Ex Vivo Effect of Novel Lipophosphonoxins on Root Canal Biofilm Produced by Enterococcus faecalis: Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Teeth Preparation
2.2. Lipophosphonoxins Preparation
2.3. Determination of Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs) of Tested LPPOs and Endodontic Disinfectants
2.4. Phenotypic Confirmation of Biofilm Production
2.5. Determination of Biofilm Growth Inhibition by Tested Substances
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Basrani, B.; Malkhassian, G. Update of Endodontic Irrigating Solutions. Endodontic Irrigation. Clinical Disinfection of the Root Canal System, 1st ed.; Springer International Publishing AG: Cham, Switzerland, 2015; pp. 101–105. [Google Scholar]
- Baumgartner, J.C.; Siqueira, J.R.J.F.; Sedgley, C.H.M.; Kishen, A. Microbiology of endodontic disease. In Ingle’s Endodontics, 6th ed.; Ingle, J.I., Ed.; Ajanta Offset and Packaging Limited: New Delhi, India, 2008; Chapter 7; pp. 278–286. [Google Scholar]
- Estrela, C.; Sydney, G.B.; Figueiredo, J.A.P.; Estrela, C.R.A. A model system to study antimicrobial strategies in endodontic biofilms. J. Appl. Oral Sci. 2009, 17, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Torabinejad, M.; Root Canal Disinfectants. Endodontics: Colleagues for Excellence News-Letter, Winter 2011. Available online: http://www.aae.org/publications-and-research/endodontics-colleagues-for-excellence-newsletter/root-canal-irrigants-and-disinfectants.aspx (accessed on 17 October 2021).
- Haapasalo, M.; Qian, W.; Portenier, I.; Waltimo, T. Effects of Dentin on the Antimicrobial Properties of Endodontic Medicaments. J. Endod. 2007, 33, 917–925. [Google Scholar] [CrossRef]
- Clegg, M.S.; Vertucci, F.J.; Walker, C.; Belanger, M.; Britto, L.R. The effect of exposure to irrigant solutions on apical dentin biofilms in vitro. J. Endod. 2006, 32, 434–437. [Google Scholar] [CrossRef]
- Gomes, B.P.; Ferraz, C.C.R.; Vianna, M.E.; Berber, V.B.; Teixeira, F.B.; de Souza-Filho, F.J. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int. Endod. J. 2001, 34, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Hülsmann, M.; Heckendorff, M.; Lennon, Á. Chelating agents in root canal treatment: Mode of action and indications for their use. Int. Endod. J. 2003, 36, 810–830. [Google Scholar] [CrossRef]
- Sen, B.H.; Akdeniz, B.; Denizci, A. The effect of ethylenediamine-tetraacetic acid on Candida albicans. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2000, 90, 651–655. [Google Scholar] [CrossRef]
- Rath, P.P.; Yiu, C.K.Y.; Matinlinna, J.P.; Kishen, A.; Neelakantan, P. The effects of sequential and continuous chelation on dentin. Dent. Mater. 2020, 36, 1655–1665. [Google Scholar] [CrossRef]
- Do, Q.L.; Gaudin, A. The Efficiency of the Er: YAG Laser and Photon Induced Photoacoustic Streaming (PIPS) as an Activation Method in Endodontic Irrigation: A Literature Review. J. Lasers Med. Sci. 2020, 11, 316–334. [Google Scholar] [CrossRef]
- Plotino, G.; Grande, N.M.; Mercade, M. Photodynamic therapy in endodontics. Int. Endod. J. 2019, 52, 760–774. [Google Scholar] [CrossRef] [Green Version]
- Ortega, H.D.; Toral, F.C.; Hernández, L.D.; González, C.E.; Varona, F.S.; Ciodaro, A.R. Ex vivo model for studying polymicrobial biofilm formation in root canals. Univ. Sci. 2017, 22, 31. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, Z.; Dummer, P.M.H. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int. Endod. J. 2011, 44, 697–730. [Google Scholar] [CrossRef] [PubMed]
- Basrani, B.; Lemonie, C. Chlorhexidine gluconate. Aust. Endod. J. 2005, 31, 48–52. [Google Scholar] [CrossRef] [PubMed]
- McCoy, L.C.; Wehler, C.J.; Rich, S.E.; Garcia, R.I.; Miller, D.R.; Jones, J.A. Adverse events associated with chlorhexidine use: Results from the Department of Veterans Affairs Dental Diabetes Study. J. Am. Dent. Assoc. 2008, 139, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Panova, N.; Zbornikova, E.; Simak, O.; Pohl, R.; Kolar, M.; Bogdanova, K.; Večeřová, R.; Seydlová, G.; Fišer, R.; Hadravová, R. Insights into the mechanism of action of bactericidal lipophosphonoxins. PLoS ONE 2015, 10, e0145918. [Google Scholar] [CrossRef] [Green Version]
- Rejman, D.; Pohl, R.; Bartunek, P.; Ribeiro Pombinho, A.J.; Krasny, L.; Latal, T. Lipophosphonoxins, Method of Their Preparation and Use. EP2527351B1, 11 December 2013. Available online: https://patents.google.com/patent/EP2527351A1/en (accessed on 10 December 2021).
