Landscape Analysis of Runoff and Sedimentation Based on Land Use/Cover Change in Two Typical Watersheds on the Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methodology
2.2. Study Area
2.3. Research Methods
2.3.1. Data Sources
2.3.2. Research Methods
3. Results
3.1. Land Use Changes in the Watersheds
3.2. Land Metrics and Landscape Stability (LS)
3.3. Variation in and the Relationship between Annual Runoff and Sedimentation
3.4. Response Relationships between Runoff, Sedimentation, and LMs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imeson, A.C.; Prinsen, H.A.M. Vegetation patterns as biological indicators for identifyingrunoff and sediment source and sink areas for semi-aridlandscapes in Spain. Agric. Ecosyst. Environ. 2021, 104, 333–342. [Google Scholar] [CrossRef]
- Neris, J.; Tejedor, M.; Rodríguez, M.; Fuentes, J.; Jiménez, C. Effect of forest floor characteristics on water repellency, infiltration, runoff and soil loss in Andisols of Tenerife Canary Islands, Spain. Catena 2013, 108, 50–57. [Google Scholar] [CrossRef]
- Shore, M.; Jordan, P.; Mellander, P.E.; Kelly-Quinnc, M.; Walld, D.P.; Murphye, P.N.C.; Mellandf, A.R. Evaluating the critical source area concept of phosphorus loss from soils to water-bodies in agricultural catchments. Sci. Total Environ. 2014, 490, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Hancock, G.R.; Tony, W.; Martinez, C. Soil erosion and tolerable soil loss: Insights into erosion rates for a well-managed grassland catchment. Geoderma 2015, 237–238, 256–265. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-erosion and runoff prevention by plant covers: A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.G.; Cao, W.W.; Liu, B.Z. Present status and dynamic variation of soil and water loss in China. Soil Water Conserv. China 2008, 12, 7–10. (In Chinese) [Google Scholar]
- Ludwig, J.A.; Wilcox, B.P.; Breshears, D.D. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 2005, 86, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Xiao, B.; Wang, Q.H.; Wang, H.F.; Wu, J.; Yu, D. The effects of grass hedges and micro-basins on reducing soil and water loss in temperate regions: A case study of Northern China. Soil Tillage Res. 2012, 122, 22–35. [Google Scholar] [CrossRef]
- Mohammad, A.G.; Adam, M.A. The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena 2010, 81, 97–103. [Google Scholar] [CrossRef]
- Nunes, A.N.; Almeida, A.C.D.; Coelho, C.O.A. Impacts of land use and cover type on runoff and soil erosion in a marginalarea of Portugal. Appl. Geogr. 2011, 31, 687–699. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. 2005, 22, 189–217. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.M.; Bai, Z.K. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 2015, 128, 44–53. [Google Scholar] [CrossRef]
- Nie, X.J.; Wang, X.D.; Liu, S.Z.; Shi, G.X.; Hai, L. 137Cs tracing dynamics of soil erosion, organic carbon and nitrogen in sloping farmland converted from original grassland in Tibetan plateau. Appl. Radiat. Isot. 2010, 68, 1650–1655. [Google Scholar]
- Dotterweich, M.; Ivester, A.H.; Hanson, P.R.; Larsen, D.; Dye, D.H. Natural and human induced prehistoric and historical soil erosion and landscape development in southwestern Tennessee, USA. Anthropocene 2015, 8, 6–24. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organicmatter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. Journey 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Casalí, J.R.; Giménez, J.; Díez, J.; Álvarez-Mozos, J.; Del Valle de Lersundi, J.; GoI, M.; Campo, M.A.; Chahor, Y.; Gastesi, R.; López, J. Sediment production and water quality of watersheds with contrasting land use in Navarre Spain. Agric. Water Manag. 2010, 97, 1683–1694. [Google Scholar] [CrossRef]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Vera, F.; Thomas, P.; Anda, C. Predicting Soil Erosion After Land Use Changes for Irrigating Agriculture in a Large Reservoir of Southern Portugal. Agric. Agric. Sci. Procedia 2015, 4, 40–49. [Google Scholar]
