Hair Cortisol Concentration as a Biomarker of Sleep Quality and Related Disorders
Abstract
:1. Introduction
2. Experimental Approaches to Cortisol Analysis
3. Correlation between Cortisol in Hair and in Body Fluids Used in Biomarker Analysis
4. Cortisol and Sleep
4.1. Hair Cortisol and Sleep in Adults
4.2. Hair Cortisol and Sleep in Children
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’Connor, T.M.; O’Halloran, D.J.; Shanahan, F. The Stress Response and the Hypothalamic-Pituitary-Adrenal Axis: From Molecule to Melancholia. QJM Mon. J. Assoc. Physicians 2000, 93, 323–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminkeng, F.; Ross, C.J.D.; Rassekh, S.R.; Hwang, S.; Rieder, M.J.; Bhavsar, A.P.; Smith, A.; Sanatani, S.; Gelmon, K.A.; Bernstein, D.; et al. Recommendations for Genetic Testing to Reduce the Incidence of Anthracycline-Induced Cardiotoxicity. Br. J. Clin. Pharmacol. 2016, 683–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.K.; Cidlowski, J.A. Glucocorticoid-Induced Apoptosis of Healthy and Malignant Lymphocytes. Prog. Brain Res. 2010, 182, 1–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davenport, M.D.; Lutz, C.K.; Tiefenbacher, S.; Novak, M.A.; Meyer, J.S. A Rhesus Monkey Model of Self-Injury: Effects of Relocation Stress on Behavior and Neuroendocrine Function. Biol. Psychiatry 2008, 63, 990–996. [Google Scholar] [CrossRef] [Green Version]
- Burke, H.M.; Davis, M.C.; Otte, C.; Mohr, D.C. Depression and Cortisol Responses to Psychological Stress: A Meta-Analysis. Psychoneuroendocrinology 2005, 30, 846–856. [Google Scholar] [CrossRef]
- Handwerger, K. Differential Patterns of HPA Activity and Reactivity in Adult Posttraumatic Stress Disorder and Major Depressive Disorder. Harv. Rev. Psychiatry 2009, 17, 184–205. [Google Scholar] [CrossRef]
- Cohen, S.I. Cushing’s Syndrome: A Psychiatric Study of 29 Patients. Br. J. Psychiatry 1980, 136, 120–124. [Google Scholar] [CrossRef]
- Loosen, P.T.; Chambliss, B.; Debold, C.R.; Shelton, R.; Orth, D.N. Psychiatrie Phenomenology in Cushing′s Disease. Pharmacopsychiatry 1992, 25, 192–198. [Google Scholar] [CrossRef]
- Dorn, L.D.; Burgess, E.S.; Dubbert, B.; Simpson, S.E.; Friedman, T.; Kling, M.; Gold, P.W.; Chrousos, G.P. Psychopathology in Patients with Endogenous Cushing’s Syndrome: “Atypical” or Melancholic Features. Clin. Endocrinol. (Oxf.) 1995, 43, 433–442. [Google Scholar] [CrossRef]
- Dimopoulou, C.; Ising, M.; Pfister, H.; Schopohl, J.; Stalla, G.K.; Sievers, C. Increased Prevalence of Anxiety-Associated Personality Traits in Patients with Cushing’s Disease: A Cross-Sectional Study. Neuroendocrinology 2013, 97, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Dorn, L.D.; Burgess, E.S.; Friedman, T.C.; Dubbert, B.; Gold, P.W.; Chrousos, G.P. The Longitudinal Course of Psychopathology in Cushing’s Syndrome after Correction of Hypercortisolism. J. Clin. Endocrinol. Metab. 1997, 82, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.E.; Chen, E.; Zhou, E.S. If it Goes up, Must It Come down? Chronic Stress and the Hypothalamic-Pituitary-Adrenocortical Axis in Humans. Psychol. Bull. 2007, 133, 25–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yehuda, R. Post-Traumatic Stress Disorder. N. Engl. J. Med. Rev. 2002, 346, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Steudte, S.; Kolassa, I.T.; Stalder, T.; Pfeiffer, A.; Kirschbaum, C.; Elbert, T. Increased Cortisol Concentrations in Hair of Severely Traumatized Ugandan Individuals with PTSD. Psychoneuroendocrinology 2011, 36, 1193–1200. [Google Scholar] [CrossRef] [Green Version]
- Holtzman, C.W.; Trotman, H.D.; Goulding, S.M.; Ryan, A.T.; MacDonald, A.N.; Shapiro, D.I.; Brasfield, J.L.; Walker, E.F. Stress and Neurodevelopmental Processes in the Emergence of Psychosis. Neuroscience 2013, 249, 172–191. [Google Scholar] [CrossRef] [Green Version]
- Fiksdal, A.; Hanlin, L.; Kuras, Y.; Gianferante, D.; Chen, X.; Thoma, M.V.; Rohleder, N. Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. Psychoneuroendocrinology 2019, 102, 44–52. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, L.; Sheng, C.; Cheng, Z.; Cui, L.; Li, M.; Zhao, Y.; Shi, T.; Yau, T.O.; Li, F.; et al. Increased Serum Levels of Cortisol and Inflammatory Cytokines in People with Depression. J. Nerv. Ment. Dis. 2019, 207, 271–276. [Google Scholar] [CrossRef]
- Ancelin, M.L.; Scali, J.; Norton, J.; Ritchie, K.; Dupuy, A.M.; Chaudieu, I.; Ryan, J. Heterogeneity in HPA axis dysregulation and serotonergic vulnerability to depression. Psychoneuroendocrinology 2017, 77, 90–94. [Google Scholar] [CrossRef]
- Wichmann, S.; Kirschbaum, C.; Böhme, C.; Petrowski, K. Cortisol stress response in post-traumatic stress disorder, panic disorder, and major depressive disorder patients. Psychoneuroendocrinology 2017, 83, 135–141. [Google Scholar] [CrossRef]
- Sagarwala, R.; Malmstrom, T.; Nasrallah, H.A. Effects of nonpharmacological therapies on anxiety and cortisol: A meta-analysis. Ann. Clin. Psychiatry 2018, 30, 91–96. [Google Scholar]
