Estimation of the Equivalent Circuit Parameters of Induction Motors by Laboratory Test
Abstract
:1. Introduction
2. Methodology
2.1. AC Induction Motor and Output Parameters Defined by an Equivalent T-Circuit
2.2. Foundation
2.3. Matching a Kloss Formula to the Measured Data of Motor Loading
3. Results
3.1. Validation of the Submitted Approach
3.2. Representation of the Approach
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montes, A.J.S.; Castro, H.A.B.; Riveros, J.A.H. How to motivate students to work in the laboratory: A new approach for an electrical machines laboratory. IEEE Trans. Educ. 2009, 53, 490–496. [Google Scholar] [CrossRef]
- Yazidi, A.; Henao, H.; Capolino, G.A.; Betin, F.; Filippetti, F. A web-based remote laboratory for monitoring and diagnosis of ac electrical machines. IEEE Trans. Ind. Electron. 2011, 58, 4950–4959. [Google Scholar] [CrossRef]
- Holmes, P.G. An Open-Ended Electrical Machines Laboratory for Second Year Undergraduates. Int. J. Electr. Eng. Educ. 1969, 7, 431–437. [Google Scholar] [CrossRef]
- García-Guzmán, J.; Villa-L–pez, F.H.; Silva-Del-Rosario, F.H.; Ramírez-Ramírez, A.; élez Enríquez, J.V.; Ál-varez-Sánchez, E.J. Virtual environment for remote access and automation of an AC motor in a web-based laboratory. Procedia Technol. 2012, 3, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Alsmadi, Y.; Tsai, K.; Scott, M.J.; Xu, L.; Wang, A. New trends and technologies in power electronics and motor drives education. In Proceedings of the 2014 ASEE Annual Conference & Exposition, Indianapolis, Indiana, 15–18 June 2014; pp. 24–935. [Google Scholar]
- Brown, K.; Shokooh, F.; Abcede, H.; Donner, G. Interactive simulation of power systems: ETAP applications and techniques. In Proceedings of the Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting, Seattle, WA, USA, 7–12 October 1990; pp. 1930–1941. [Google Scholar]
- Rajput, S.; Bender, E.; Averbukh, M. Simplified algorithm for assessment equivalent circuit parameters of induction motors. IET Electr. Power Appl. 2020, 14, 426–432. [Google Scholar] [CrossRef]
- Helonde, A.R.; Mankar, M. Identifying Three Phase Induction Motor Equivalent Circuit Parameters from Nameplate Data by Different Analytical Methods. Int. J. Trend Sci. Res. Dev. 2019, 3, 642–645. [Google Scholar] [CrossRef] [Green Version]
- Al-Jufout, S.A.; Al-Rousan, W.H.; Wang, C. Optimization of induction motor equivalent circuit parameter estimation based on manufacturer’s data. Energies 2018, 11, 1792. [Google Scholar] [CrossRef] [Green Version]
- Guimaraes, J.M.C.; Bernardes, J.V.; Hermeto, A.E.; Bortoni, E.D.C. Parameter Determination of Asynchronous Machines from Manufacturer Data Sheet. IEEE Trans. Energy Convers. 2014, 29, 689–697. [Google Scholar] [CrossRef]
- Zhan, X.; Zeng, G.; Liu, J.; Wang, Q.; Ou, S. A review on parameters identification methods for asynchronous motor. Int. J. Adv. Comput. Sci. Appl. 2015, 6, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Chiasson, J.; Bodson, M.; Tolbert, L. A nonlinear least-squares approach for identification of the induction motor parameters. IEEE Trans. Autom. Control. 2005, 50, 1622–1628. [Google Scholar] [CrossRef]
- Yamamoto, S.; Hirahara, H.; Tanaka, A.; Ara, T. A Simple Method to Determine Double-Cage Rotor Equivalent Circuit Parameters of Induction Motors from No-Load and Locked-Rotor Tests. IEEE Trans. Ind. Appl. 2018, 55, 273–282. [Google Scholar] [CrossRef]
- Bhowmick, D.; Manna, M.; Chowdhury, S.K. Estimation of equivalent circuit parameters of trans-former and induction motor from load data. IEEE Trans. Ind. Appl. 2018, 54, 2784–2791. [Google Scholar] [CrossRef]
- De Silva, C.W. Use of linear graphs and Thevenin/Norton equivalent circuits in the modeling and analysis of electro-mechanical systems. Int. J. Mech. Eng. Educ. 2010, 38, 204–232. [Google Scholar] [CrossRef]
- Daut, I.; Gomesh, N.; Irwanto, M.; Yanawati, Y.; Shafiqin, S.N.; Irwan, Y. Parameter determination of 0.5 hp induction motor based on load factor test-a case study. In Proceedings of the International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), Kuantan, Malaysia, 21–22 June 2011; pp. 477–480. [Google Scholar]
- Sakthivel, V.; Bhuvaneswari, R.; Subramanian, S. Multi-objective parameter estimation of induction motor using particle swarm optimization. Eng. Appl. Artif. Intell. 2010, 23, 302–312. [Google Scholar] [CrossRef]
