Fatty Acid Composition of Pseudocereals and Seeds Used as Functional Food Ingredients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Analytical Methods
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Seeds as a Source of Essential n-3 Polyunsaturated Fatty Acids
4.2. Pseudocereals as a Source of Fat and Fatty Acids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A | amaranth |
ALA | α-linolenic acid |
BP | blue poppy |
BW | buckwheat |
C | chia |
FA | fatty acids |
FAME | fatty acid methyl esters |
H | hemp |
H/H | hypocholesterolemic/hypercholesterolemic ratio |
IA | index of atherogenicity |
IT | index of thrombogenicity |
K | canihua |
L | flax |
LA | linoleic acid |
MUFAs | monounsaturated fatty acids |
P | pumpkin |
PP | plantago |
PUFAs | polyunsaturated fatty acids |
Q | quinoa |
S | sesame |
SFAs | saturated fatty acids |
SM | milk thistle |
SN | sunflower |
References
- Bewley, J.D.; Black, M. Seeds. In Seeds: Physiology of Development and Germination; Bewley, J.D., Black, M., Eds.; Springer US: Boston, MA, USA, 1994; pp. 1–33. ISBN 978-1-4899-1002-8. [Google Scholar]
- Ros, E.; Hu, F.B. Consumption of Plant Seeds and Cardiovascular Health: Epidemiologic and Clinical Trial Evidence. Circulation 2013, 128, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Alasalvar, C.; Chang, S.K.; Bolling, B.; Oh, W.Y.; Shahidi, F. Specialty Seeds: Nutrients, Bioactives, Bioavailability, and Health Benefits: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2382–2427. [Google Scholar] [CrossRef] [PubMed]
- Martins, Z.; Castro Pinho, O.; Ferreira, I.M.P.L.V.O. Food Industry By-Products Used as Functional Ingredients of Bakery Products. Trends Food Sci. Technol. 2017, 67, 106–128. [Google Scholar] [CrossRef]
- Barsby, J.P.; Cowley, J.M.; Leemaqz, S.Y.; Grieger, J.A.; McKeating, D.R.; Perkins, A.V.; Bastian, S.E.P.; Burton, R.A.; Bianco-Miotto, T. Nutritional Properties of Selected Superfood Extracts and Their Potential Health Benefits. PeerJ 2021, 9, e12525. [Google Scholar] [CrossRef] [PubMed]
- Białek, A.; Białek, M.; Jelinska, M.; Tokarz, A. Fatty Acid Composition and Oxidative Characteristics of Novel Edible Oils in Poland. CyTA-J. Food 2017, 15, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Parker, T.D.; Adams, D.A.; Zhou, K.; Harris, M.; Yu, L. Fatty Acid Composition and Oxidative Stability of Cold-pressed Edible Seed Oils. J. Food Sci. 2003, 68, 1240–1243. [Google Scholar] [CrossRef]
- Ciftci, O.N.; Przybylski, R.; Rudzińska, M. Lipid Components of Flax, Perilla, and Chia Seeds. Eur. J. Lipid Sci. Technol. 2012, 114, 794–800. [Google Scholar] [CrossRef]
- Cox, S.; Garcia, K.; Carlson, C. Superfood Seeds. In Superfoods: Cultural and Scientific Perspectives; Miller, J.P., Van Buiten, C., Eds.; Food and Health; Springer International Publishing: Cham, Switzerland, 2022; pp. 125–139. ISBN 978-3-030-93240-4. [Google Scholar]
- Schoenlechner, R.; Siebenhandl, S.; Berghofer, E. 7-Pseudocereals. In Gluten-Free Cereal Products and Beverages; Arendt, E.K., Dal Bello, F., Eds.; Food Science and Technology; Academic Press: San Diego, CA, USA, 2008; pp. 149–VI. ISBN 978-0-12-373739-7. [Google Scholar]
- Sandoval-Oliveros, M.R.; Paredes-López, O. Isolation and Characterization of Proteins from Chia Seeds (Salvia hispanica L.). Available online: https://pubs.acs.org/doi/abs/10.1021/jf3034978 (accessed on 9 April 2019).