- Schmidt, S.C.E.; Gnam, J.P.; Kopf, M.; Rathgeber, T.; Woll, A. The Influence of Cortisol, Flow, and Anxiety on Performance in E-Sports: A Field Study. Biomed. Res. Int. 2020, 9651245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leff-Gelman, P.; Flores-Ramos, M.; Carrasco, A.E.Á.; Martínez, M.L.; Takashima, M.F.S.; Coronel, F.M.C.; Labonne, B.F.; Dosal, J.A.Z.; Chávez-Peón, P.B.; Morales, S.G.; et al. Cortisol and DHEA-S levels in pregnant women with severe anxiety. BMC Psychiatry 2020, 20, 393. [Google Scholar] [CrossRef] [PubMed]
- Tortosa-Martínez, J.; Manchado, C.; Cortell-Tormo, J.M.; Chulvi-Medrano, I. Exercise, the diurnal cycle of cortisol and cognitive impairment in older adults. Neurobiol Stress. 2018, 9, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Tsui, A.; Richards, M.; Singh-Manoux, A.; Udeh-Momoh, C.; Davis, D. Longitudinal associations between diurnal cortisol variation and later-life cognitive impairment. Neurology 2020, 94, e133–e141. [Google Scholar] [CrossRef] [Green Version]
- Sroykham, W.; Wongsawat, Y. Effects of brain activity, morning salivary cortisol, and emotion regulation on cognitive impairment in elderly people. Medicine 2019, 98, e16114. [Google Scholar] [CrossRef]
- Bartlett, D.M.; Cruickshank, T.M.; Hannan, A.J.; Eastwood, P.R.; Lazar, A.S.; Ziman, M.R. Neuroendocrine and neurotrophic signaling in Huntington’s disease: Implications for pathogenic mechanisms and treatment strategies. Neurosci. Biobehav. Rev. 2016, 71, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Ouanes, S.; Popp, J. High Cortisol and the Risk of Dementia and Alzheimer′s Disease: A Review of the Literature. Front. Aging Neurosci. 2019, 11, 43. [Google Scholar] [CrossRef]
- Van Cauter, E.; Spiegel, K.; Tasali, E.; Leproult, R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008, 9, S23–S28. [Google Scholar] [CrossRef] [Green Version]
- Leproult, R.; Van Cauter, E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr. Dev. 2010, 17, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Elder, G.J.; Wetherell, M.A.; Barclay, N.L.; Ellis, J.G. The cortisol awakening response--applications and implications for sleep medicine. Sleep Med. Rev. 2014, 18, 215–224. [Google Scholar] [CrossRef]
- Kritikou, I.; Basta, M.; Vgontzas, A.N.; Pejovic, S.; Fernandez-Mendoza, J.; Liao, D.; Bixler, E.O.; Gaines, J.; Chrousos, G.P. Sleep Apnoea and the Hypothalamic-Pituitary-Adrenal Axis in Men and Women: Effects of Continuous Positive Airway Pressure. Eur. Respir. J. 2016, 47, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J. Sleep and Psychiatric Disorders: A Revisit and Reconceptualization. Can. J. Psychiatry. Rev. Can. Psychiatr. 2010, 55, 401–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staner, L. Comorbidity of Insomnia and Depression. Sleep Med. Rev. 2010, 14, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Carnická, Z.; Kollár, B.; Šiarnik, P.; Krížová, L.; Klobucníková, K.; Turcáni, P. Sleep Disorders in Patients with Multiple Sclerosis. J. Clin. Sleep Med. 2015, 11, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, A.G.M.; de Bruin, P.F.C.; de Bruin, V.M.S.; Pereira, E.D.B.; Cavalcante, M.M.; Nunes, D.M.; Viana, C.S. Restless Legs Syndrome, Sleep Impairment, and Fatigue in Chronic Obstructive Pulmonary Disease. Sleep Med. 2012, 13, 842–847. [Google Scholar] [CrossRef]
- Cuellar, N.G.; Ratcliffe, S.J. A Comparison of Glycemic Control, Sleep, Fatigue, and Depression in Type 2 Diabetes with and without Restless Legs Syndrome. J. Clin. Sleep Med. 2008, 4, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Petrowski, K.; Wintermann, G.B.; Schaarschmidt, M.; Bornstein, S.R.; Kirschbaum, C. Blunted Salivary and Plasma Cortisol Response in Patients with Panic Disorder under Psychosocial Stress. Int. J. Psychophysiol. 2013, 88, 35–39. [Google Scholar] [CrossRef]
- Bozovic, D.; Racic, M.; Ivkovic, N. Salivary Cortisol Levels as a Biological Marker of Stress Reaction. Med. Arch. 2013, 67, 374–377. [Google Scholar] [CrossRef] [Green Version]
- Adam, E.K.; Quinn, M.E.; Tavernier, R.; McQuillan, M.T.; Dahlke, K.A.; Gilbert, K.E. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology 2017, 83, 25–41. [Google Scholar] [CrossRef]
- Walker, W.H., 2nd; Walton, J.C.; De Vries, A.C.; Nelson, R.J. Circadian rhythm disruption and mental health. Transl. Psychiatry 2020, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Gow, R.; Thomson, S.; Rieder, M.; Van Uum, S.; Koren, G. An Assessment of Cortisol Analysis in Hair and Its Clinical Applications. Forensic Sci. Int. 2010, 196, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum, C.; Tietze, A.; Skoluda, N.; Dettenborn, L. Hair as a Retrospective Calendar of Cortisol Production-Increased Cortisol Incorporation into Hair in the Third Trimester of Pregnancy. Psychoneuroendocrinology 2009, 34, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Russell, E.; Koren, G.; Rieder, M.; Van Uum, S. Hair Cortisol as a Biological Marker of Chronic Stress: Current Status, Future Directions and Unanswered Questions. Psychoneuroendocrinology 2012, 37, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Ito, N.; Ito, T.; Kromminga, A.; Bettermann, A.; Takigawa, M.; Kees, F.; Straub, R.H.; Paus, R. Human Hair Follicles Display a Functional Equivalent of the Hypothalamic-pituitary-adrenal (HPA) Axis and Synthesize Cortisol. FASEB J. 2005, 19, 1332–1334. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Kauter, K.G.; Mcfarlane, J.R. An Initial Exploration of in Vivo Hair Cortisol Responses to a Brief Pain Stressor: Latency, Localization and Independence Effects. Physiol. Res. 2009, 58, 757–761. [Google Scholar]
