Functional Design of a Hybrid Leg-Wheel-Track Ground Mobile Robot
Abstract
:1. Introduction
2. Conceptual Design of the Hybrid Robot WheTLHLoc
- Instead of a single short rotating arm placed on the front of the vehicle, it makes use of two independently actuated rotating legs (Figure 1, L);
- The common revolute axis of the two legs (Figure 1, A), is centered with respect to the robot body, and the legs can perform complete and continuous rotations around it;
- i.
- ii.
- The legs, longer than the arm of HELIOS-VI, can be used to overcome obstacles, even performing differential steering, if required in case of asymmetrical obstacles;
- iii.
- When the robot is in the wheeled locomotion (WL) position, the field of view of the front camera is optimally exploited (Figure 2a);
- iv.
- Since the robot main body is symmetric with respect to the xy plane, it is fully operative even after an overturn; it is very unlikely that after a fall the robot remains on one flank, and even in this case a rotation of the leg in contact with the terrain can put again the robot on the tracks;
- v.
- The rotation of the legs and the action of the wheels can be used in case of irregular terrains and obstacles, i.e., when the use of only tracks is not sufficient to advance; in this case, the two legs can be moved independently in presence of asymmetric ground irregularities (Figure 2c);
- vi.
- In particular, the combined motion of legs, wheels, and tracks can be used to overcome steps and stairs, according to the sequences discussed in Section 3.
3. Step and Stair Climbing and Descent
4. Multibody Simulation of Stair Climbing
5. Internal Layout and Embodiment Design
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IFR International Federation of Robotics, World Robotics 2019, Industrial Robots and Service Robots. Available online: https://www.ifr.org (accessed on 1 September 2020).
- Quaglia, G.; Visconte, C.; Scimmi, L.S.; Melchiorre, M.; Cavallone, P.; Pastorelli, S. Design of a UGV powered by solar energy for precision agriculture. Robotics 2020, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Mateo Sanguino, T.J. 50 years of rovers for planetary exploration: A retrospective review for future directions. Robot. Auton. Syst. 2017, 94, 172–185. [Google Scholar] [CrossRef]
- Murphy, R.R. Rescue robotics for homeland security. Commun. ACM 2004, 47, 66–68. [Google Scholar] [CrossRef]
- Chun, W.H.; Papanikolopoulos, N. Robot Surveillance and Security. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1605–1626. [Google Scholar]
- Tadokoro, S. Rescue Robotics. DDT Project on Robots and Systems for Urban Search and Rescue; Springer: London, UK, 2009. [Google Scholar]
- Dubey, S. Robot Locomotion—A Review. Int. J. Appl. Eng. Res. 2015, 10, 7357–7369. [Google Scholar]
- Bruzzone, L.; Quaglia, G. Review article: Locomotion systems for ground mobile robots in unstructured environments. Mech. Sci. 2012, 3, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Kececi, E.F.; Ceccarelli, M. Mobile Robots for Dynamic Environments; ASME Press: New York, NY, USA, 2015; ISBN 978-0791860526. [Google Scholar]
- Chung, W.; Iagnemma, K. Wheeled robots. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 575–594. [Google Scholar]
- Kim, J.; Kim, J.; Lee, D. Mobile robot with passively articulated driving tracks for high terrainability and maneuverability on unstructured rough terrain: Design, analysis, and performance evaluation. J. Mech. Sci. Technol. 2018, 32, 5389–5400. [Google Scholar] [CrossRef]
- Ottonello, G.; Berselli, G.; Bruzzone, L.; Fanghella, P. Functional Design of Elloboat, a Tracked Vehicle for Launching and Beaching of Watercrafts and Small Boats. In Proceedings of the 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications MESA 2018, Oulu, Finland, 2–4 July 2018. [Google Scholar] [CrossRef]
- Bruzzone, L.; Berselli, G.; Bilancia, P.; Fanghella, P. Design Issues for Tracked Boat Transporter Vehicles. In Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science; Springer: Cham, Switzerland, 2019; Volume 73, pp. 3671–3679. [Google Scholar] [CrossRef]
- Vukobratovic, M.; Borovac, B. Zero-moment point-thirty five years of its life. Int. J. Hum. Robot. 2004, 1, 157–173. [Google Scholar] [CrossRef]
- Manchester, I.R.; Mettin, U.; Iida, F.; Tedrake, R. Stable dynamic walking over uneven terrain. Int. J. Robot. Res. 2011, 30, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Altendorfer, R.; Moore, N.; Komsuoglu, H.; Buehler, M.; Brown, H.B., Jr.; McMordie, D.; Saranli, U.; Full, R.; Koditschek, D.E. RHex: A biologically inspired hexapod runner. Auton. Robot. 2001, 11, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Bruzzone, L.; Fanghella, P. Functional Redesign of Mantis 2.0, a Hybrid Leg-Wheel Robot for Surveillance and Inspection. J. Intell. Robot. Syst. Theory Appl. 2016, 81, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Quaglia, G.; Bruzzone, L.; Oderio, R.; Razzoli, R.P. EPI.Q mobile robots family. In Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, Denver, CO, USA, 11–17 November 2011; Volume 7, pp. 1165–1172. [Google Scholar] [CrossRef]
- Quaglia, G.; Butera, L.G.; Chiapello, E.; Bruzzone, L. UGV epi.q-mod. In Advances on Theory and Practice of Robots and Manipulators; ROMANSY 2014. Mechanisms and Machine Science; Springer: Cham, Switzerland, 2014; Volume 22, pp. 331–339. [Google Scholar] [CrossRef]
- Boston Dynamics, Handle. Available online: https://www.bostondynamics.com/handle (accessed on 1 September 2020).