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal Grains: Nutritional Value, Health Benefits and Current Applications for the Development of Gluten-Free Foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive Value of Pseudocereals and Their Increasing Use as Functional Gluten-Free Ingredients. Trends Food Sci. Technol. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- AOAC International. AOAC Fatty Acid in Oils and Fats Preparation of Methyl Ester Boron Trifluoride Method. In AOAC Official Method 969.33; AOAC International: Washington, DC, USA, 1990. [Google Scholar]
- Białek, A.; Białek, M.; Jelinska, M.; Tokarz, A. Fatty Acid Profile of New Promising Unconventional Plant Oils for Cosmetic Use. Int. J. Cosmet. Sci. 2016, 38, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Konuskan, D.B.; Arslan, M.; Oksuz, A. Physicochemical Properties of Cold Pressed Sunflower, Peanut, Rapeseed, Mustard and Olive Oils Grown in the Eastern Mediterranean Region. Saudi J. Biol. Sci. 2019, 26, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Al-Amiri, H.A.; Ahmed, N.; Al-Sharrah, T. Fatty Acid Profiles, Cholesterol Composition, and Nutritional Quality Indices of 37 Commonly Consumed Local Foods in Kuwait in Relation to Cardiovascular Health. medRxiv 2020. [Google Scholar] [CrossRef]
- Ying, Q.; Wojciechowska, P.; Siger, A.; Kaczmarek, A.; Rudzińska, M. Phytochemical Content, Oxidative Stability, and Nutritional Properties of Unconventional Cold-Pressed Edible Oils. J. Food Nutr. Res. 2018, 6, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Sumara, A.; Stachniuk, A.; Montowska, M.; Kotecka-Majchrzak, K.; Grywalska, E.; Mitura, P.; Saftić Martinović, L.; Kraljević Pavelić, S.; Fornal, E. Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions. Food Rev. Int. 2022, 1–21. [Google Scholar] [CrossRef]
- Andjelkovic, M.; Camp, J.V.; Trawka, A.; Verhé, R. Phenolic Compounds and Some Quality Parameters of Pumpkin Seed Oil. Eur. J. Lipid Sci. Technol. 2010, 112, 208–217. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Pholphana, N.; Mahidol, C.; Wongyai, W.; Saengsooksree, K.; Nookabkaew, S.; Satayavivad, J. Variation of Sesamin, Sesamolin and Tocopherols in Sesame (Sesamum indicum L.) Seeds and Oil Products in Thailand. Food Chem. 2010, 122, 724–730. [Google Scholar] [CrossRef]
- Çelik, H.T.; Gürü, M. Extraction of Oil and Silybin Compounds from Milk Thistle Seeds Using Supercritical Carbon Dioxide. J. Supercrit. Fluids 2015, 100, 105–109. [Google Scholar] [CrossRef]
- Fathi-Achachlouei, B.; Azadmard-Damirchi, S. Milk Thistle Seed Oil Constituents from Different Varieties Grown in Iran. J. Am. Oil Chem. Soc. 2009, 86, 643–649. [Google Scholar] [CrossRef]
- Krist, S.; Stuebiger, G.; Bail, S.; Unterweger, H. Detection of Adulteration of Poppy Seed Oil with Sunflower Oil Based on Volatiles and Triacylglycerol Composition. J. Agric. Food Chem. 2006, 54, 6385–6389. [Google Scholar] [CrossRef] [PubMed]