- Henderson, G.L. Mechanisms of Drug Incorporation into Hair. Ther. Drug Monit. 1996, 18, 438–443. [Google Scholar] [CrossRef]
- Dettenborn, L.; Tietze, A.; Kirschbaum, C.; Stalder, T. The Assessment of Cortisol in Human Hair: Associations with Sociodemographic Variables and Potential Confounders. Stress 2012, 15, 578–588. [Google Scholar] [CrossRef]
- Raul, J.S.; Cirimele, V.; Ludes, B.; Kintz, P. Detection of Physiological Concentrations of Cortisol and Cortisone in Human Hair. Clin. Biochem. 2004, 37, 1105–1111. [Google Scholar] [CrossRef]
- Wennig, R. Potential Problems with the Interpretation of Hairanalysis Results. Forensic Sci. Int. 2000, 107, 5–12. [Google Scholar] [CrossRef]
- Davenport, M.D.; Tiefenbacher, S.; Lutz, C.K.; Novak, M.A.; Meyer, J.S. Analysis of Endogenous Cortisol Concentrations in the Hair of Rhesus Macaques. Gen. Comp. Endocrinol. 2006, 147, 255–261. [Google Scholar] [CrossRef]
- Balagova, L.; Jezova, D. Importance of Methodological Details in the Measurement of Cortisol in Human Hair. Endocr. Regul. 2018, 52, 134–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauvé, B.; Koren, G.; Walsh, G.; Tokmakejian, S.; Van Uum, S.H.M. Measurement of Cortisol in Human Hair as a Biomarker of Systemic Exposure. Clin. Investig. Med. 2007, 30, 183–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirimele, V.; Kintz, P.; Dumestre, V.; Goullé, J.P.; Ludes, B. Identification of Ten Corticosteroids in Human Hair by Liquid Chromatography-Ionspray Mass Spectrometry. Forensic Sci. Int. 2000, 107, 381–388. [Google Scholar] [CrossRef]
- Yang, H.Z.; Lan, J.; Yan, J.M.; Xue, J.W.; Dail, W.H. A Preliminary Study of Steroid Reproductive Hormones in Human Hair. J. Steroid Biochem. Mol. Biol. 1998, 67, 447–450. [Google Scholar] [CrossRef]
- Accorsi, P.A.; Carloni, E.; Valsecchi, P.; Viggiani, R.; Gamberoni, M.; Tamanini, C.; Seren, E. Cortisol Determination in Hair and Faeces from Domestic Cats and Dogs. Gen. Comp. Endocrinol. 2008, 155, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Karaskov, T.; Stevens, B.; Yamada, J.; Koren, G. Hair Cortisol—A Potential Biological Marker for Chronic Stress. Clin. Pharmacol. Ther. 2004, 75, P44. [Google Scholar] [CrossRef]
- Slominski, R.; Rovnaghi, C.R.; Anand, K.J. Methodological Considerations for Hair Cortisol Measurements in Children. Ther. Drug Monit. 2015, 37, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Russell, E.; Kirschbaum, C.; Laudenslager, M.L.; Stalder, T.; De Rijke, Y.; Van Rossum, E.F.C.; Van Uum, S.; Koren, G. Toward Standardization of Hair Cortisol Measurement: Results of the First International Interlaboratory Round Robin. Ther. Drug Monit. 2015, 37, 71–75. [Google Scholar] [CrossRef]
- Loussouarn, G. African Hair Growth Parameters. Br. J. Dermatol. 2001, 145, 294–297. [Google Scholar] [CrossRef]
- Salaberger, T.; Millard, M.; Makarem, S.; El Möstl, E.; Grünberger, V.; Krametter-Frötscher, R.; Wittek, T.; Palme, R. Influence of External Factors on Hair Cortisol Concentrations. Gen. Comp. Endocrinol. 2016, 233, 73–78. [Google Scholar] [CrossRef]
- Camille Hoffman, M.; Karban, L.V.; Benitez, P.; Goodteacher, A.; Laudenslager, M.L. Chemical Processing and Shampooing Impact Cortisol Measured in Human Hair. Clin. Investig. Med. 2014, 37, 252–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, S.K.; Larsen, S.C.; Olsen, N.J.; Fahrenkrug, J.; Heitmann, B.L. Hair Dyeing, Hair Washing and Hair Cortisol Concentrations among Women from the Healthy Start Study. Psychoneuroendocrinology 2017, 77, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Warnock, F.; Mcelwee, K.; Seo, J.; Mcisaac, S.; Seim, D.; Ramirez-Aponte, T.; Macritchie, K.A.; Young, A.H. Neuropsychiatric Disease and Treatment Measuring Cortisol and DHEA in Fingernails: A Pilot Study. Neuropsychiatr. Dis. Treat. 2010, 6, 1–7. [Google Scholar] [PubMed]
- Wosu, A.C.; Valdimarsdóttir, U.; Shields, A.E.; Williams, D.R.; Williams, M.A. Correlates of Cortisol in Human Hair: Implications for Epidemiologic Studies on Health Effects of Chronic Stress. Ann. Epidemiol. 2013, 23, 797–811.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staufenbiel, S.M.; Penninx, B.W.J.H.; de Rijke, Y.B.; van den Akker, E.L.T.; van Rossum, E.F.C. Determinants of Hair Cortisol and Hair Cortisone Concentrations in Adults. Psychoneuroendocrinology 2015, 60, 182–194. [Google Scholar] [CrossRef]
- Vanaelst, B.; De Vriendt, T.; Huybrechts, I.; Rinaldi, S.; De Henauw, S. Epidemiological Approaches to Measure Childhood Stress. Paediatr. Perinat. Epidemiol. 2012, 26, 280–297. [Google Scholar] [CrossRef]
- van Ockenburg, S.L.; Schenk, H.M.; van der Veen, A.; van Rossum, E.F.C.; Kema, I.P.; Rosmalen, J.G.M. The Relationship between 63 Days of 24-h Urinary Free Cortisol and Hair Cortisol Levels in 10 Healthy Individuals. Psychoneuroendocrinology 2016, 73, 142–147. [Google Scholar] [CrossRef]