- Kashiri, N.; Baccelliere, L.; Muratore, L.; Laurenzi, A.; Ren, Z.; Hoffman, E.M.; Kamedula, M.; Rigano, G.F.; Malzahn, J.; Cordasco, S.; et al. CENTAURO: A hybrid locomotion and high power resilient manipulation platform. IEEE Robot. Autom. Lett. 2019, 4, 1595–1602. [Google Scholar] [CrossRef]
- Hirose, S.; Shirasu, T.; Fukushima, E.F. Proposal for cooperative robot Gunryu composed of autonomous segments. Robot. Auton. Syst. 1996, 17, 107–118. [Google Scholar] [CrossRef]
- Lee, G.; Kim, H.; Seo, K.; Kim, J.; Sitti, M.; Seo, T.W. Series of multilinked caterpillar track-type climbing robots. J. Field Robot. 2016, 33, 737–750. [Google Scholar] [CrossRef]
- Fujita, T.; Sasaki, T. Development of hexapod tracked mobile robot and its hybrid locomotion with object-carrying. In Proceedings of the 5th IEEE International Symposium on Robotics and Intelligent Sensors, IRIS 2017, Ottawa, ON, Canada, 5–7 October 2017; pp. 69–73. [Google Scholar] [CrossRef]
- Babu, N.; Sujatha, S.; Narayanan, S.; Balamurugan, V. Novel Hybrid Leg-Track Locomotion Robot and its Stability Analysis Using a Unified Methodology. Procedia Comput. Sci. 2018, 133, 486–493. [Google Scholar] [CrossRef]
- Rea, P.; Ottaviano, E. Design and development of an inspection robotic system for indoor applications. Robot. Comput. Integr. Manuf. 2018, 49, 143–151. [Google Scholar] [CrossRef]
- Hirose, S.; Fukuda, Y.; Yoneda, K.; Nagakubo, A.; Tsukagoshi, H.; Arikawa, K.; Endo, G.; Doi, T.; Hodoshima, R. Quadruped walking robots at Tokyo Institute of Technology. IEEE Robot. Autom. Mag. 2009, 16, 104–114. [Google Scholar] [CrossRef]
- Han, C.; Xu, Y.; Xu, X.; Zeng, Z.; Lu, H.; Zhou, Z. Remote control and autonomous driving: The system-wide design of a wheel-track transformable robot—Kylin Blaster. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 23–25 November 2018; pp. 3446–3451. [Google Scholar] [CrossRef]
- Ben-Tzvi, P.; Saab, W. A hybrid tracked-wheeled multi-directional mobile robot, ASME. J. Mech. Robot. 2019, 11, 041008. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, Y.G.; Kwak, J.H.; Hong, D.H.; An, J. Wheel & track hybrid robot platform for optimal navigation in an urban environment. In Proceedings of the SICE Annual Conference, Taipei, Taiwan, 18–21 August 2010; pp. 881–884. [Google Scholar]
- Michaud, F.; Letourneau, D.; Arsenault, M.; Bergeron, Y.; Cadrin, R.; Gagnon, F.; Legault, M.A.; Millette, M.; Pare, J.F.; Remblay, M.C.; et al. Multi-modal locomotion robotic platform using leg-track-wheel articulations. Auton. Robot. 2005, 18, 137–156. [Google Scholar] [CrossRef]
- Hirose, S.; Fukushima, E.; Damoto, R.; Nakamoto, H. Design of terrain adaptive versatile crawler vehicle HELIOS-VI. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Maui, HI, USA, 29 October–3 November 2001; pp. 1540–1545. [Google Scholar] [CrossRef]