- Rezig, L.; Chouaibi, M.; Msaada, K.; Hamdi, S. Chemical Composition and Profile Characterisation of Pumpkin (Cucurbita maxima) Seed Oil. Ind. Crops Prod. 2012, 37, 82–87. [Google Scholar] [CrossRef]
- Were, B.A.; Onkware, A.O.; Gudu, S.; Welander, M.; Carlsson, A.S. Seed Oil Content and Fatty Acid Composition in East African Sesame (Sesamum indicum L.) Accessions Evaluated over 3 Years. Field Crops Res. 2006, 97, 254–260. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines12. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Venegas-Calerón, M.; Sayanova, O.; Napier, J.A. An Alternative to Fish Oils: Metabolic Engineering of Oil-Seed Crops to Produce Omega-3 Long Chain Polyunsaturated Fatty Acids. Prog. Lipid Res. 2010, 49, 108–119. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Budoff, M.J.; Mason, R.P. A Revolution in Omega-3 Fatty Acid Research. J. Am. Coll. Cardiol. 2020, 76, 2098–2101. [Google Scholar] [CrossRef] [PubMed]
- Ixtaina, V.Y.; Martínez, M.L.; Spotorno, V.; Mateo, C.M.; Maestri, D.M.; Diehl, B.W.K.; Nolasco, S.M.; Tomás, M.C. Characterization of Chia Seed Oils Obtained by Pressing and Solvent Extraction. J. Food Compos. Anal. 2011, 24, 166–174. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Gai, F.; Tassone, S. Fatty Acid Profile and Nutritive Value of Quinoa (Chenopodium quinoa Willd.) Seeds and Plants at Different Growth Stages. Anim. Feed Sci. Technol. 2013, 183, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Ayerza (h), R.; Coates, W. Protein Content, Oil Content and Fatty Acid Profiles as Potential Criteria to Determine the Origin of Commercially Grown Chia (Salvia hispanica L.). Ind. Crops Prod. 2011, 34, 1366–1371. [Google Scholar] [CrossRef]
- Hall, C.; Tulbek, M.C.; Xu, Y. Flaxseed. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2006; Volume 51, pp. 1–97. [Google Scholar]
- Ursoniu, S.; Sahebkar, A.; Andrica, F.; Serban, C.; Banach, M. Effects of Flaxseed Supplements on Blood Pressure: A Systematic Review and Meta-Analysis of Controlled Clinical Trial. Clin. Nutr. 2016, 35, 615–625. [Google Scholar] [CrossRef]
- Prasad, K. Flaxseed and Cardiovascular Health. J. Cardiovasc. Pharmacol. 2009, 54, 369–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogna, S.; Kaur, J.; Sharma, K.; Bhadariya, V.; Singh, J.; Kumar, V.; Rasane, P.; Vipasha, V. A Systematic Review on the Role of Alpha Linolenic Acid (ALA) in Combating Non-Communicable Diseases (NCDs). Nutr. Food Sci. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Rodriguez-Leyva, D.; Bassett, C.M.; McCullough, R.; Pierce, G.N. The Cardiovascular Effects of Flaxseed and Its Omega-3 Fatty Acid, Alpha-Linolenic Acid. Can. J. Cardiol. 2010, 26, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and Therapeutic Perspectives of Chia (Salvia hispanica L.): A Review. J. Food Sci. Technol. 2016, 53, 1750–1758. [Google Scholar] [CrossRef] [Green Version]