- Cerdan, O.; Govers, G.; Bissonnais, Y.L. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Xu, X.L.; Ma, K.M.; Fu, B.J.; Song, C.J.; Liu, W. Influence of three plant species with different morphologies on water runoff and soil loss in a dry-warm river valley, SW China. For. Ecol. Manag. 2008, 256, 656–663. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Y.; Lu, H.; Yuan, J.; Zhu, Y.; Liang, Y. Grass hedge effects on controlling soil loss from concentrated flow: A case study in the red soil region of China. Soil Tillage Res. 2015, 148, 97–105. [Google Scholar] [CrossRef]
- Riechers, M.; Balázsi, Á.; Betz, L.; Betz, L.; Jiren, T.S.; Fischer, J. The erosion of relational values resulting from landscape simplification. Landscape Ecol. 2020, 35, 2601–2612. [Google Scholar] [CrossRef]
- Jian, S.Q.; Zhan, C.Y.; Fang, S.M. Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agric. For. Meteorol. 2015, 206, 85–96. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, H.P.; Wang, B.J.; Chen, J. Effects of landscape patterns on soil erosion processes in a mountain–basin system in the North China. Natural Hazards 2017, 87, 1567–1585. [Google Scholar] [CrossRef]
- Ouyang, W.; Andrew, K.S.; Hao, F.H.; Wang, T. Soil erosion dynamics response to landscape pattern. Sci. Total Environ. 2010, 408, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Durán-Zuazo, V.H.; Francia-Martínez, J.R.; García-Tejero, I. Implications of land-cover types for soil erosion on semiarid mountain slopes: Towards sustainable land use in problematic landscapes. Acta Ecol. Sin. 2013, 33, 272–281. [Google Scholar] [CrossRef]
- Bakker, M.M.; Gerard, G.; Doorn, A.; Doorn, A.V.; Quetier, F.; Chouvardas, D.; Rounsevell, M. The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology 2008, 98, 213–226. [Google Scholar] [CrossRef]
- Xu, J.; Jin, G.Q.; Tang, H.W.; Mo, Y.M.; Wang, Y.G.; Li, L. Response of water quality to land use and sewage outfalls in different seasons. Sci. Total Environ. 2019, 696, 134014. [Google Scholar] [CrossRef]
- Xu, J.; Bai, Y.; You, H.; Wang, X.; Ma, Z.; Zhang, H. Water quality assessment and the influence of landscape metrics at multiple scales in Poyang Lake basin. Ecol. Indic. 2022, 141, 109096. [Google Scholar] [CrossRef]
- Silva, A.M.; Huang, C.H.; Francesconi, W.; Thalika, S.; Jazmin, V. Using landscape metrics to analyze micro-scale soil erosion processes. Ecol. Indic. 2015, 56, 184–193. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, W.; Li, Y.; Yi, Y. The influence of changes in land use and landscape patterns on soil erosion in a watershed. Sci. Total Environ. 2017, 574, 34–45. [Google Scholar] [CrossRef]
- Shi, Z.H.; Ai, L.; Li, X.; Huang, X.D.; Wu, G.L.; Liao, W. Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. J. Hydrol. 2013, 498, 165–176. [Google Scholar] [CrossRef]
- Wu, J.; Lu, J. Spatial scale effects of landscape metrics on stream water quality and their seasonal changes. Water Res. 2021, 191, 116811. [Google Scholar] [CrossRef]
- Gao, H.; Li, Z.; Jia, L.; Li, P.; Xu, G.; Ren, Z.; Pang, G.; Zhao, B. Capacity of soil loss control in the Loess Plateau based on soil erosion control degree. J. Geogr. Sci. 2016, 26, 457–472. [Google Scholar] [CrossRef] [Green Version]
