Recent Developments in Electroadhesion Grippers for Automated Fruit Grasping
Abstract
1. Introduction
2. Electroadhesion Grippers
2.1. Working Principle
2.2. Advantages and Potential Applications
- Versatility and adaptability to both conducting and insulating materials, and porous and rough surfaces;
- Capability of operating in harsh conditions, such as dusty environments, at low pressures, and in space;
- High shear forces without applying mechanical compressive stresses;
- Lightweight, thin-film, and compliant functional layers;
- Low-cost constitutive materials, easy process via additive manufacturing and printed electronics methods, and simple electrical control components;
- Low energy consumption (<30 mW) despite a relatively high voltage, with typical currents in the µA range measured for EADs;
- Safe handling of fragile, delicate, and soft objects, without exerting any mechanical compressive pressure.
3. EA Grippers’ Grasping Capability on Fruit
3.1. EA Gripper 1: A Variable Stiffness Electroadhesive Gripper Based on Low-Melting-Point Alloys
3.2. EA Gripper 2: Additive Manufacturing of Flexible 3D Surface Electrodes for Electrostatic Adhesion Control and Smart Robotic Gripping
3.3. EA Gripper 3: Delicate Yet Strong: Characterizing the Electroadhesion Lifting Force with a Soft Gripper
3.4. EA Gripper 4: Design and Development of a Variable Structure Gripper with Electroadhesion
3.5. EA Gripper 5: EA-SoGripper: Electroadhesion-Stiffening Self-Adaptive Soft Robotic Gripper
3.6. EA Gripper 6: Electroadhesion Suction Cups
3.7. EA Gripper 7: Peeling in Electroadhesion Soft Grippers
3.8. EA Gripper 8: Hybrid Soft Electrostatic Metamaterial Gripper for Multi-Surface, Multi-Object Adaptation
3.9. EA Gripper 9: Electroadhesion Zipping with Soft Grippers on Curved Objects
3.10. EA Gripper 10: Enhancing Compliant Gripper Performance: Exploiting Electroadhesion to Increase Lifting Force over Grasping Force
4. Discussion
- Fruit selection: apples, tangerines, oranges, limes, lemons, tomatoes, cherry tomatoes, mangoes, and grapefruits are considered and compared in this analysis.
- Load capacity range: from 10 g (~0.1 N) for cherry tomatoes to 600 g (~6 N) for mangoes.
- Demonstrated adaptability to a variety of target shapes: thanks to their modular structure, the hybrid EA grippers reviewed display an improved gripping capability of flat surfaces, convex and concave objects, and targets having more complex shapes.
- Demonstrated grasping ability for a variety of contact interfaces: EADs prove to be effective on rough surfaces too.
- Application of minimal compressive stress and high EA shear force on the fruits to be grasped.
- (1)
- Lightweight, adaptive end-effectors: EA interfaces can lift up to 33 N, with payloads up to 17 times their own weight [60]. The structural optimization of hybrid EA grippers leads to an improved conformability to the fruit and introduces mechanical stiffness, contributing to prehension force enhancement. Their electrical power source can be located externally or miniaturized, with a minimal contribution to the weight of the end-effector. Adaptability to a wide variety of shapes and surface textures allows for a reduced damage risk, higher rates of success for picking operations, and improved efficiency.
- (2)
- In the context of bionic manipulators, the soft FinRay gripper reviewed in Section 3.10 represents a promising solution capable of conforming to delicate objects, including crops, without damaging them, by integrating a soft urethane backing structure and a stable grip through electroadhesion.
- (3)
- Due to their capacitive architecture, EADs will soon integrate proprioceptive capabilities, which hold the potential for proximity, contact, and slipping detection, with no need for bulky hardware for additional sensors and vision systems [63].
- (4)
- The combination of flexible materials for grippers is the new frontier in robotic handling and can compensate for the occurrence of excessive stress, which is frequently observed in traditional mechanical systems instead. This would further reduce the risk of crop damage by compression. All the systems considered in this analysis feature a soft element, either using a thin-film EAD system connected to a mechanical actuator promoting contact and release, or a hybrid design with a soft backing structure.
- (5)
- Compared to traditional end-effectors that achieve grasping by exploiting fixed components such as mechanical or pneumatic-driven fingers, EAD’s integration on any pre-existing structure does not represent a problem, and an enhanced performance is often achievable by simply adding a conformable backing layer. This drastically favors system modularity and reconfigurability and aligns well with the market demand.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| EAD | Electroadhesion Device |
| TRL | Technology Readiness Level |
| EA | Electroadhesion |
Appendix A
Appendix A.1
Appendix A.2
- (1)
- Is the end-effector/gripper rigid, soft, or hybrid?