- Rejman, D.; Rabatinova, A.; Pombinho, A.R.; Kovackova, S.; Pohl, R.; Zbornikova, E.; Kolář, M.; Bogdanová, K.; Nyč, O.; Šanderová, H.; et al. Lipophosphonoxins: New modular molecular structures with significant antibacterial properties. J. Med. Chem. 2011, 54, 7884–7898. [Google Scholar] [CrossRef]
- Seydlová, G.; Pohl, R.; Zborníková, E.; Ehn, M.; Šimák, O.; Panova, N.; Kolář, M.; Bogdanová, K.; Večeřová, R.; Fišer, R. Lipophosphon-oxins II: Design, synthesis and properties of novel broad spectrum antibacterial agents. J. Med. Chem. 2017, 60, 6098–6118. [Google Scholar] [CrossRef]
- Distel, J.W.; Hatton, J.F.; Gillespie, M.J. Biofilm Formation in Medicated Root Canals. J. Endod. 2002, 28, 689–693. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 11.0. 2021. Available online: http://www.eucast.org (accessed on 10 December 2021).
- Christensen, G.D.; Simpson, W.A.; Younger, J.J.; Baddour, L.M.; Barrett, F.F.; Melton, D.M.; Beachey, E.H. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985, 22, 996–1006. [Google Scholar] [CrossRef] [Green Version]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Acta Pathol. Microbiol. Scand. 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Portenier, I.; Waltimo, T.M.; Haapasalo, M. Enterococcus faecalis- the root canal survivor and ‘star’ in post-treatment disease. Endod. Top. 2003, 6, 135–159. [Google Scholar] [CrossRef]
- Hartke, A.; Giard, J.C.; Laplace, J.M.; Auffray, Y. Survival of Enterococcus faecalis in an oligotrophic microcosm: Changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl. Environ. Microbiol. 1998, 64, 4238–4245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, E.T.; Mayer, M.P.A. Enterococcus faecalis in oral infections. J. Interdiscip. Med. Dent. Sci. 2015, 3, e0163001. [Google Scholar]
- Rath, P.P.; Yiu, C.K.Y.; Matinlinna, J.P.; Kishen, A.; Neelakantan, P. The effect of root canal irrigants on dentin: A focused review. Restor. Dent. Endod. 2020, 45, e39. [Google Scholar] [CrossRef]
- Mohammadi, Z. Sodium hypochlorite in endodontics: An update review. Int. Dent. J. 2008, 58, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, M.; Shen, Y.; Wang, Z.; Gao, Y. Irrigation in endodontics. Br. Dent. J. 2014, 216, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Chaugule, V.B.; Panse, A.M.; Gawali, P.N. Adverse Reaction of Sodium Hypochlorite during Endodontic Treatment of Primary Teeth. Int. J. Clin. Pediatr. Dent. 2015, 8, 153–156. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, Y.; Haapasalo, M. Effectiveness of Endodontic Disinfecting Solutions against Young and Old Enterococcus faecalis Biofilms in Dentin Canals. J. Endod. 2012, 38, 1376–1379. [Google Scholar] [CrossRef]
- Basudan, S.O. Sodium hypochlorite use, storage, and delivery methods: A Survey. Saudi Endod. J. 2019, 9, 27–33. [Google Scholar]
- Prakash, V.; Sathya, B.A.; Tamilselvi, R.; Subbiya, A. Sodium hypochlorite in endodontics—The benchmark irrigant: A review. Eur. J. Mol. Clin. Med. 2020, 7, 1235–1239. [Google Scholar]
- De Gregorio, C.; Arias, A.; Navarrete, N.; Cisneros, R.; Cohenca, N. Differences in disinfection protocols for root canal treatments between general dentists and endodontists: A web-based survey. J. Am. Dent. Assoc. 2015, 146, 536–543. [Google Scholar] [CrossRef]
- Shehab, N.F.; Zakaria, N.A.; Taha, M.Y.M. Efficiency of sodium hypochlorite as root canal disinfectant against enterococcus faecalis: An in vitro study. EC Microbiol 2019, 15, 288–294. [Google Scholar]