- Yüksek, F.; Yüksek, T. Growth performance of Sainfoin and its effects on the runoff, soil loss and sediment concentration in a semi-arid region of Turkey. Catena 2015, 133, 309–317. [Google Scholar] [CrossRef]
- Song, J.; Yang, Z.; Xia, J.; Cheng, D. The impact of mining-related human activities on runoff in northern Shaanxi, China. J. Hydrol. 2021, 598, 126235. [Google Scholar] [CrossRef]
- Liu, W.; Shi, C.; Ma, Y.; Wang, Y. Evaluating sediment connectivity and its effects on sediment reduction in a catchment on the Loess Plateau, China. Geoderma 2022, 408, 115566. [Google Scholar] [CrossRef]
- Chefaoui, R.M. Landscape metrics as indicators of coastal morphology: A multi-scale approach. Ecol. Indic. 2014, 45, 139–147. [Google Scholar] [CrossRef]
- Lustig, A.; Stouffer, D.B.; Roigé, M.; Worner, S.P. Towards more predictable and consistent landscape metrics across spatial scales. Ecol. Indic. 2015, 57, 11–21. [Google Scholar] [CrossRef]
- State, F.A. China Forestry Statistical Yearbook; China Forestry Publishing House: Beijing, China, 2013. [Google Scholar]
- Geng, Q.; Ren, Q.; Yan, H.; Li, L.; Zhao, X.; Mu, X.; Wu, P.; Yu, Q. Target areas for harmonizing the Grain for Green Programme in China’s Loess Plateau. Land Degrad. Dev. 2020, 31, 325–333. [Google Scholar] [CrossRef]
- Ma, K.; Huang, X.; Liang, C.; Zhao, H.; Zhou, X.; Wei, X. Effect of land use/cover changes on runoff in the Min River watershed. River Res. Appl. 2020, 36, 749–759. [Google Scholar] [CrossRef]
- Xie, X.H.; Liang, S.L.; Yao, Y.J.; Jia, K.; Meng, S.S.; Li, J. Detection and attribution of changes in hydrological cycle over the Three-North region of China: Climate change versus afforestationeffect. Agric. For. Meteorol. 2015, 203, 74–87. [Google Scholar] [CrossRef]
- Hou, J.; Fu, B.J.; Liu, Y.; Lu, N.; Gao, G.Y.; Zhou, J. Ecological and hydrological response of farmlands abandoned for different lengths of time: Evidence from the Loess Hill Slope of China. Glob. Planet. Chang. 2014, 113, 59–67. [Google Scholar] [CrossRef]
- Hao, F.; Zhang, X.; Wang, X.; Ouyang, W. Assessing the Relationship Between Landscape Patterns and Nonpoint-Source Pollution in the Danjiangkou Reservoir Basin in China. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 1162–1177. [Google Scholar] [CrossRef]
- Rao, E.; Ouyang, Z.Y.; Yu, X.X.; Yi, X. Spatial patterns and impacts of soil conservation service in China. Geomorphology 2014, 207, 64–70. [Google Scholar] [CrossRef]
- Morvan, X.; Naisse, C.; Malam, I.O.; Desprats, J.F.; Combaud, A.; Cerdan, O. Effect of ground-cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil Use Manag. 2014, 30, 372–381. [Google Scholar] [CrossRef]
- Sharma, M.J.; Yu, S.J. Stepwise regression data envelopment analysis for variable reduction. Appl. Math. Comput. 2015, 253, 126–134. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhang, Y.; Li, Z.B.; Li, P.; Xu, G.C.; Cheng, Y.T.; Zhang, T.G. Response of water quality to land use in hydrologic response unit and riparian buffer along Dan River, China. Environ. Sci. Pollut. Res. 2021, 28, 28251–28262. [Google Scholar] [CrossRef]
- Jiang, C.; Zhao, L.; Dai, J.; Liu, H.; Li, Z.; Wang, X.; Yang, Z.; Zhang, H.; Wen, M.; Wang, J. Examining the soil erosion responses to ecological restoration programs and landscape drivers: A spatial econometric perspective. J. Arid Environ. 2020, 183, 104255. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Shi, Z.H.; Fang, N.F.; Guo, M.H. Linking watershed geomorphic characteristics to sediment yield: Evidence from the Loess Plateau of China. Geomorphology 2015, 234, 19–27. [Google Scholar] [CrossRef]
Landscape Index | Formula | Physical Significance | Ecological Significance |