- Short, S.J.; Stalder, T.; Marceau, K.; Entringer, S.; Moog, N.K.; Shirtcliff, E.A.; Wadhwa, P.D.; Buss, C. Correspondence between Hair Cortisol Concentrations and 30-Day Integrated Daily Salivary and Weekly Urinary Cortisol Measures. Psychoneuroendocrinology 2016, 71, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Izawa, S.; Matsudaira, K.; Miki, K.; Arisaka, M.; Tsuchiya, M. Psychosocial Correlates of Cortisol Levels in Fingernails among Middle-Aged Workers. Stress 2017, 20, 386–389. [Google Scholar] [CrossRef]
- Xie, Q.; Gao, W.; Li, J.; Qiao, T.; Jin, J.; Deng, H.; Lu, Z. Correlation of Cortisol in 1-Cm Hair Segment with Salivary Cortisol in Human: Hair Cortisol as an Endogenous Biomarker. Clin. Chem. Lab. Med. 2011, 49, 2013–2019. [Google Scholar] [CrossRef]
- D’Anna-Hernandez, K.L.; Ross, R.G.; Natvig, C.L.; Laudenslager, M.L. Hair Cortisol Levels as a Retrospective Marker of Hypothalamic-Pituitary Axis Activity throughout Pregnancy: Comparison to Salivary Cortisol. Physiol. Behav. 2011, 104, 348–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanaelst, B.; Huybrechts, I.; Bammann, K.; Michels, N.; de Vriendt, T.; Vyncke, K.; Sioen, I.; Iacoviello, L.; Günther, K.; Molnar, D.; et al. Intercorrelations between Serum, Salivary, and Hair Cortisol and Child-Reported Estimates of Stress in Elementary School Girls. Psychophysiology 2012, 49, 1072–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouellette, S.J.; Russell, E.; Kryski, K.R.; Sheikh, H.I.; Singh, S.M.; Koren, G.; Hayden, E.P. Hair Cortisol Concentrations in Higher- and Lower-Stress Mother-Daughter Dyads: A Pilot Study of Associations and Moderators. Dev. Psychobiol. 2015, 57, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Kao, K.; Doan, S.N.; St. John, A.M.; Meyer, J.S.; Tarullo, A.R. Salivary Cortisol Reactivity in Preschoolers Is Associated with Hair Cortisol and Behavioral Problems. Stress 2018, 21, 28–35. [Google Scholar] [CrossRef]
- Izawa, S.; Miki, K.; Tsuchiya, M.; Mitani, T.; Midorikawa, T.; Fuchu, T.; Komatsu, T.; Togo, F. Cortisol Level Measurements in Fingernails as a Retrospective Index of Hormone Production. Psychoneuroendocrinology 2015, 54, 24–30. [Google Scholar] [CrossRef]
- Buysse, D.J. Sleep Health: Can We Define It? Does It Matter? Sleep 2014, 37, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Moore, M. Behavioral Sleep Problems in Children and Adolescents. J. Clin. Psychol. Med. Settings 2012, 19, 77–83. [Google Scholar] [CrossRef]
- Léger, D.; Bayon, V. Societal Costs of Insomnia. Sleep Med. Rev. 2010, 14, 379–389. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Quantity and Quality of Sleep and Incidence of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetes Care 2010, 33, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Killgore, W.D.S. Effects of Sleep Deprivation on Cognition; Elsevier: Amsterdam, The Netherlands, 2010; Volume 185. [Google Scholar] [CrossRef]
- Cunningham, J.E.A.; Jones, S.A.H.; Eskes, G.A.; Rusak, B. Acute Sleep Restriction Has Differential Effects on Components of Attention. Front. Psychiatry 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Meier-Ewert, H.K.; Ridker, P.M.; Rifai, N.; Regan, M.M.; Price, N.J.; Dinges, D.F.; Mullington, J.M. Effect of Sleep Loss on C-Reactive Protein, an Inflammatory Marker of Cardiovascular Risk. J. Am. Coll. Cardiol. 2004, 43, 678–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, J.A.; Rodriguez, D.; Schmitz, K.H.; Audrain-McGovern, J. Sleep Duration and Adolescent Obesity. Pediatrics 2013, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangwisch, J.E.; Malaspina, D.; Posner, K.; Babiss, L.A.; Heymsfield, S.B.; Turner, J.B.; Zammit, G.K.; Pickering, T.G. Insomnia and Sleep Duration as Mediators of the Relationship between Depression and Hypertension Incidence. Am. J. Hypertens. 2010, 23, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feliciano, E.M.C.; Quante, M.; Redline, S.; Rifas-Shiman, S.L.; Oken, E.; Taveras, E.M. Objective Sleep Characteristics and Cardiometabolic Health in Young Adolescents. Pediatrics 2018, 142. [Google Scholar] [CrossRef] [Green Version]
- Gangwisch, J.E.; Babiss, L.A.; Malaspina, D.; Turner, J.B.; Zammit, G.K.; Posner, K. Earlier Parental Set Bedtimes as a Protective Factor against Depression and Suicidal Ideation. Sleep 2010, 33, 97–106. [Google Scholar] [CrossRef]
- Vaughn, B.E.; Elmore-Staton, L.; Shin, N.; El-Sheikh, M. Sleep as a Support for Social Competence, Peer Relations, and Cognitive Functioning in Preschool Children. Behav. Sleep Med. 2015, 13, 92–106. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Bo, Q.G.; Fan, F.; Jia, C.X. Poor Sleep Quality and Nightmares Are Associated with Non-Suicidal Self-Injury in Adolescents. Eur. Child. Adolesc. Psychiatry 2017, 26, 271–279. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep Duration and All-Cause Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. Sleep 2010, 33, 585–592. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Narusyte, J.; Alexanderson, K. Sleep Duration, Mortality, and Heredity—A Prospective Twin Study. Sleep 2017, 40. [Google Scholar] [CrossRef] [Green Version]
- Ranum, B.M.; Wichstrøm, L.; Pallesen, S.; Falch-Madsen, J.; Halse, M.; Steinsbekk, S. Association between Objectively Measured Sleep Duration and Symptoms of Psychiatric Disorders in Middle Childhood. JAMA Netw. Open 2019, 2, e1918281. [Google Scholar] [CrossRef] [Green Version]
