Biomechanical Comparison of Asymmetric Implant Configurations for All-on-Four Treatment Using Three-Dimensional Finite Element Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Malhotra, A.; Padmanabhan, T.; Mohamed, K.; Natarajan, S.; Elavia, U. Load transfer in tilted implants with varying cantilever lengths in an all-on-four situation. Aust. Dent. J. 2012, 57, 440–445. [Google Scholar] [PubMed]
- Maló, P.; Nobre, M.D.A.; Lopes, A.; Francischone, C.; Rigolizzo, M. “All-on-4” immediate-function concept for completely edentulous maxillae: A clinical report on the medium (3 years) and long-term (5 years) outcomes. Clin. Implant. Dent. Relat. Res. 2012, 14, e139–e150. [Google Scholar] [PubMed]
- Balshi, T.J.; Wolfinger, G.J.; Slauch, R.W.; Balshi, S.F. A retrospective analysis of 800 Brånemark System implants following the All-on-Four™ protocol. J. Prosthodont. Dent. Implant. 2014, 23, 83–88. [Google Scholar]
- Ayali, A.; Altagar, M.; Ozan, O.; Kurtulmus-Yilmaz, S. Biomechanical comparison of the All-on-4, M-4, and V-4 techniques in an atrophic maxilla: A 3D finite element analysis. Comput. Biol. Med. 2020, 123, 103880. [Google Scholar] [PubMed]
- Kumari, A.; Malhotra, P.; Phogat, S.; Yadav, B.; Yadav, J.; Phukela, S.S. A finite element analysis to study the stress distribution on distal implants in an all-on-four situation in atrophic maxilla as affected by the tilt of the implants and varying cantilever lengths. J. Indian Prosthodont. Soc. 2020, 20, 409. [Google Scholar]
- Ozan, O.; Ramoglu, S. Effect of implant height differences on different attachment types and peri-implant bone in mandibular two-implant overdentures: 3D finite element study. J. Oral Implantol. 2015, 41, e50–e59. [Google Scholar]
- Liu, T.; Mu, Z.; Yu, T.; Wang, C.; Huang, Y. Biomechanical comparison of implant inclinations and load times with the all-on-4 treatment concept: A three-dimensional finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Horita, S.; Sugiura, T.; Yamamoto, K.; Murakami, K.; Imai, Y.; Kirita, T. Biomechanical analysis of immediately loaded implants according to the “All-on-Four” concept. J. Prosthodont. Res. 2017, 61, 123–132. [Google Scholar]
- De Carvalho, L.P.; de Carvalho, A.M.; Francischone, C.E.; do Amaral, F.L.B.; Sotto-Maior, B.S. Biomechanical behavior of atrophic maxillary restorations using the all-on-four concept and long trans-sinus implants: A finite element analysis. J. Dent. Res. Dent. Clin. Dent. Prospect. 2021, 15, 106–110. [Google Scholar] [CrossRef]
- Ozan, O.; Kurtulmus-Yilmaz, S. Biomechanical Comparison of Different Implant Inclinations and Cantilever Lengths in All-on-4 Treatment Concept by Three-Dimensional Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2018, 33, 64–71. [Google Scholar] [CrossRef]
- Miyasawa, E.M.; de Macêdo, F.C.; Filho, J.V.; Trojan, L.C.; Klüppel, L.E.; Padovan, L.E.M. Biomechanical comparison of four treatment models for the totally edentulous maxilla: A finite element analysis. Res. Soc. Dev. 2022, 11, e135111032509. [Google Scholar] [CrossRef]
- Huang, H.-L.; Tsai, H.-L.; Wu, Y.-L.; Hsu, J.-T.; Wu, A.Y.-J. Biomechanical Evaluation of Bone Atrophy and Implant Length in Four Implants Supporting Mandibular Full-Arch-Fixed Dentures. Materials 2022, 15, 3295. [Google Scholar] [PubMed]
- Begg, T.; Geerts, G.; Gryzagoridis, J. Stress patterns around distal angled implants in the all-on-four concept configuration. Int. J. Oral Maxillofac. Implant. 2009, 24, 663–671. [Google Scholar]
- Bhering, C.L.B.; Mesquita, M.F.; Kemmoku, D.T.; Noritomi, P.Y.; Consani, R.L.X.; Barão, V.A.R. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Mater. Sci. Eng. C 2016, 69, 715–725. [Google Scholar]
- Ferreira, M.B.; Barão, V.A.; Faverani, L.P.; Hipólito, A.C.; Assunção, W.G. The role of superstructure material on the stress distribution in mandibular full-arch implant-supported fixed dentures. A CT-based 3D-FEA. Mater. Sci. Eng. C 2014, 35, 92–99. [Google Scholar]
- De Melo, E.J.M., Jr.; Francischone, C.E. Three-dimensional finite element analysis of two angled narrow-diameter implant designs for an all-on-4 prosthesis. J. Prosthet. Dent. 2020, 124, 477–484. [Google Scholar]
- Deste, G.; Durkan, R. Effects of all-on-four implant designs in mandible on implants and the surrounding bone: A 3-D finite element analysis. Niger. J. Clin. Pract. 2020, 23, 456. [Google Scholar]
- Gümrükçü, Z.; Korkmaz, Y.T. Influence of implant number, length, and tilting degree on stress distribution in atrophic maxilla: A finite element study. Med. Biol. Eng. Comput. 2018, 56, 979–989. [Google Scholar]