---|---|---|---|
Number of patches | N | N: numbers of the patches; Unit: a | the whole numbers of the patches in the landscape |
Patch density | M: types of landscape in the study area; A: total area of the landscape; N: ditto; Unit: a/km2 | degree of fragmentation and spatial heterogeneity; reflecting the human disturbance to a certain extent | |
Largest patch index | ai: area of the “i” patch; A: ditto; Unit:% | help to confirm the dominant type; the variation could change the intensity and frequency of the disturbance that reflect the direction and strength of human activities | |
Landscape shape | E: perimeter of patches; A: ditto | the bigger the value, the more complicated the patches | |
Perimeter area fractal dimension | Pi: proportion of i type in the whole landscape; gik: number of patches between i and k type; m: ditto | the bigger the value, the greater the fragmentation of patches | |
Contagion | M: ditto; Pij: probability of the random selected two adjacent grid belonging to i and j type; Unit: % | the degree of agglomeration and extending tendency of different patch type | |
Patch cohesion | Pij: perimeter of patch ij; aij: ditto; A: ditto; Unit: % | spatial connection between a type of patch with the adjacent patches | |
Landscape division | aij: area of patch j with landscape i; A: ditto | fragmentation of the landscape | |
Shannon’s diversity | Pi: proportion of i type in the whole landscape; i: numbers of patch | complicity and heterogeneity of the landscape, emphasizing the contribution of rare patch to the information | |
Shannon’s evenness | ditto | reflecting one or several dominant landscapes |
Land Use | Tuweihe Watershed | Gushanchuan Watershed | ||||||
1985 | 1996 | 2000 | 2010 | 1985 | 1996 | 2000 | 2010 | |
Cropland | 1129.26 | 1134.52 | 1116.35 | 1086.42 | 410.49 | 405.94 | 409.21 | 383.59 |
Forest land | 203.77 | 201.87 | 204.74 | 212.33 | 60.47 | 48.41 | 64.45 | 72.91 |
Grassland | 1681.02 | 2251.95 | 2124.38 | 2175.39 | 772.61 | 790.87 | 770.47 | 785.15 |
Water area | 106.10 | 105.44 | 104.98 | 102.97 | 12.37 | 12.82 | 12.10 | 12.22 |
Urban and Rural land | 8.70 | 8.62 | 9.03 | 18.65 | 6.12 | 4.51 | 6.32 | 8.53 |
Unused land | 1374.55 | 801.00 | 943.91 | 909.61 | 1.05 | 0.56 | 0.56 | 0.55 |
Watershed | Time | Number of Patches | Patch Density | Largest Patch | Landscape Shape | Perimeter Area Fractal Dimension | Contagion | Patch Cohesion | Division | Shannon’s Diversity | Shannon’s Eveness |
---|---|---|---|---|---|---|---|---|---|---|---|
Tuweihe | 1985 | 1393 | 0.31 | 20.30 | 36.48 | 1.60 | 36.47 | 97.79 | 0.91 | 1.32 | 0.734 |
1996 | 1332 | 0.30 | 41.04 | 35.32 | 1.58 | 39.82 | 98.72 | 0.80 | 1.24 | 0.690 | |
2000 | 1343 | 0.30 | 37.39 | 36.16 | 1.58 | 38.46 | 98.60 | 0.83 | 1.27 | 0.706 | |
2010 | 1340 | 0.30 | 34.03 | 35.94 | 1.57 | 38.36 | 98.44 | 0.86 | 1.27 | 0.707 | |
Gushanchuan | 1985 | 938 | 0.74 | 61.00 | 37.14 | 1.68 | 53.34 | 99.18 | 0.62 | 0.89 | 0.495 |
1996 | 909 | 0.72 | 62.50 | 36.34 | 1.69 | 55.22 | 99.21 | 0.61 | 0.85 | 0.476 | |
2000 | 959 | 0.76 | 60.81 | 37.27 | 1.69 | 53.07 | 99.17 | 0.63 | 0.89 | 0.498 | |
2010 | 928 | 0.74 | 61.79 | 35.73 | 1.68 | 52.59 | 99.14 | 0.62 | 0.91 | 0.506 |
LMs | Regression Equation | R2 | Sig. | |
---|---|---|---|---|
Runoff | Patch density | −4.457PD + 5.010 | 0.916 | 0.003 ** |
Contagion | −0.113contagion + 8.191 | 0.738 | 0.028 * | |
Patch cohesion | −0.717cohesion + 71.936 | 0.773 | 0.021 * | |
Shannon’s diversity | 3.312SHDI−3.361 | 0.930 | 0.002 ** | |
Shannon’s evenness | 12.280SHEI−4.937 | 0.934 | 0.002 ** | |
Sedimentation | Contagion | −0.006contagion + 0.474 | 0.693 | 0.04 * |