- (2)
- How many fingers does the gripper employ?
- (3)
- What is the actuation method (e.g., pneumatic, motor-driven, tendon-driven, etc.)?
- (4)
- What materials are used at the gripper tips?
- (5)
- Which fruits or agricultural products have been targeted for grasping or harvesting?
- (6)
- Which sensory systems are used to protect delicate agricultural produce?
- (1)
- Elastomers/Rubbers: silicone rubber, thermoplastic polyurethane (TPU), polyurethane elastomer (PUE), thermoplastic elastomer (TPE), generic thermoplastic polymers (TP), and polydimethylsiloxane (PDMS);
- (2)
- Plastics/Polymers: acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), polylactic polymer (PL), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and generic polymers;
- (3)
- Foams and Sponges;
- (4)
- Hydrogels/Soft Materials: hydrogels and polymeric membranes;
- (5)
- Metals.
- (1)
- Temperate fruits: apple, pear, grape, peach, and kiwi.
- (2)
- Tropical/subtropical fruits: banana, mango, papaya, pineapple, avocado, litchi, and dragon fruit.
- (3)
- Citrus fruits: orange, lemon, tangerine, and citrus.
- (4)
- Vegetables: tomato, cherry tomato, tomato bunches, cucumber, eggplant, pepper, chili pepper, sweet pepper, radish, potato, paprika, asparagus, and broccoli.
- (5)
- Berries: strawberry, blueberry, blackberry, and raspberry.
- (6)
- Nuts/Seeds: chestnut burr, nut, seeds, safflower, sunflower, and hemp plant.
- (7)
- Industrial crops: cotton, cotton plant, cotton ball, and tobacco leaves.
- (8)
- Mushrooms/Fungi: mushroom, morel, and Agaricus bisporus.
- (1)
- Vision-Based: Designs that utilize vision systems such as RGB cameras.
- (2)
- Sensor at the tip: Designs that employ various types of sensors at the contact interface of the gripper or end-effector to protect the produce. These include photoelectric/photonic, pressure/force, triboelectric, piezoelectric, PVDF, magnetic/electromagnetic, capacitive, ultrasonic sensors, etc.
- (3)
- Hybrid: Designs that incorporate both vision-based systems and sensors at the tip.
- (4)
- None: Designs that do not employ any of the aforementioned sensory solutions for protection.
References
- United Nations Department of Economic and Social Affairs (UN DESA). World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed on 19 September 2025).
- Food and Agriculture Organization of the United Nations (FAO). Global Agriculture Towards 2050. 2009. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 19 September 2025).
- Elfferich, J.F.; Dodou, D.; Della Santina, C. Soft Robotic Grippers for Crop Handling or Harvesting: A Review. IEEE Access 2022, 10, 75428–75443. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, J.; Li, C.; Wang, X. Intelligent Soft Robotic Grippers for Agricultural and Food Product Handling: A Brief Review with a Focus on Design and Control. Adv. Intell. Syst. 2023, 5, 2300233. [Google Scholar] [CrossRef]
- Zeeshan, S.; Aized, T.; Riaz, F. In-Depth Evaluation of Automated Fruit Harvesting in Unstructured Environment for Improved Robot Design. Machines 2024, 12, 151. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, S.; Chen, H.; Li, G.; Dong, H.; Yu, J.; Zhang, X.; Chen, R. A review of visual perception technology for intelligent fruit harvesting robots. Front. Plant Sci. 2025, 16, 1646871. [Google Scholar] [CrossRef]
- He, Z.; Liu, Z.; Zhou, Z.; Karkee, M.; Zhang, Q. Improving picking efficiency under occlusion: Design, development, and field evaluation of an innovative robotic strawberry harvester. Comput. Electron. Agric. 2025, 237, 110684. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Xi, Y.; Gu, J.; Zhang, X.; Zhou, M.; Peng, Y. Research Progress and Development Trend of Visual Detection Methods for Selective Fruit Harvesting Robots. Agronomy 2025, 15, 1926. [Google Scholar] [CrossRef]
- Sarig, Y. Robotics of Fruit Harvesting: A State-of-art Review. J. Agric. Eng. Res. 1993, 54, 265–280. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0021863483710206 (accessed on 19 September 2025). [CrossRef]