- The European Food Safety Authority (EFSA). Labelling Reference Intake Values for N-3 and n-6 Polyunsaturated Fatty Acids. EFSA J. 2009, 7, 1176. [Google Scholar] [CrossRef]
- Woods, V.B.; Fearon, A.M. Dietary Sources of Unsaturated Fatty Acids for Animals and Their Transfer into Meat, Milk and Eggs: A Review. Livest. Sci. 2009, 126, 1–20. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching Laying Hens Eggs by Feeding Diets with Different Fatty Acid Composition and Antioxidants. Sci. Rep. 2021, 11, 20707. [Google Scholar] [CrossRef] [PubMed]
- Kalakuntla, S.; Nagireddy, N.K.; Panda, A.K.; Jatoth, N.; Thirunahari, R.; Vangoor, R.R. Effect of Dietary Incorporation of N-3 Polyunsaturated Fatty Acids Rich Oil Sources on Fatty Acid Profile, Keeping Quality and Sensory Attributes of Broiler Chicken Meat. Anim. Nutr. 2017, 3, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Leizer, C.; Ribnicky, D.; Poulev, A.; Dushenkov, S.; Raskin, I. The Composition of Hemp Seed Oil and Its Potential as an Important Source of Nutrition. J. Nutraceuticals Funct. Med. Foods 2000, 2, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Da Porto, C.; Decorti, D.; Tubaro, F. Fatty Acid Composition and Oxidation Stability of Hemp (Cannabis sativa L.) Seed Oil Extracted by Supercritical Carbon Dioxide. Ind. Crops Prod. 2012, 36, 401–404. [Google Scholar] [CrossRef]
- Imran, M.; Nadeem, M.; Manzoor, M.F.; Javed, A.; Ali, Z.; Akhtar, M.N.; Ali, M.; Hussain, Y. Fatty Acids Characterization, Oxidative Perspectives and Consumer Acceptability of Oil Extracted from Pre-Treated Chia (Salvia hispanica L.) Seeds. Lipids Health Dis. 2016, 15, 162. [Google Scholar] [CrossRef] [Green Version]
- Krkošková, B.; Mrázová, Z. Prophylactic Components of Buckwheat. Food Res. Int. 2005, 38, 561–568. [Google Scholar] [CrossRef]
- Omary, M.B.; Fong, C.; Rothschild, J.; Finney, P. REVIEW: Effects of Germination on the Nutritional Profile of Gluten-Free Cereals and Pseudocereals: A Review. Cereal Chem. 2012, 89, 1–14. [Google Scholar] [CrossRef]
- Gulpinar, A.R.; Erdogan Orhan, I.; Kan, A.; Senol, F.S.; Celik, S.A.; Kartal, M. Estimation of in Vitro Neuroprotective Properties and Quantification of Rutin and Fatty Acids in Buckwheat (Fagopyrum esculentum Moench) Cultivated in Turkey. Food Res. Int. 2012, 46, 536–543. [Google Scholar] [CrossRef]
- Steadman, K.J.; Burgoon, M.S.; Lewis, B.A.; Edwardson, S.E.; Obendorf, R.L. Buckwheat Seed Milling Fractions: Description, Macronutrient Composition and Dietary Fibre. J. Cereal Sci. 2001, 33, 271–278. [Google Scholar] [CrossRef]
- Zhang, Z.-L.; Zhou, M.-L.; Tang, Y.; Li, F.-L.; Tang, Y.-X.; Shao, J.-R.; Xue, W.-T.; Wu, Y.-M. Bioactive Compounds in Functional Buckwheat Food. Food Res. Int. 2012, 49, 389–395. [Google Scholar] [CrossRef]
- Nowak, V.; Du, J.; Charrondière, U.R. Assessment of the Nutritional Composition of Quinoa (Chenopodium quinoa Willd.). Food Chem. 2016, 193, 47–54. [Google Scholar] [CrossRef]