Patch cohesion | −0.043cohesion + 4.294 | 0.760 | 0.024 * |
Landscape | Year | Tuweihe Watershed | Gushanchuan Watershed | ||
CS | DS | CS | DS | ||
Cropland | 1985–1996 | 0.996 | 0.995 | 0.981 | 0.973 |
1996–2000 | 0.982 | 0.978 | 0.989 | 0.987 | |
2000–2010 | 0.952 | 0.932 | 0.909 | 0.881 | |
1985–2010 | 0.938 | 0.914 | 0.914 | 0.893 | |
Forest land | 1985–1996 | 0.973 | 0.954 | 0.621 | 0.441 |
1996–2000 | 0.965 | 0.943 | −0.089 | −0.845 | |
2000–2010 | 0.959 | 0.956 | 0.705 | 0.541 | |
1985–2010 | 0.952 | 0.948 | 0.482 | 0.169 | |
Grassland | 1985–1996 | 0.687 | 0.714 | 0.885 | 0.791 |
1996–2000 | 0.956 | 0.967 | 0.813 | 0.648 | |
2000–2010 | 0.936 | 0.896 | 0.910 | 0.841 | |
1985–2010 | 0.683 | 0.661 | 0.871 | 0.761 | |
Water area | 1985–1996 | 0.951 | 0.912 | 0.962 | 0.959 |
1996–2000 | 0.984 | 0.969 | 0.961 | 0.978 | |
2000–2010 | 0.969 | 0.955 | 0.963 | 0.934 | |
1985–2010 | 0.932 | 0.898 | 0.994 | 1.000 | |
Urban and rural land | 1985–1996 | 0.995 | 1.000 | 0.835 | 0.934 |
1996–2000 | 0.968 | 0.985 | 0.738 | 0.880 | |
2000–2010 | 0.409 | 0.881 | 0.652 | 0.651 | |
1985–2010 | 0.362 | 0.865 | 0.598 | 0.589 | |
Unused land | 1985–1996 | 0.591 | 0.598 | 0.519 | 0.506 |
1996–2000 | 0.883 | 0.945 | 0.999 | 1.000 | |
2000–2010 | 0.977 | 0.990 | 0.892 | 0.800 | |
1985–2010 | 0.676 | 0.689 | 0.564 | 0.608 |
Cropland CS | Cropland DS | Forest Land CS | Forest Land DS | Grassland CS | Grassland DS | Water Area CS | Water Area DS | URL CS | URL DS | Unused Land CS | Unused Land DS | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DR | Pearson Correlation | 0.001 | 0.016 | 0.275 | 0.268 | 0.586 | 0.740 * | 0.363 | 0.145 | 0.338 | 0.127 | 0.347 | 0.375 |
Sig. (2-tailed) | 0.998 | 0.970 | 0.510 | 0.520 | 0.127 | 0.036 | 0.377 | 0.732 | 0.412 | 0.765 | 0.400 | 0.359 | |
DSe | Pearson Correlation | −0.329 | −0.369 | −0.154 | −0.139 | −0.180 | −0.378 | −0.319 | −0.162 | −0.636 | −0.336 | 0.013 | −0.098 |
Sig. (2-tailed) | 0.427 | 0.368 | 0.716 | 0.742 | 0.670 | 0.356 | 0.442 | 0.702 | 0.090 | 0.417 | 0.976 | 0.818 |
Dependent | Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | |||
---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Tolerance | VIF | |||||
runoff | 1 | (Constant) | −4.937 | 0.876 | −5.636 | 0.005 | |||
Shannon’s evenness | 12.280 | 1.630 | 0.967 | 7.534 | 0.002 | 1.000 | 1.000 | ||
2 | (Constant) | 25.492 | 6.921 | 3.683 | 0.035 | ||||
Shannon’s evenness | 8.895 | 1.032 | 0.700 | 8.618 | 0.003 | 0.446 | 2.244 | ||
Patch cohesion | −0.292 | 0.066 | −0.358 | −4.403 | 0.022 | 0.446 | 2.244 | ||
sedimentation | 1 | (Constant) | 4.294 | 1.184 | 3.627 | 0.022 | |||
Patch cohesion | −0.043 | 0.012 | −0.871 | −3.554 | 0.024 | 1.000 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, Y. Landscape Analysis of Runoff and Sedimentation Based on Land Use/Cover Change in Two Typical Watersheds on the Loess Plateau, China. Life 2022, 12, 1688. https://doi.org/10.3390/life12111688
Liu X, Zhang Y. Landscape Analysis of Runoff and Sedimentation Based on Land Use/Cover Change in Two Typical Watersheds on the Loess Plateau, China. Life. 2022; 12(11):1688. https://doi.org/10.3390/life12111688
Chicago/Turabian StyleLiu, Xiaojun, and Yi Zhang. 2022. "Landscape Analysis of Runoff and Sedimentation Based on Land Use/Cover Change in Two Typical Watersheds on the Loess Plateau, China" Life 12, no. 11: 1688. https://doi.org/10.3390/life12111688
APA StyleLiu, X., & Zhang, Y. (2022). Landscape Analysis of Runoff and Sedimentation Based on Land Use/Cover Change in Two Typical Watersheds on the Loess Plateau, China. Life, 12(11), 1688. https://doi.org/10.3390/life12111688