM | p-Value | |
pH0 | 6.71 | 6.73 | 6.75 | 0.044 | 0.188 |
pH24 | 5.70 | 5.69 | 5.67 | 0.040 | 0.095 |
L* | 38.62 b | 40.65 a | 41.91 a | 1.012 | 0.032 |
a* | 17.52 | 17.13 | 17.09 | 0.165 | 0.082 |
b* | 7.31 | 7.27 | 7.12 | 0.335 | 0.095 |
WBS raw, kg/cm2 | 2.97 | 3.13 | 3.66 | 0.149 | 0.078 |
WBS cooked, kg/cm2 | 3.73 b | 2.69 a | 2.52 a | 0.078 | 0.025 |
Cooking loss, % | 14.32 b | 13.77 a | 13.85 a | 0.587 | 0.028 |
Chemical composition, % | |||||
Moisture | 74.23 | 74.22 | 74.21 | 0.089 | 0.377 |
Protein | 19.21 | 19.12 | 19.11 | 0.097 | 0.241 |
Lipids | 5.29 | 5.41 | 5.44 | 0.038 | 0.057 |
Ash | 1.27 | 1.25 | 1.24 | 0.045 | 0.198 |
Item | Diet | ||||
---|---|---|---|---|---|
CON | MEOIL1 | MEOIL3 | SEM | p-Value | |
C10:0 Capric | 0.33 | 0.13 | 0.21 | 0.077 | 0.052 |
C12:0 Lauric | 0.21 | 0.16 | 0.22 | 0.022 | 0.104 |
C14:0 Myristic | 4.73 b | 2.55 a | 3.09 a | 0.917 | 0.023 |
C15:0 Pentadecylic | 0.56 | 0.47 | 0.58 | 0.070 | 0.211 |
C16:0 Palmitic | 23.04 | 23.10 | 23.07 | 0.833 | 0.095 |
C17:0 Heptadecanoic | 1.67 b | 3.16 a | 3.00 a | 0.159 | 0.047 |
C18:0 Stearic | 18.30 | 18.95 | 18.55 | 0.321 | 0.083 |
C20:0 Arachidic | 0.16 | 0.21 | 0.20 | 0.011 | 0.065 |
C16:1 n-7 Palmitoleic | 1.95 | 1.70 | 1.81 | 0.077 | 0.088 |
C17:1 Heptadecenoic | 0.76 | 0.66 | 0.65 | 0.035 | 0.195 |
C18:1 n-9 Oleic | 42.31 a | 41.97 b | 41.82 b | 0.612 | 0.036 |
C18:2 n-6 Linoleic | 3.43 | 3.74 | 3.63 | 0.418 | 0.095 |
C18:3 n-3 α-Linolenic | 1.39 b | 1.48 a | 1.52 a | 0.031 | 0.023 |
C20:1 Eicosenoic | 0.17 | 0.18 | 0.16 | 0.012 | 0.216 |
C20:5 n-3 EPA | 0.58 b | 0.67 a | 0.64 a | 0.045 | 0.039 |
C22:6 n-3 DHA | 0.42 b | 0.87 a | 0.85 a | 0.060 | 0.021 |
Σ SFA | 48.90 | 48.73 | 48.92 | 1.003 | 0.061 |
Σ UFA | 51.10 | 51.27 | 51.08 | 1.122 | 0.075 |
SFA/UFA | 0.96 | 0.95 | 0.96 | 0.045 | 0.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Marzo, D.; Bozzo, G.; Ceci, E.; Losacco, C.; Dimuccio, M.M.; Khan, R.U.; Laudadio, V.; Tufarelli, V. Enrichment of Dairy-Type Lamb Diet with Microencapsulated Omega-3 Fish Oil: Effects on Growth, Carcass Quality and Meat Fatty Acids. Life 2023, 13, 275. https://doi.org/10.3390/life13020275
De Marzo D, Bozzo G, Ceci E, Losacco C, Dimuccio MM, Khan RU, Laudadio V, Tufarelli V. Enrichment of Dairy-Type Lamb Diet with Microencapsulated Omega-3 Fish Oil: Effects on Growth, Carcass Quality and Meat Fatty Acids. Life. 2023; 13(2):275. https://doi.org/10.3390/life13020275
Chicago/Turabian StyleDe Marzo, Davide, Giancarlo Bozzo, Edmondo Ceci, Caterina Losacco, Michela Maria Dimuccio, Rifat Ullah Khan, Vito Laudadio, and Vincenzo Tufarelli. 2023. "Enrichment of Dairy-Type Lamb Diet with Microencapsulated Omega-3 Fish Oil: Effects on Growth, Carcass Quality and Meat Fatty Acids" Life 13, no. 2: 275. https://doi.org/10.3390/life13020275
APA StyleDe Marzo, D., Bozzo, G., Ceci, E., Losacco, C., Dimuccio, M. M., Khan, R. U., Laudadio, V., & Tufarelli, V. (2023). Enrichment of Dairy-Type Lamb Diet with Microencapsulated Omega-3 Fish Oil: Effects on Growth, Carcass Quality and Meat Fatty Acids. Life, 13(2), 275. https://doi.org/10.3390/life13020275