- Luo, Z.; Shang, J.; Wei, G.; Ren, L. A reconfigurable hybrid wheel-track mobile robot based on Watt II six-bar linkage. Mech. Mach. Theory 2018, 128, 16–32. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Cui, D.; Guo, W.; Mu, Y.; Li, B. Dynamics and stability analysis on stairs climbing of wheel-track mobile robot. Int. J. Adv. Robot. Syst. 2017, 14, 1–13. [Google Scholar] [CrossRef]
- Zhou, F.; Xu, X.; Xu, H.; Zhang, X. A multimodal hybrid robot with transformable wheels. In Proceedings of the 2017 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2017, Okinawa, Japan, 14–18 July 2017; pp. 139–144. [Google Scholar] [CrossRef]
- Bilancia, P.; Berselli, G.; Bruzzone, L.; Fanghella, P. A practical method for determining the pseudo-rigid-body parameters of spatial compliant mechanisms via CAE tools. Procedia Manuf. 2017, 11, 1709–1717. [Google Scholar] [CrossRef]
- Mo, H.; Jianzhong, S.; Zirong, L.; Zhuo, W. Trench-crossing capability analysis of a reconfigurable tracked mobile robot. In Proceedings of the International Conference on Intelligent Robotics and Applications, Shanghai, China, 10–12 November 2010; pp. 509–518. [Google Scholar] [CrossRef]
Component | Symbol in Figure 8 | Characteristics |
---|---|---|
Outer Case | OC | 3D printed kevlar-reinforced nylon |
Upper structural plate | UP | 3D printed micro-carbon-fiber-filled nylon |
Lower structural plate | LP | 3D printed micro-carbon-fiber-filled nylon |
Leg gearmotor | LM | Micromotors RH-158-2s-12V, 26 rpm |
Track gearmotor | TM | Micromotors RH-158-2s-12V, 33 rpm |
Wheel gearmotor | WM | EMG 30, 12v, 170 rpm |
Motor driver (PWM) | PD | L298N Dual H-Bridge motor controller |
Leg axis | LA | Stainless steel tube (∅10 mm, 1 mm wall) |
Track axis | TA | High carbon steel tube (C45, ∅6 mm) |
Leg gear | LG | 20:14, M2 |
Track gear | TG | 18:12, M1.5 |
Omni wheels group | OW | Rotacaster 95A-50 mm |
Controller | C | National Instruments MyRio 1900 |
Battery | B | HRB 50C-4S-RC-LiPo, 14.8V, 2200 mAh |
Front camera | FC | Yosoo OV7670-300KP-VGA |
Rear camera | RC | Yosoo OV7670-300KP-VGA |
Slip ring | SR | 12 mm-12wires miniature slip ring |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruzzone, L.; Baggetta, M.; Nodehi, S.E.; Bilancia, P.; Fanghella, P. Functional Design of a Hybrid Leg-Wheel-Track Ground Mobile Robot. Machines 2021, 9, 10. https://doi.org/10.3390/machines9010010
Bruzzone L, Baggetta M, Nodehi SE, Bilancia P, Fanghella P. Functional Design of a Hybrid Leg-Wheel-Track Ground Mobile Robot. Machines. 2021; 9(1):10. https://doi.org/10.3390/machines9010010
Chicago/Turabian StyleBruzzone, Luca, Mario Baggetta, Shahab E. Nodehi, Pietro Bilancia, and Pietro Fanghella. 2021. "Functional Design of a Hybrid Leg-Wheel-Track Ground Mobile Robot" Machines 9, no. 1: 10. https://doi.org/10.3390/machines9010010
APA StyleBruzzone, L., Baggetta, M., Nodehi, S. E., Bilancia, P., & Fanghella, P. (2021). Functional Design of a Hybrid Leg-Wheel-Track Ground Mobile Robot. Machines, 9(1), 10. https://doi.org/10.3390/machines9010010