- Taruna, M.; Chittaranjan, B.; Sudheer, N.; Tella, S.; Abusaad, M.D. Prosthodontic perspective to all-on-4® concept for dental implants. J. Clin. Diagn. Res. JCDR 2014, 8, ZE16. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Kuan, C.-L.; Wang, Y.-B. Implant occlusion: Biomechanical considerations for implant-supported prostheses. J. Dent. Sci. 2008, 3, 65–74. [Google Scholar]
- Tribst, J.P.M.; Piva, A.M.D.O.D.; Borges, A.L.S.; Rodrigues, V.A.; Bottino, M.A.; Kleverlaan, C.J. Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers. J. Adv. Prosthodont. 2020, 12, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çalişkan, A.; Yöndem, İ. Stress analysis of fixed dental prostheses produced with different materials according to the all-on-four concept. J. Biotechnol. Strateg. Health Res. 2019, 3, 183–191. [Google Scholar]
- Tribst, J.P.M.; de Morais, D.C.; de Matos, J.D.M.; Lopes, G.D.R.S.; Dal Piva, A.M.D.O.; Borges, A.L.S.; Bottino, M.A.; Lanzotti, A.; Martorelli, M.; Ausiello, P. Influence of Framework Material and Posterior Implant Angulation in Full-Arch All-on-4 Implant-Supported Prosthesis Stress Concentration. Dent. J. 2022, 10, 12. [Google Scholar]
- Lee, K.-S.; Shin, S.-W.; Lee, S.-P.; Kim, J.-E.; Kim, J.-H.; Lee, J.-Y. Comparative Evaluation of a Four-Implant-Supported Polyetherketoneketone Framework Prosthesis: A Three-Dimensional Finite Element Analysis Based on Cone Beam Computed Tomography and Computer-Aided Design. Int. J. Prosthodont. 2017, 30, 581–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Materials | Young’s Modulus (MPa) | Poisson Ratio |
---|---|---|
Cortical bone | 13,700 | 0.30 |
Spongious bone | 1370 | 0.30 |
Titanium | 110,000 | 0.35 |
Cr–Co infrastructure (bar) | 218,000 | 0.33 |
Acrylic | 2700 | 0.35 |
Models | Right Posterior | Right Anterior | Left Anterior | Left Posterior |
---|---|---|---|---|
M1 vertical M1 oblique | 2.293 | 7.546 | 1.387 | 0.385 |
8.992 | 8.246 | 0.508 | 0.635 | |
M2 vertical M2 oblique | 1.626 | 2.652 | 0.626 | 0.143 |
3.692 | 3.641 | 0.913 | 0.314 | |
M3 vertical M3 oblique | 2.159 | 7.349 | 1.195 | 0.219 |
8.780 | 7.384 | 0.824 | 0.359 |
Models | Right Posterior | Right Anterior | Left Anterior | Left Posterior |
---|---|---|---|---|
M1 vertical M1 oblique | 79.37 | 82.34 | 16.41 | 8.61 |
107.89 | 81.39 | 20.32 | 9.03 | |
M2 vertical M2 oblique | 125.13 | 123.41 | 53.70 | 4.76 |
154.41 | 269.60 | 68.87 | 35.61 | |
M3 vertical M3 oblique | 79.83 | 76.83 | 6.87 | 4.62 |
107.42 | 88.59 | 10.74 | 6.90 |
Models | Right Posterior | Right Anterior | Left Anterior | Left Posterior |
---|---|---|---|---|
M1 vertical M1 oblique | 162.15 | 41.14 | 11.87 | 32.73 |
253.98 | 80.93 | 22.02 | 20.08 | |
M2 vertical M2 oblique | 175.98 | 76.73 | 45.47 | 12.22 |
238.69 | 116.53 | 25.95 | 23.19 | |
M3 vertical M3 oblique | 251.88 | 25.22 | 8.88 | 8.76 |
247.50 | 48.93 | 12.73 | 9.62 |
Models | Right Posterior | Right Anterior | Left Anterior | Left Posterior |
---|---|---|---|---|
M1 vertical M1 oblique | 30.00 | 27.77 | 16.29 | 16.02 |
65.26 | 37.63 | 13.96 | 15.62 | |
M2 vertical M2 oblique | 40.39 | 19.70 | 4.38 | 5.55 |
36.38 | 17.89 | 6.24 | 11.13 | |
M3 vertical M3 oblique | 31.23 | 26.38 | 5.72 | 13.65 |
65.32 | 35.09 | 3.47 | 10.93 |
Framework Max Von Misses Stress (Mpa) | Model 1 | Model 2 | Model 3 |
---|---|---|---|
Pmax vertical Pmax oblique | 199.40 | 449.54 | 255.52 |
309.43 | 621.43 | 409.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gönül, O.; Çicek, A.; Afat, İ.M.; Akdoğan, E.T.; Atalı, O. Biomechanical Comparison of Asymmetric Implant Configurations for All-on-Four Treatment Using Three-Dimensional Finite Element Analysis. Life 2022, 12, 1963. https://doi.org/10.3390/life12121963
Gönül O, Çicek A, Afat İM, Akdoğan ET, Atalı O. Biomechanical Comparison of Asymmetric Implant Configurations for All-on-Four Treatment Using Three-Dimensional Finite Element Analysis. Life. 2022; 12(12):1963. https://doi.org/10.3390/life12121963
Chicago/Turabian StyleGönül, Onur, Ahmet Çicek, İbrahim Murat Afat, Emine Tuna Akdoğan, and Onur Atalı. 2022. "Biomechanical Comparison of Asymmetric Implant Configurations for All-on-Four Treatment Using Three-Dimensional Finite Element Analysis" Life 12, no. 12: 1963. https://doi.org/10.3390/life12121963
APA StyleGönül, O., Çicek, A., Afat, İ. M., Akdoğan, E. T., & Atalı, O. (2022). Biomechanical Comparison of Asymmetric Implant Configurations for All-on-Four Treatment Using Three-Dimensional Finite Element Analysis. Life, 12(12), 1963. https://doi.org/10.3390/life12121963