- Navas, E.; Fernández, R.; Sepúlveda, D.; Armada, M.; Gonzalez-De-santos, P. Soft grippers for automatic crop harvesting: A review. Sensors 2021, 21, 2689. [Google Scholar] [CrossRef]
- Han, W.; Luo, J.; Wang, J.; Gu, Q.; Lin, L.; Gao, Y.; Chen, H.; Luo, K.; Zeng, Z.; He, J. Design of a Chili Pepper Harvesting Device for Hilly Chili Fields. Agronomy 2025, 15, 1118. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, H.; Zhang, K.; Wang, Y.; Li, Y.; Zhou, J.; Xu, L. Design, Development, Integration, and Field Evaluation of a Ridge-Planting Strawberry Harvesting Robot. Agriculture 2024, 14, 2126. [Google Scholar] [CrossRef]
- Sytsma, M.; van Marrewijk, B.M.; Tielen, T.; Vroegop, A.; Ruizendaal, J. Design and evaluation of a robotic prototype for gerbera harvesting, performing actions at never-seen locations. Comput. Electron. Agric. 2025, 228, 109671. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, D.; Yang, L.; Cui, T.; He, X.; Zhang, K.; Zhang, Z. Development, Integration, and Field Evaluation of a Dual-Arm Ridge Cultivation Strawberry Autonomous Harvesting Robot. J. Field Robot. 2025, 42, 1783–1798. [Google Scholar] [CrossRef]
- Choi, D.W.; Park, J.H.; Yoo, J.H.; Ko, K.E. AI-driven adaptive grasping and precise detaching robot for efficient citrus harvesting. Comput. Electron. Agric. 2025, 232, 110131. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, Y.; Zhou, J.; Wang, K.; Zhang, Z. State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review. Comput. Electron. Agric. 2020, 177, 105694. [Google Scholar] [CrossRef]
- Liu, W.; Tan, Z.; Xie, W. A hand-like gripper embedded with flexible gel sensor for tomato harvesting: Soft contact and intelligent ripeness sensing. J. Food Meas. Charact. 2025, 19, 3150–3161. [Google Scholar] [CrossRef]
- Qiu, Y.; Ye, Z.; Tan, X.; Dai, M.; Ge, S.; Zhao, X.; Kong, D.; Ruan, Y. Fruit grasping evaluation based on a humanoid underactuated manipulator and an adaptive grasping algorithm. Smart Agric. Technol. 2025, 11, 101007. [Google Scholar] [CrossRef]
- Wang, Q.; Bai, K.; Zhang, L.; Sun, Z.; Jia, T.; Hu, D.; Li, Q.; Zhang, J.; Knoll, A.; Jiang, H.; et al. Towards reliable and damage-less robotic fragile fruit grasping: An enveloping gripper with multimodal strategy inspired by Asian elephant trunk. Comput. Electron. Agric. 2025, 234, 110198. [Google Scholar] [CrossRef]
- Sun, J.; Sun, L.; Zhao, G.; Liu, J.; Chen, Z.; Jing, L.; Cao, X.; Zhang, H.; Tang, W.; Wang, J. Triboelectric force feedback-based fully actuated adaptive apple-picking gripper for optimized stability and non-destructive harvesting. Comput. Electron. Agric. 2025, 237, 110725. [Google Scholar] [CrossRef]
- Ansari, S.; Gohil, M.K.; Maeda, Y.; Bhattacharya, B. Design and development of a new hybrid auxetic gripper system for adaptive precision tomato harvesting. Int. J. Intell. Robot. Appl. 2025, 1–24. [Google Scholar] [CrossRef]
- Zhu, H.; Qin, H.; Qiu, Z.; Chen, X.; Xue, J.; Gu, X.; Lu, M. A Compliant Active Roller Gripper with High Positional Offset Tolerance for Delicate Spherical Fruit Handling. Agriculture 2025, 15, 220. [Google Scholar] [CrossRef]
- Ward-Cherrier, B.; Rojas, N.; Lepora, N.F. Model-Free Precise in-Hand Manipulation with a 3D-Printed Tactile Gripper. IEEE Robot. Autom. Lett. 2017, 2, 2056–2063. [Google Scholar] [CrossRef]
- He, L.; Lu, Q.; Abad, S.A.; Rojas, N.; Nanayakkara, T. Soft Fingertips with Tactile Sensing and Active Deformation for Robust Grasping of Delicate Objects. IEEE Robot. Autom. Lett. 2020, 5, 2714–2721. [Google Scholar] [CrossRef]
- Wang, Z.; Chathuranga, D.S.; Hirai, S. 3D printed soft gripper for automatic lunch box packing. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 503–508. [Google Scholar] [CrossRef]
- Shan, Y.; Ding, B.; Zhong, J.; Li, Y. Design and optimization of a decoupled serial constant force microgripper for force sensitive objects manipulation. Robotica 2023, 41, 2064–2078. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Chen, M.; Ding, B. Design, analysis, and experimental investigations of an asymmetrical under-actuated micro-gripper. J. Intell. Mater. Syst. Struct. 2024, 35, 960–970. [Google Scholar] [CrossRef]