- Ogrodowska, D.; Zadernowski, R.; Czaplicki, S.; Derewiaka, D.; Wronowska, B. Amaranth Seeds and Products—The Source of Bioactive Compounds. Pol. J. Food Nutr. Sci. 2014, 64, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Villa, D.; Russo, L.; Kerbab, K.; Landi, M.; Rastrelli, L. Chemical and Nutritional Characterization of Chenopodium pallidicaule (Cañ Ihua) and Chenopodium quinoa (Quinoa) Seeds. Emir. J. Food Agric. 2014, 26, 609. [Google Scholar] [CrossRef] [Green Version]
- Berganza, B.E.; Moran, A.W.; Rodríguez, G.M.; Coto, N.M.; Santamaría, M.; Bressani, R. Effect of Variety and Location on the Total Fat, Fatty Acids and Squalene Content of Amaranth. Plant Foods Hum. Nutr. 2003, 58, 1–6. [Google Scholar] [CrossRef]
- Mir, N.A.; Riar, C.S.; Singh, S. Nutritional Constituents of Pseudo Cereals and Their Potential Use in Food Systems: A Review. Trends Food Sci. Technol. 2018, 75, 170–180. [Google Scholar] [CrossRef]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef] [PubMed]
Name | Family | Abbreviation |
---|---|---|
Pseudocereals: | ||
amaranth (Amaranthus cruentus L.) | Amaranthaceae | A |
buckwheat (Fagopyrum esculentum) | Polygonaceae | BW |
canihua/kaniwa (Chenopodium pallidicaule) | Amaranthaceae | K |
quinoa (Chenopodium quinoa) | Amaranthaceae | Q |
Food functional ingredients: | ||
chia (Salvia hispanica) | Lamiaceae/Labiatae | C |
flax (Linum usitatissimum L.) | Linaceae | L |
hemp (shelled seeds; Cannabis sativa L.) | Cannabaceae | H |
milk thistle (Silybum marianum) | Asteraceae | SM |
plantago (Plantago psyllium) | Plantaginaceae | PP |
poppy (blue, Papaver somniferum) | Papaveraceae | BP |
pumpkin (shelled seeds, Cucurbita L.) | Cucurbitaceae | P |
sesame (shelled seeds, Sesamum indicum L.) | Pedaliaceae | S |
sunflower (shelled seeds, Helianthus annuus) | Asteraceae | SN |
PP | BW | Q | A | K | SM | C | L | P | BP | H | S | SN | p Value * | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fat [g 100 g −1] | ||||||||||||||
1.2 ± 1.2 a | 2.9 ± 0.2 a,b | 6.0 ± 1.1 b | 6.1 ± 0.6 b | 7.3 ± 0.7 b | 23.7 ± 3.2 | 29.4 ± 1.4 | 36.0 ± 2.0 c | 38.0 ± 5.9 c,d | 41.0 ± 3.9 d | 41.6 ± 3.1 d | 49.1 ± 3.1 e | 51.7 ± 3.1 e | <0.0001 | |
SFAs [% of total FAs] | ||||||||||||||
C12:0 | 0.17 ± 0.04 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | - |
C14:0 | 0.35 ± 0.08 | 0.13 ± 0.00 a | 0.17 ± 0.05 a,b | 0.23 ± 0.03 b | 0.15 ± 0.01 a | 0.11 ± 0.01 a | nd | nd | 0.12 ± 0.02 a | nd | nd | nd | nd | <0.0001 |
C16:0 | 15.1 ± 2.4 e | 15.3 ± 1.0 e | 10.4 ± 0.7 c | 19.9 ± 2.2 | 14.2 ± 0.3 d,e | 8.62 ± 0.36 b,c | 7.40 ± 0.21 a,b | 6.17 ± 0.39 a | 12.5 ± 1.1 d | 9.65 ± 0.61 c | 6.33 ± 0.60 a | 9.73 ± 0.31 c | 6.26 ± 0.40 a | <0.0001 |
C18:0 | 2.71 ± 0.28 d | 1.66 ± 0.20 b | 0.42 ± 0.08 a | 3.03 ± 0.52 d | 0.86 ± 0.19 a | 4.96 ± 0.44 e | 2.95 ± 0.56 d | 3.99 ± 0.55 | 6.10 ± 0.38 f | 1.93 ± 0.19 b,c | 2.68 ± 0.28 c,d | 5.57 ± 1.03 e,f | 2.44 ± 0.29 c,d | <0.0001 |