- Boivin, D.B. Influence of Sleep-Wake and Circadian Rhythm Disturbances in Psychiatric Disorders. J. Psychiatry Neurosci. 2000, 25, 446–458. [Google Scholar] [PubMed]
- de Bruin, E.J.; Bögels, S.M.; Oort, F.J.; Meijer, A.M. Improvements of Adolescent Psychopathology after Insomnia Treatment: Results from a Randomized Controlled Trial over 1 Year. J. Child. Psychol. Psychiatry Allied Discip. 2018, 59, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Ford, D.E.; Kamerow, D.B. Epidemiologic Study of Sleep Disturbances and Psychiatric Disorders: An Opportunity for Prevention? JAMA J. Am. Med. Assoc. 1989, 262, 1479–1484. [Google Scholar] [CrossRef]
- Hambrick, E.P.; Rubens, S.L.; Brawner, T.W.; Taussig, H.N. Do Sleep Problems Mediate the Link between Adverse Childhood Experiences and Delinquency in Preadolescent Children in Foster Care? J. Child. Psychol. Psychiatry Allied Discip. 2018, 59, 140–149. [Google Scholar] [CrossRef]
- Carvalho Bos, S.; Gomes, A.; Clemente, V.; Marques, M.; Pereira, A.T.; Maia, B.; Soares, M.J.; Cabral, A.S.; Macedo, A.; Gozal, D.; et al. Sleep and Behavioral/Emotional Problems in Children: A Population-Based Study. Sleep Med. 2009, 10, 66–74. [Google Scholar] [CrossRef]
- Harvey, A.G.; Murray, G.; Chandler, R.A.; Soehner, A. Sleep Disturbance as Transdiagnostic: Consideration of Neurobiological Mechanisms. Clin. Psychol. Rev. 2011, 31, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.B.; Murphy, L.K.; Palermo, T.M.; Clarke, G.M. Pain and Sleep-Wake Disturbances in Adolescents With Depressive Disorders. J. Clin. Child. Adolesc. Psychol. 2012, 41, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.M.; Brower, K.J.; Zucker, R.A. Sleep Problems, Suicidal Ideation, and Self-Harm Behaviors in Adolescence. J. Psychiatr. Res. 2011, 45, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Buckley, T.M.; Schatzberg, A.F. Review: On the Interactions of the Hypothalamic-Pituitary-Adrenal (HPA) Axis and Sleep: Normal HPA Axis Activity and Circadian Rhythm, Exemplary Sleep Disorders. J. Clin. Endocrinol. Metab. 2005, 90, 3106–3114. [Google Scholar] [CrossRef] [Green Version]
- Steiger, A. Sleep and the Hypothalamo-Pituitary-Adrenocortical System. Sleep Med. Rev. 2002, 6, 125–138. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Chrousos, G.P. Sleep, the Hypothalamic-Pituitary-Adrenal Axis, and Cytokines: Multiple Interactions and Disturbances in Sleep Disorders. Endocrinol. Metab. Clin. N. Am. 2002, 31, 15–36. [Google Scholar] [CrossRef]
- Meerlo, P.; Sgoifo, A.; Suchecki, D. Restricted and Disrupted Sleep: Effects on Autonomic Function, Neuroendocrine Stress Systems and Stress Responsivity. Sleep Med. Rev. 2008, 12, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Marcella, B.; Leproult, R.; Van Cauter, E. Impact of Sleep and Its Disturbances on Hypothalamo-Pituitary-Adrenal Axis Activity. Int. J. Endocrinol. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Hori, H.; Teraishi, T.; Sasayama, D.; Ozeki, Y.; Matsuo, J.; Kawamoto, Y.; Kinoshita, Y.; Hattori, K.; Higuchi, T.; Kunugi, H. Poor Sleep Is Associated with Exaggerated Cortisol Response to the Combined Dexamethasone/CRH Test in a Non-Clinical Population. J. Psychiatr. Res. 2011, 45, 1257–1263. [Google Scholar] [CrossRef]
- Räikkönen, K.; Matthews, K.A.; Pesonen, A.K.; Pyhälä, R.; Paavonen, E.J.; Feldt, K.; Jones, A.; Phillips, D.I.W.; Seckl, J.R.; Heinonen, K.; et al. Poor Sleep and Altered Hypothalamic-Pituitary-Adrenocortical and Sympatho-Adrenal-Medullary System Activity in Children. J. Clin. Endocrinol. Metab. 2010, 95, 2254–2261. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S. Protection and Damage from Acute and Chronic Stress: Allostasis and Allostatic Overload and Relevance to the Pathophysiology of Psychiatric Disorders. Ann. N. Y. Acad. Sci. 2004, 1032, 1–7. [Google Scholar] [CrossRef]
- Chrousos, G.P.; Gold, P.W. The Concepts of Stress and Stress System Disorders: Overview of Physical and Behavioral Homeostasis. JAMA J. Am. Med. Assoc. 1992, 267, 1244–1252. [Google Scholar] [CrossRef]
- Minkel, J.; Moreta, M.; Muto, J.; Htaik, O.; Jones, C.; Basner, M.; Dinges, D. Sleep Deprivation Potentiates HPA Axis Stress Reactivity in Healthy Adults. Health Psychol. 2014, 33, 1430–1434. [Google Scholar] [CrossRef]
- Lee, D.Y.; Kim, E.; Choi, M.H. Technical and Clinical Aspects of Cortisol as a Biochemical Marker of Chronic Stress. BMB Rep. 2015, 48, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Durán-Carabali, L.E.; Henao-Pacheco, M.L.; González-Clavijo, A.M.; Dueñas, Z. Salivary Alpha Amylase and Cortisol Levels as Stress Biomarkers in Children with Cerebral Palsy and Their Association with a Physical Therapy Program. Res. Dev. Disabil. 2021, 108, 103807. [Google Scholar] [CrossRef]
- Stalder, T.; Kirschbaum, C. Analysis of Cortisol in Hair—State of the Art and Future Directions. Brain. Behav. Immun. 2012, 26, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Stalder, T.; Steudte-Schmiedgen, S.; Alexander, N.; Klucken, T.; Vater, A.; Wichmann, S.; Kirschbaum, C.; Miller, R. Stress-Related and Basic Determinants of Hair Cortisol in Humans: A Meta-Analysis; Elsevier: Amsterdam, The Netherlands, 2017; Volume 77. [Google Scholar] [CrossRef]