- Zehnder, M. Root canal irrigants. J. Endod. 2006, 32, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Estrela, C.; Estrela, C.; Barbin, E.L.; Spanó, J.C.E.; Marchesan, M.; Pecora, J.D. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002, 13, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Spencer, H.R.; Ike, V.; Brennan, P.A. Review: The use of sodium hypochlorite in endodontics—potential complications and their management. Br. Dent. J. 2007, 202, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Khademi, A.A.; Saleh, M.; Khabiri, M.; Jahadi, S. Stability of antibacterial activity of chlorhex-idine and doxycycline in bovine root dentine. J. Res. Pharm. Pract. 2014, 3, 19–22. [Google Scholar]
- Basrani, B.R.; Manek, S.; Sodhi, R.N.; Fillery, E.; Manzur, A. Interaction between Sodium Hypochlorite and Chlorhexidine Gluconate. J. Endod. 2007, 33, 966–969. [Google Scholar] [CrossRef]
- Bjelović, L.Z.; Glišić, B.Đ.; Živković, M.D.; Kanjevac, T.V. Investigation of pchloroaniline formation in the reactions between different endodontic irrigants. Kragujev. J. Sci. 2019, 41, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Bui, T.B.; Baumgartner, J.C.; Mitchell, J.C. Evaluation of the interaction between sodium hypochlorite and chlorhexidine gluconate and its effect on root dentin. J. Endod. 2008, 34, 181–185. [Google Scholar] [CrossRef]
- Sena, N.T.; Gomes, B.P.; Vianna, M.E.; Berber, V.B.; Zaia, A.A.; Ferraz, C.C.; Souza-Filho, J. In vitro antimicrobial activity of sodium hypochlorite and chlorhexidine against selected single species biofilms. Int. Endod. J. 2006, 39, 878–885. [Google Scholar] [CrossRef]
- Vianna, M.E.; Gomes, B.P. Efficacy of sodium hypochlorite combined with chlorhexidine against Enterococcus faecalis in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 107, 585–589. [Google Scholar] [CrossRef]
- Casalinuovo, A.I.; Sorge, R.; Bonelli, G.; Di Francesco, P. Evaluation of the antifungal effect of EDTA, a metal chelator agent, on Candida albicans biofilm. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1413–1420. [Google Scholar] [PubMed]
- Zborníková, E.; Gallo, J.; Večeřová, R.; Bogdanová, K.; Kolář, M.; Vítovská, D.; Pham, D.D.D.; Pačes, O.; Mojr, V.; Šanderová, H.; et al. Evaluation of Second-Generation Lipophosphonoxins as Antimicrobial Additives in Bone Cement. ACS Omega 2020, 5, 3165–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tested Substance | MIC | MBC |
---|---|---|
LPPO 2nd gen. (DR-6328) | 0.0008%/8 mg/L | 0.0016%/16 mg/L |
LPPO 3rd gen. (DR-6487) | 0.0004%/4 mg/L | 0.0004%/4 mg/L |
NaOCl | 0.08%/800 mg/L | 0.15%/1.5 g/L |
Chlorhexidine digluconate | 0.0002%/2 mg/L | 0.0002%/2 mg/L |
EDTA | 0.0085%/85 mg/L | 0.0085%/85 mg/L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozova, Y.; Voborná, I.; Žižka, R.; Bogdanová, K.; Večeřová, R.; Rejman, D.; Kolář, M.; Do Pham, D.D.; Holík, P.; Moštěk, R.; et al. Ex Vivo Effect of Novel Lipophosphonoxins on Root Canal Biofilm Produced by Enterococcus faecalis: Pilot Study. Life 2022, 12, 129. https://doi.org/10.3390/life12010129
Morozova Y, Voborná I, Žižka R, Bogdanová K, Večeřová R, Rejman D, Kolář M, Do Pham DD, Holík P, Moštěk R, et al. Ex Vivo Effect of Novel Lipophosphonoxins on Root Canal Biofilm Produced by Enterococcus faecalis: Pilot Study. Life. 2022; 12(1):129. https://doi.org/10.3390/life12010129
Chicago/Turabian StyleMorozova, Yuliya, Iva Voborná, Radovan Žižka, Kateřina Bogdanová, Renata Večeřová, Dominik Rejman, Milan Kolář, Duy Dinh Do Pham, Pavel Holík, Roman Moštěk, and et al. 2022. "Ex Vivo Effect of Novel Lipophosphonoxins on Root Canal Biofilm Produced by Enterococcus faecalis: Pilot Study" Life 12, no. 1: 129. https://doi.org/10.3390/life12010129
APA StyleMorozova, Y., Voborná, I., Žižka, R., Bogdanová, K., Večeřová, R., Rejman, D., Kolář, M., Do Pham, D. D., Holík, P., Moštěk, R., Rosa, M., & Pospíšilová, L. (2022). Ex Vivo Effect of Novel Lipophosphonoxins on Root Canal Biofilm Produced by Enterococcus faecalis: Pilot Study. Life, 12(1), 129. https://doi.org/10.3390/life12010129