C20:0 | 0.55 ± 0.08 d,e,f | 1.33 ± 0.19 | 0.43 ± 0.08 c,d,e | 0.72 ± 0.06 f | 0.60 ± 0.02 e,f | 2.70 ± 0.38 | 0.25 ± 0.03 a,b,c | 0.16 ± 0.02 a,b | 0.38 ± 0.03 b,c,d | 0.11 ± 0.01 a | 0.70 ± 0.10 f | 0.58 ± 0.05 d,e,f | 0.21 ± 0.02 a,b | <0.0001 |
C21:0 | nd | 0.17 ± 0.01 a | nd | nd | 0.12 ± 0.01 a | nd | nd | nd | nd | nd | nd | nd | nd | <0.0001 |
C22:0 | 0.67 ± 0.14 c | 1.56 ± 0.27 | 0.61 ± 0.08 c | 0.32 ± 0.04 a,b | 0.45 ± 0.02 b,c | 1.82 ± 0.28 | nd | 0.12 ± 0.01 a | 0.12 ± 0.01 a | nd | nd | 0.11 ± 0.01 a | 0.66 ± 0.08 c | <0.0001 |
C23:0 | 0.27 ± 0.09 a,b | 0.19 ± 0.03 a | 0.36 ± 0.20 b | 0.44 ± 0.06 a | 0.19 ± 0.05 a | 0.18 ± 0.00 a | nd | nd | 0.13 ± 0.01 a | nd | nd | nd | 0.12 ± 0.02 a | <0.0001 |
MUFAs [% of total FAs] | ||||||||||||||
C14:1 | 0.24 ± 0.05 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | - |
C16:1 | 0.47 ± 0.17 | 0.22 ± 0.01 b,c | 0.14 ± 0.02 a,b | 0.31 ± 0.03 c | 0.10 ± 0.00 a | nd | 0.17 ± 0.01 a,b | nd | 0.15 ± 0.06 a,b | 0.14 ± 0.03 a,b | 0.11 ± 0.01 a,b | 0.12 ± 0.01 a,b | 0.12 ± 0.02 a,b | <0.0001 |
C17:1 | 0.19 ± 0.04 a | nd | 0.21 ± 0.03 a,b | 0.71 ± 0.05 | 0.26 ± 0.04 b | nd | nd | nd | nd | nd | nd | nd | nd | <0.0001 |
C18:1 | 28.7 ± 3.3 f,g | 33.7 ± 0.9 g,h | 24.1 ± 3.9 d,e,f | 21.1 ± 0.5 c,d,e | 24.0 ± 0.7 d,e,f | 24.4 ± 3.3 e,f | 5.64 ± 0.76 a | 17.3 ± 1.1 b,c,d | 33.2 ± 8.0 g | 16.6 ± 2.9 b,c | 11.3 ± 3.0 a,b | 40.0 ± 1.7 h | 33.7 ± 9.3 g,h | |
C20:1 | nd | nd | 0.09 ± 0.00 | nd | nd | nd | nd | nd | nd | nd | 0.76 ± 0.61 | nd | nd | 0.347 |
C22:1 n9 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.26 ± 0.06 | nd | nd | - |
PUFAs [% of total FAs] | ||||||||||||||
C18:2 n6 | 28.4 ± 3.9 | 37.5 ± 1.2 b | 50.4 ± 3.7 d,e | 45.8 ± 1.0 c,d | 48.9 ± 0.4 c,d,e | 55.1 ± 4.0 e | 19.6 ± 0.5 a | 19.1 ± 6.7 a | 46.6 ± 7.2 c,d | 69.2 ± 3.5 | 56.2 ± 1.4 e | 41.6 ± 2.1 b,c | 54.4 ± 8.8 e | <0.0001 |
C18:3 n6 | nd | nd | 0.10 ± 0.00 a | 0.14 ± 0.04 a | nd | nd | 0.21 ± 0.01 b | 0.18 ± 0.02 b | nd | nd | 0.50 ± 0.00 | nd | nd | <0.0001 |
C18:3 n3 | 14.5 ± 1.4 c | 2.12 ± 0.13 a,b | 5.78 ± 1.82 b | 0.83 ± 0.02 a | 5.06 ± 0.15 b | 0.22 ± 0.05 a | 62.0 ± 1.3 | 51.4 ± 6.7 | 0.24 ± 0.07 a | 0.71 ± 0.12 a | 17.3 ± 2.4 c | 0.33 ± 0.03 a | 0.25 ± 0.13 a | <0.0001 |
C20:2 n6 | 0.18 ± 0.12 | nd | 0.14 ± 0.02 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.416 |
C20:3 n6 | nd | nd | nd | nd | 0.20 ± 0.01 | nd | nd | nd | nd | nd | nd | nd | nd | - |
C20:4 n6 | nd | nd | 0.22 ± 0.05 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | - |
C20:3 n3 | 0.27 ± 0.08 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | - |
C20:5 n3 | 0.13 ± 0.00 a | 0.13 ± 0.00 a | 1.34 ± 0.09 | nd | 0.74 ± 0.03 | nd | nd | nd | nd | nd | 0.26 ± 0.06 | nd | nd | <0.0001 |
C22:2 | nd | nd | 0.65 ± 0.15 a | 2.85 ± 1.26 | 0.78 ± 0.24 a | nd | nd | nd | 0.12 ± 0.01 a | nd | nd | nd | 0.18 ± 0.00 a | <0.0001 |