- Buckley, T.M.; Schatzberg, A.F. Aging and the Role of the HPA Axis and Rhythm in Sleep and Memory-Consolidation. Am. J. Geriatr. Psychiatry 2005, 13, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Koolhaas, J.M.; De Boer, S.F.; De Ruitter, A.J.H.; Meerlo, P.; Sgoifo, A. Social Stress in Rats and Mice. Acta Physiol. Scand. Suppl. 1997, 161, 69–72. [Google Scholar]
- Meerlo, P.; Koehl, M.; Van Der Borght, K.; Turek, F.W. Sleep Restriction Alters the Hypothalamic-Pituitary-Adrenal Response to Stress. J. Neuroendocrinol. 2002, 14, 397–402. [Google Scholar] [CrossRef]
- Germain, A.; Buysse, D.J.; Ombao, H.; Kupfer, D.J.; Hall, M. Psychophysiological Reactivity and Coping Styles Influence the Effects of Acute Stress Exposure on Rapid Eye Movement Sleep. Psychosom. Med. 2003, 65, 857–864. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.J.; Dimsdale, J.E. The Effect of Psychosocial Stress on Sleep: A Review of Polysomnographic Evidence. Behav. Sleep Med. 2007, 5, 256–278. [Google Scholar] [CrossRef] [Green Version]
- van Dalfsen, J.H.; Markus, C.R. The Influence of Sleep on Human Hypothalamic–Pituitary–Adrenal (HPA) Axis Reactivity: A Systematic Review. Sleep Med. Rev. 2018, 39, 187–194. [Google Scholar] [CrossRef]
- Cartwright, R.D.; Wood, E. Adjustment Disorders of Sleep: The Sleep Effects of a Major Stressful Event and Its Resolution. Psychiatry Res. 1991, 39, 199–209. [Google Scholar] [CrossRef]
- Armon, G.; Shirom, A.; Shapira, I.; Melamed, S. On the Nature of Burnout-Insomnia Relationships: A Prospective Study of Employed Adults. J. Psychosom. Res. 2008, 65, 5–12. [Google Scholar] [CrossRef]
- Grossi, G.; Perski, A.; Evengård, B.; Blomkvist, V.; Orth-Gomér, K. Physiological Correlates of Burnout among Women. J. Psychosom. Res. 2003, 55, 309–316. [Google Scholar] [CrossRef]
- Söderström, M.; Ekstedt, M.; Åkerstedt, T.; Nilsson, J.; Axelsson, J. Sleep and Sleepiness in Young Individuals with High Burnout Scores. Sleep 2004, 27, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dai, J.; Li, J. Mediating Effects of Hair Cortisol on the Mutual Association of Job Burnout and Insomnia: A Retrospective Exploratory Study. J. Psychiatr. Res. 2019, 117, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Strahler, J.; Skoluda, N.; Kappert, M.B.; Nater, U.M. Simultaneous Measurement of Salivary Cortisol and Alpha-Amylase: Application and Recommendations. Neurosci. Biobehav. Rev. 2017, 83, 657–677. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, N.A.; Van Diest, R. Salivary Cortisol Patterns in Vital Exhaustion. J. Psychosom. Res. 2000, 49, 335–342. [Google Scholar] [CrossRef]
- Huang, T.; Poole, E.M.; Vetter, C.; Rexrode, K.M.; Kubzansky, L.D.; Schernhammer, E.; Rohleder, N.; Hu, F.B.; Redline, S.; Tworoger, S.S. Habitual Sleep Quality and Diurnal Rhythms of Salivary Cortisol and Dehydroepiandrosterone in Postmenopausal Women. Psychoneuroendocrinology 2017, 84, 172–180. [Google Scholar] [CrossRef]
- Späth-Schwalbe, E.; Gofferje, M.; Kern, W.; Born, J.; Fehm, H.L. Sleep Disruption Alters Nocturnal ACTH and Cortisol Secretory Patterns. Biol. Psychiatry 1991, 29, 575–584. [Google Scholar] [CrossRef]
- Steiger, A.; Holsboer, F. Nocturnal Secretion of Prolactin and Cortisol and the Sleep EEG in Patients with Major Endogenous Depression during an Acute Episode and after Full Remission. Psychiatry Res. 1997, 72, 81–88. [Google Scholar] [CrossRef]
- Abell, J.G.; Shipley, M.J.; Ferrie, J.E.; Kivimäki, M.; Kumari, M. Recurrent Short Sleep, Chronic Insomnia Symptoms and Salivary Cortisol: A 10-Year Follow-up in the Whitehall II Study. Psychoneuroendocrinology 2016, 68, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Lim, G.Y.; Jang, T.W.; Sim, C.S.; Ahn, Y.S.; Jeong, K.S. Comparison of Cortisol Level by Shift Cycle in Korean Firefighters. Int. J. Environ. Res. Public Health 2020, 17, 4760. [Google Scholar] [CrossRef]
- Janssens, H.; Braeckman, L.; Vlerick, P.; Van de Ven, B.; De Clercq, B.; Clays, E. The Relation between Social Capital and Burnout: A Longitudinal Study. Int. Arch. Occup. Environ. Health 2018, 91, 1001–1009. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, J.; Zhou, Z.; Sang, L.; Zhuang, X.; Chu, M.; Tian, T.; Xiao, J.; Lian, Y. Relationships among Shift Work, Hair Cortisol Concentration and Sleep Disorders: A Cross-Sectional Study in China. BMJ Open 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Colledge, F.; Brand, S.; Zimmerer, S.; Pühse, U.; Holsboer-Trachsler, E.; Gerber, M. In Individuals Following Aneurysmal Subarachnoid Haemorrhage, Hair Cortisol Concentrations Are Higher and More Strongly Associated with Psychological Functioning and Sleep Complaints than in Healthy Controls. Neuropsychobiology 2017, 75, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Feller, S.; Vigl, M.; Bergmann, M.M.; Boeing, H.; Kirschbaum, C.; Stalder, T. Predictors of Hair Cortisol Concentrations in Older Adults. Psychoneuroendocrinology 2014, 39, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, J.H.; Voegel, C.D.; Binz, T.M.; Paul, R.A. Hair Cortisol Measurement in Older Adults: Influence of Demographic and Physiological Factors and Correlation with Perceived Stress. Steroids 2020, 163, 108712. [Google Scholar] [CrossRef] [PubMed]