- Nikranajbar, A.; Ebrahimi, M.K.; Wood, A. Parameter identification of a cage induction motor using particle swarm optimization. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2010, 224, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Panovko, G.; Shokhin, A. Resonant Adjustment of Vibrating Machines with Unbalance Vibroexciter. Problems and Solutions. In Proceedings of the 14th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”, Kursk, Russia, 17–20 April 2019; Springer: Singapore, 2019; pp. 51–62. [Google Scholar]
- Mihăilescu, C.; Galan, N. Electric parameters variation and performances of the three Phased asynchronous motor in vector control with imposed rotor flux. In Proceedings of the 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 28–30 May 2010; Volume 3, pp. 1–3. [Google Scholar]
- Andersson, J.; Krus, P.; Nilsson, K. Optimization as a support for selection and design of aircraft actuation systems. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, USA, 2–4 September 1998; p. 4887. [Google Scholar]
- Haque, M.H. Determination of NEMA design induction motor parameters from manufacturer data. IEEE Trans. Energy Convers. 2008, 23, 997–1004. [Google Scholar] [CrossRef]
- Abidin, Z.; Adam, A. Design of Prototype Dynamic Ac Power Machine with Equivalent Circuit Modeling (Torque Speed Curve of Induction Motor 1, 1, Kw). J. Media Elektro 2017, VI, 34–38. [Google Scholar] [CrossRef]
- Mohammadi, H.R.; Akhavan, A. Parameter Estimation of Three-Phase Induction Motor Using Hybrid of Genetic Algorithm and Particle Swarm Optimization. J. Eng. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Krause, P.C.; Wasynczuk, O.; Sudhoff, S.D.; Pekarek, S.D. Analysis of Electric Machinery and Drive Systems; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 75. [Google Scholar]
- Leonhard, W. Control of Electrical Drives; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Chapman, S.J. Electric Machinery Fundamentals, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2012. [Google Scholar]
- Toliyat, H.A.; Kliman, G.B. (Eds.) Handbook of Electric Motors; CRC Press: Boca Raton, FL, USA, 2018; Volume 120. [Google Scholar]
n | 1 | 2 | 3 | … | N |
---|---|---|---|---|---|
(τm)n, Nm | τ1 | τ2 | τ3 | … | τn |
(ωm)n, rad/s | ω1 | ω2 | ω3 | … | ωn |
(Iin)n, A | (Iin)1 | (Iin)2 | (Iin)3 | … | (Iin)n |
(Pin)n, W | (Pin)1 | (Pin)2 | (Pin)3 | … | (Pin)n |
(cos φ)n | (cos φ)1 | (cos φ)2 | (cos φ)3 | … | (cos φ)n |
Vph, V | nm, rpm | Iph, A | Pph_measured, W | cos φ | τm, Nm | P3ph, W | Pmech, W | η |
---|---|---|---|---|---|---|---|---|
400 | 1470 | 1.42 | 84 | 0.15 | 0.33 | 252 | 51.3 | 0.204 |
400 | 1469 | 1.4 | 93 | 0.16 | 0.51 | 279 | 78.2 | 0.280 |
400 | 1466 | 1.39 | 118 | 0.21 | 1.10 | 354 | 168.9 | 0.477 |
400 | 1455 | 1.37 | 159 | 0.28 | 2.08 | 477 | 317.4 | 0.665 |
400 | 1453 | 1.36 | 195 | 0.36 | 2.95 | 585 | 448.9 | 0.767 |
400 | 1444 | 1.38 | 253 | 0.46 | 4.21 | 759 | 636.3 | 0.838 |
400 | 1430 | 1.435 | 331 | 0.58 | 5.83 | 993 | 873.5 | 0.880 |
400 | 1416 | 1.53 | 410 | 0.67 | 7.42 | 1230 | 1099.7 | 0.894 |
400 | 1384 | 1.82 | 578 | 0.8 | 10.12 | 1734 | 1466.2 | 0.846 |
400 | 1351 | 2.15 | 730 | 0.85 | 11.92 | 2190 | 1685.9 | 0.770 |
400 | 1345 | 2.16 | 740 | 0.86 | 11.97 | 2220 | 1685.4 | 0.759 |
400 | 1300 | 2.53 | 900 | 0.89 | 13.13 | 2700 | 1787.9 | 0.662 |
400 | 1277 | 2.82 | 1015 | 0.9 | 13.99 | 3045 | 1845.4 | 0.606 |
γ, p.u. | 0.99 | 0.98 | 0.97 | 0.96 | 0.95 | 0.94 | 0.93 | 0.92 | 0.91 | 0.90 | 0.89 |
Uth, V | 396 | 392 | 388 | 384 | 380 | 376 | 372 | 368 | 364 | 360 | 356 |
(R2)min, Ω | 12.15 | 11.91 | 11.67 | 11.43 | 11.19 | 10.95 | 10.72 | 10.49 | 10.27 | 10.04 | 9.82 |
(R2)max, Ω | 19.06 | 18.68 | 18.30 | 17.92 | 17.55 | 17.19 | 16.82 | 16.46 | 16.11 | 15.75 | 15.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Averbukh, M.; Lockshin, E. Estimation of the Equivalent Circuit Parameters of Induction Motors by Laboratory Test. Machines 2021, 9, 340. https://doi.org/10.3390/machines9120340
Averbukh M, Lockshin E. Estimation of the Equivalent Circuit Parameters of Induction Motors by Laboratory Test. Machines. 2021; 9(12):340. https://doi.org/10.3390/machines9120340
Chicago/Turabian StyleAverbukh, Moshe, and Efim Lockshin. 2021. "Estimation of the Equivalent Circuit Parameters of Induction Motors by Laboratory Test" Machines 9, no. 12: 340. https://doi.org/10.3390/machines9120340
APA StyleAverbukh, M., & Lockshin, E. (2021). Estimation of the Equivalent Circuit Parameters of Induction Motors by Laboratory Test. Machines, 9(12), 340. https://doi.org/10.3390/machines9120340