PP | BW | Q | A | K | SM | C | L | P | BP | H | S | SN | p Value * | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SFAs | 21.3 ± 2.6 a,b | 21.6 ± 1.7 a | 13.0 ± 1.0 e | 25.5 ± 2.4 | 17.2 ± 0.3 c,d | 18.6 ± 1.2 c | 10.8 ± 0.7 e,f | 10.6 ± 0.9 f | 19.3 ± 1.1 b,c | 11.9 ± 0.8 f | 10.2 ± 0.8 f | 16.3 ± 1.0 d | 9.82 ± 0.52 f | <0.0001 |
MUFAs | 32.0 ± 3.5 b,c | 36.1 ± 0.8 a,b | 25.7 ± 3.9 c,d | 23.0 ± 0.7 d,e | 25.2 ± 0.6 c,d | 24.9 ± 3.3 d | 5.92 ± 0.78 g | 17.6 ± 1.2 e,f | 33.5 ± 8.1 b | 17.1 ± 2.9 e,f | 12.8 ± 2.6 f,g | 40.9 ± 1.5 a | 34.5 ± 9.4 a,b | <0.0001 |
PUFAs | 46.7 ± 5.4 e,f | 42.3 ± 1.6 f | 61.3 ± 3.3 c | 51.5 ± 1.9 d,e | 57.6 ± 0.7 c,d | 56.6 ± 4.2 c,d | 83.3 ± 1.5 a | 71.8 ± 1.9 b | 47.2 ± 7.3 e,f | 71.1 ± 3.5 b | 77.1 ± 3.1 a,b | 42.8 ± 2.3 f | 55.7 ± 9.1 c,d | <0.0001 |
n3 PUFAs | 15.95 ± 1.6 a | 2.33 ± 0.19 c,d | 7.51 ± 1.90 b | 0.87 ± 0.03 d | 6.00 ± 0.17 b,c | 0.22 ± 0.06 d | 63.2 ± 1.3 | 52.3 ± 6.7 | 0.24 ± 0.07 d | 0.72 ± 0.12 d | 18.2 ± 2.9 a | 0.33 ± 0.03 d | 0.09 ± 0.15 d | <0.0001 |
n6 PUFAs | 30.8 ± 4.5 | 40.0 ± 1.4 d | 53.8 ± 4.1 a–c | 50.6 ± 1.9 b,c | 51.6 ± 0.6 a–c | 56.3 ± 4.2 a,b | 20.1 ± 0.6 e | 19.6 ± 6.8 e | 47.0 ± 7.3 c,d | 70.4 ± 3.6 | 58.9 ± 0.3 a | 42.4 ± 2.3 d | 55.6 ± 9.1 a,b | <0.0001 |
n3/n6 PUFAs | 0.52 ± 0.08 b | 0.06 ± 0.00 b,c | 0.14 ± 0.04 b,c | 0.02 ± 0.00 c | 0.12 ± 0.00 b,c | 0.00 ± 0.00 c | 3.14 ± 0.11 a | 2.97 ± 1.01 a | 0.01 ± 0.00 c | 0.01 ± 0.00 c | 0.31 ± 0.05 b,c | 0.01 ± 0.00 c | 0,00 ± 0.00 c | <0.0001 |
IA | 0.37 ± 0.05 c | 0.44 ± 0.03 b,c | 0.36 ± 0.05 c | 0.90 ± 0.12 | 0.49 ± 0.01 a,b | 0.36 ± 0.05 c | 0.11 ± 0.00 e,f | 0.09 ± 0.01 f | 0.42 ± 0.16 c | 0.56 ± 0.07 a | 0.21 ± 0.02 d,e | 0.24 ± 0.01 d | 0.20 ± 0.05 d–f | <0.0001 |
IT | 0.25 ± 0.04 d,e | 0.40 ± 0.04 a,b | 0.19 ± 0.02 f | 0.61 ± 0.08 | 0.28 ± 0.01 d | 0.34 ± 0.02 c | 0.05 ± 0.00 g | 0.06 ± 0.01 g | 0.46 ± 0.03 a | 0.26 ± 0.02 d | 0.11 ± 0.02 g | 0.37 ± 0.03 b,c | 0.20 ± 0.01 e,f | <0.0001 |
H/H | 4.75 ± 0.93 e,f | 4.77 ± 0.39 e,f | 7.87 ± 0.67 c | 3.57 ± 0.49 f | 5.56 ± 0.13 d,e | 9.23 ± 0.49 b | 11.8 ± 0.41 | 14.3 ± 1.1 a | 6.41 ± 0.61 d | 9.00 ± 0.61 b,c | 13.5 ± 1.3 a | 8.44 ± 0.30 b,c | 14.2 ± 1.1 a | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerwonka, M.; Białek, A. Fatty Acid Composition of Pseudocereals and Seeds Used as Functional Food Ingredients. Life 2023, 13, 217. https://doi.org/10.3390/life13010217
Czerwonka M, Białek A. Fatty Acid Composition of Pseudocereals and Seeds Used as Functional Food Ingredients. Life. 2023; 13(1):217. https://doi.org/10.3390/life13010217
Chicago/Turabian StyleCzerwonka, Małgorzata, and Agnieszka Białek. 2023. "Fatty Acid Composition of Pseudocereals and Seeds Used as Functional Food Ingredients" Life 13, no. 1: 217. https://doi.org/10.3390/life13010217
APA StyleCzerwonka, M., & Białek, A. (2023). Fatty Acid Composition of Pseudocereals and Seeds Used as Functional Food Ingredients. Life, 13(1), 217. https://doi.org/10.3390/life13010217