- Fries, E.; Dettenborn, L.; Kirschbaum, C. The Cortisol Awakening Response (CAR): Facts and Future Directions. Int. J. Psychophysiol. 2009, 72, 67–73. [Google Scholar] [CrossRef]
- Wüst, S.; Wolf, J.; Hellhammer, D.H.; Federenko, I.; Schommer, N.; Kirschbaum, C. The Cortisol Awakening Response—Normal Values and Confounds. Noise Health 2000, 2, 79–88. [Google Scholar]
- Backhaus, J.; Junghanns, K.; Hohagen, F. Sleep Disturbances Are Correlated with Decreased Morning Awakening Salivary Cortisol. Psychoneuroendocrinology 2004, 29, 1184–1191. [Google Scholar] [CrossRef]
- Holder, M.K.; Blaustein, J.D. Puberty and Adolescence as a Time of Vulnerability to Stressors that Alter Neurobehavioral Processes. Front. Neuroendocrinol. 2014, 35, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, L. Cognitive and Affective Development in Adolescence. Trends Cogn. Sci. 2005, 9, 69–74. [Google Scholar] [CrossRef]
- Gregory, A.M.; Sadeh, A. Annual Research Review: Sleep Problems in Childhood Psychiatric Disorders—A Review of the Latest Science. J. Child. Psychol. Psychiatry Allied Discip. 2016, 57, 296–317. [Google Scholar] [CrossRef]
- Reidy, B.L.; Raposa, E.B.; Brennan, P.A.; Hammen, C.L.; Najman, J.M.; Johnson, K.C. Prospective Associations between Chronic Youth Sleep Problems and Young Adult Health. Sleep Health 2016, 2, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Owens, J.A.; Spirito, A.; McGuinn, M.; Nobile, C. Sleep Habits and Sleep Disturbance in Elementary School-Aged Children. J. Dev. Behav. Pediatr. 2000, 21, 27–36. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Owen, J.A.; Kaplan, D.L. Sleep Patterns and Sleep Problems among Schoolchildren in the United States and China. Pediatrics 2005, 115, 241–249. [Google Scholar] [CrossRef]
- Pagel, J.F.; Forister, N.; Kwiatkowki, C. Adolescent Sleep Disturbance and School Performance: The Confounding Variable of Socioeconomics. J. Clin. Sleep Med. 2007, 3, 19–23. [Google Scholar]
- Magee, C.A.; Gordon, R.; Caputi, P. Distinct Developmental Trends in Sleep Duration during Early Childhood. Pediatrics 2014, 133, 1561–1567. [Google Scholar] [CrossRef]
- Spruyt, K.; Alaribe, C.U.; Nwabara, O.U. To Sleep or Not to Sleep: A Repeated Daily Challenge for African American Children. CNS Neurosci. Ther. 2015, 21, 23–31. [Google Scholar] [CrossRef]
- O’Brien, E.M.; Mindell, J.A. Sleep and Risk-Taking Behavior in Adolescents. Behav. Sleep Med. 2005, 3, 113–133. [Google Scholar] [CrossRef]
- Dewald, J.F.; Meijer, A.M.; Oort, F.J.; Kerkhof, G.A.; Bögels, S.M. The Influence of Sleep Quality, Sleep Duration and Sleepiness on School Performance in Children and Adolescents: A Meta-Analytic Review. Sleep Med. Rev. 2010, 14, 179–189. [Google Scholar] [CrossRef]
- Stalder, T.; Bäumler, D.; Miller, R.; Alexander, N.; Kliegel, M.; Kirschbaum, C. The Cortisol Awakening Response in Infants: Ontogeny and Associations with Development-Related Variables. Psychoneuroendocrinology 2013, 38, 552–559. [Google Scholar] [CrossRef]
- Gribbin, C.E.; Watamura, S.E.; Cairns, A.; Harsh, J.R.; Lebourgeois, M.K. The Cortisol Awakening Response (CAR) in 2- to 4-Year-Old Children: Effects of Acute Nighttime Sleep Restriction, Wake Time, and Daytime Napping. Dev. Psychobiol. 2012, 54, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Mendoza, J.; Vgontzas, A.N.; Calhoun, S.L.; Vgontzas, A.; Tsaoussoglou, M.; Gaines, J.; Liao, D.; Chrousos, G.P.; Bixler, E.O. Insomnia Symptoms, Objective Sleep Duration and Hypothalamic-Pituitary-Adrenal Activity in Children. Eur. J. Clin. Invest. 2014, 44, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Pesonen, A.K.; Martikainen, S.; Kajantie, E.; Heinonen, K.; Wehkalampi, K.; Lahti, J.; Strandberg, T.; Räikkönen, K. The Associations between Adolescent Sleep, Diurnal Cortisol Patterns and Cortisol Reactivity to Dexamethasone Suppression Test. Psychoneuroendocrinology 2014, 49, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Hatzinger, M.; Brand, S.; Perren, S.; Von Wyl, A.; Stadelmann, S.; von Klitzing, K.; Holsboer-Trachsler, E. In Pre-School Children, Sleep Objectively Assessed via Sleep-EEGs Remains Stable over 12 Months and Is Related to Psychological Functioning, but Not to Cortisol Secretion. J. Psychiatr. Res. 2013, 47, 1809–1814. [Google Scholar] [CrossRef]
- Lemola, S.; Perkinson-Gloor, N.; Hagmann-von Arx, P.; Brand, S.; Holsboer-Trachsler, E.; Grob, A.; Weber, P. Morning Cortisol Secretion in School-Age Children Is Related to the Sleep Pattern of the Preceding Night. Psychoneuroendocrinology 2015, 52, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Perkinson-Gloor, N.; Hagmann-von Arx, P.; Brand, S.; Holsboer-Trachsler, E.; Grob, A.; Weber, P.; Lemola, S. The Role of Sleep and the Hypothalamic-Pituitary-Adrenal Axis for Behavioral and Emotional Problems in Very Preterm Children during Middle Childhood. J. Psychiatr. Res. 2015, 60, 141–147. [Google Scholar] [CrossRef]
- Brooks, E.; Canal, M.M. Development of Circadian Rhythms: Role of Postnatal Light Environment. Neurosci. Biobehav. Rev. 2013, 37, 551–560. [Google Scholar] [CrossRef]
- Björkqvist, J.; Paavonen, J.; Andersson, S.; Pesonen, A.K.; Lahti, J.; Heinonen, K.; Eriksson, J.; Räikkönen, K.; Hovi, P.; Kajantie, E.; et al. Advanced Sleep-Wake Rhythm in Adults Born Prematurely: Confirmation by Actigraphy-Based Assessment in the Helsinki Study of Very Low Birth Weight Adults. Sleep Med. 2014, 15, 1101–1106. [Google Scholar] [CrossRef]
- Strang-Karlsson, S.; Kajantie, E.; Pesonen, A.K.; Rikknen, K.; Hovi, P.; Lahti, J.; Heinonen, K.; Jrvenp, A.L.; Eriksson, J.G.; Andersson, S.; et al. Morningness Propensity in Young Adults Born Prematurely: The Helsinki Study of Very Low Birth Weight Adults. Chronobiol. Int. 2010, 27, 1829–1842. [Google Scholar] [CrossRef]
- Hibbs, A.M.; Storfer-Isser, A.; Rosen, C.; Ievers-Landis, C.E.; Taveras, E.M.; Redline, S. Advanced Sleep Phase in Adolescents Born Preterm. Behav. Sleep Med. 2014, 12, 412–424. [Google Scholar] [CrossRef] [Green Version]
- Karlén, J.; Ludvigsson, J.; Hedmark, M.; Faresjö, Å.; Theodorsson, E.; Faresjö, T. Early Psychosocial Exposures, Hair Cortisol Levels, and Disease Risk. Pediatrics 2015, 135, e1450–e1457. [Google Scholar] [CrossRef] [Green Version]
- Flom, M.; St John, A.M.; Meyer, J.S.; Tarullo, A.R. Infant Hair Cortisol: Associations with Salivary Cortisol & Environmental Context. Dev. Psychobiol. 2017, 59, 26–38. [Google Scholar] [CrossRef]
- Eythorsdottir, D.Y.; Frederiksen, P.; Larsen, S.C.; Olsen, N.J.; Heitmann, B.L. Associations between Objective Measures of Physical Activity, Sleep and Stress Levels among Preschool Children. BMC Pediatr. 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Kiel, E.J.; Hummel, A.C.; Luebbe, A.M. Cortisol Secretion and Change in Sleep Problems in Early Childhood: Moderation by Maternal Overcontrol. Biol. Psychol. 2015, 107, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scher, A.; Hall, W.A.; Zaidman-Zait, A.; Weinberg, J. Sleep Quality, Cortisol Levels, and Behavioral Regulation in Toddlers. Dev. Psychobiol. 2010, 52, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leproult, R.; Copinschi, G.; Buxton, O.; Van Cauter, E. Sleep Loss Results in an Elevation of Cortisol Levels the next Evening. Sleep 1997, 20, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, K.; Leproult, R.; Van Cauter, E. Impact of Sleep Debt on Metabolic and Endocrine Function. Lancet 1999, 354, 1435–1439. [Google Scholar] [CrossRef]
- Rodenbeck, A.; Hajak, G. Neuroendocrine Dysregulation in Primary Insomnia. Rev. Neurol. 2001, 157, 57–61. [Google Scholar]
- Rodenbeck, A.; Huether, G.; Rüther, E.; Hajak, G. Interactions between Evening and Nocturnal Cortisol Secretion and Sleep Parameters in Patients with Severe Chronic Primary Insomnia. Neurosci. Lett. 2002, 324, 159–163. [Google Scholar] [CrossRef]
- Holsboer, F.; von Bardeleben, U.; Steiger, A. Effects of Intravenous Corticotropin-Releasing Hormone upon Sleep-Related Growth Hormone Surge and Sleep EEG in Man. Neuroendocrinology 1988, 48, 32–38. [Google Scholar] [CrossRef]
Reference | Number of Adults and Mean Age | Characteristics of Participants | How the Analysis of Sleep was Performed | Mean Concentration of Hair Cortisol (HCC) | Main Findings of the Study Related to Hair Cortisol Concentration |
---|---|---|---|---|---|
Lanfear et al., 2020 |
|
| An ad hoc questionnaire to capture physiological data: time and duration of daytime sleep. |
|
|
Trikojat et al, 2017 |
|
| Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989). |
|
|
Zhang et al, 2020 |
| Participants are classified as:
| The Pittsburgh Sleep Quality Index scale PSQI; Buysse et al., 1989) |
|
|
Wang et al., 2019 |
|
| Athens Insomnia Scale (AIS), |
|
|
Colledge et al., 2017 | Patients with aneurysmal subarachnoid hemorrhage (aSAH)
| Patients with aSAH following neurosurgical or endovascular intervention. | The 7-item Insomnia Severity Index (Bastien CH, Vallieres A, Morin CM, 2001) | HCC mean:
|
|
Feller et al., 2014 |
| Participants in middle and old adulthood not using glucocorticoid-containing treatments. | Average night and daytime sleep was collected using questionnaires |
|
|
Reference | Number of Children and Mean Age | Characteristics of Participants | How the Analysis of Sleep Was Performed | Mean Concentration of Hair Cortisol (HCC) | Main Findings of the Study Related to Hair Cortisol Concentration |
---|---|---|---|---|---|
Flom et al., 2017 |
|
|
|
|
|
Eythorsdottir et al., 2020 |
| Pre-school children having factors for overweight predisposition. | Objective sleep characteristics (sleep duration, sleep latency and sleep efficiency) assessed by an ActiGraph GT3X during a continuous period of 5 days and nights. |
| Sleep characteristics were generally not associated with log transformed cortisol levels. |
Maurer et al., 2016 | Healthy children born very preterm (<32nd gestational weeks):
Healthy children full term born:
| Healthy children at school age. |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Mlili, N.; Ahabrach, H.; Cauli, O. Hair Cortisol Concentration as a Biomarker of Sleep Quality and Related Disorders. Life 2021, 11, 81. https://doi.org/10.3390/life11020081
El Mlili N, Ahabrach H, Cauli O. Hair Cortisol Concentration as a Biomarker of Sleep Quality and Related Disorders. Life. 2021; 11(2):81. https://doi.org/10.3390/life11020081
Chicago/Turabian StyleEl Mlili, Nisrin, Hanan Ahabrach, and Omar Cauli. 2021. "Hair Cortisol Concentration as a Biomarker of Sleep Quality and Related Disorders" Life 11, no. 2: 81. https://doi.org/10.3390/life11020081