- Ding, B.; Li, X.; Li, C.; Li, Y.; Chen, S.C. A survey on the mechanical design for piezo-actuated compliant micro-positioning stages. Rev. Sci. Instrum. 2023, 94, 101502. [Google Scholar] [CrossRef]
- Kargar, S.M.; Berselli, G. TriCoM Gripper–Part I: Mechanical Design and Synthesis of a 3-Finger Compliant Monolithic Gripper. In Proceedings of the MESA 2024—20th International Conference on Mechatronic, Embedded Systems and Applications (MESA), Genova, Italy, 2–4 September 2024; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2024. [Google Scholar] [CrossRef]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft Robotic Grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef]
- Huang, P.; Xin, Y.; Lee, P.S. Soft electroadhesion systems for soft robotics. npj Robot. 2025, 3, 29. [Google Scholar] [CrossRef]
- Rajagopalan, P.; Muthu, M.; Liu, Y.; Luo, J.; Wang, X.; Wan, C. Advancement of Electroadhesion Technology for Intelligent and Self-Reliant Robotic Applications. Adv. Intell. Syst. 2022, 4, 2200064. [Google Scholar] [CrossRef]
- Guo, J.; Leng, J.; Rossiter, J. Electroadhesion Technologies for Robotics: A Comprehensive Review. IEEE Trans. Robot. 2020, 36, 313–327. [Google Scholar] [CrossRef]
- Choi, K.; Kim, Y.C.; Sun, H.; Kim, S.-H.; Yoo, J.W.; Park, I.-K.; Lee, P.-C.; Choi, H.J.; Choi, H.R.; Kim, T.; et al. Quantitative Electrode Design Modeling of an Electroadhesive Lifting Device Based on the Localized Charge Distribution and Interfacial Polarization of Different Objects. ACS Omega 2019, 4, 7994–8000. [Google Scholar] [CrossRef]
- Digumarti, K.M.; Cacucciolo, V.; Shea, H. Dexterous textile manipulation using electroadhesive fingers. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Prague, Czech Republic, 27 September–1 October 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 6104–6109. [Google Scholar] [CrossRef]
- An, Y.; He, B.; Ma, Z.; Guo, Y.; Yang, G.Z. Microassembly: A Review on Fundamentals, Applications and Recent Developments. Engineering 2025, 48, 323–346. [Google Scholar] [CrossRef]
- Monkman, G.J. An analysis of astrictive prehension. Int. J. Robot. Res. 1997, 16, 1–10. [Google Scholar] [CrossRef]
- Johnsen, A.; Rahbek, K. A physical phenomenon and its applications to telegraphy, telephony, etc. Eng. Comput. Sci. Phys. 1923, 61, 713–725. [Google Scholar] [CrossRef]
- Krape, R.P. Applications Study of Electroadhesive Devices; NASA Contractor Report CR-1211; Chrysler Corp. Space Division: New Orleans, LA, USA, 1968. Available online: https://ntrs.nasa.gov/citations/19680027258 (accessed on 25 April 2025).
- Hwang, G.; Park, J.; Cortes, D.S.D.; Hyeon, K.; Kyung, K.U. Electroadhesion-Based High-Payload Soft Gripper with Mechanically Strengthened Structure. IEEE Trans. Ind. Electron. 2022, 69, 642–651. [Google Scholar] [CrossRef]
- Guo, J.; Bamber, T.; Zhao, Y.; Chamberlain, M.; Justham, L.; Jackson, M. Toward Adaptive and Intelligent Electroadhesives for Robotic Material Handling. IEEE Robot. Autom. Lett. 2017, 2, 538–545. [Google Scholar] [CrossRef]
- Mikela, R.; David, B. Geometry characterization of electroadhesion samples for spacecraft docking application. In Proceedings of the 2017 IEEE Aerospace Conference: Yellowstone Conference Center, Big Sky, MT, USA, 4–11 March 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Narayanan, S.; Barnhart, D.; Rogers, R.; Ruffatto, D.; Schaler, E.; Van Crey, N.; Dean, G.; Bhanji, A.; Bernstein, S.; Singh, A.; et al. REACCH-Reactive Electro-Adhesive Capture ClotH Mechanism to Enable Safe Grapple of Cooperative/Non-Cooperative Space Debris. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Zhang, Z.; Chestney, J.A.; Sarhadi, M. Characterizing an electrostatic gripping device for the automated handling of non-rigid materials. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2001, 215, 21–36. [Google Scholar] [CrossRef]
- Qin, S.; McTeer, A. Wafer dependence of Johnsen-Rahbek type electrostatic chuck for semiconductor processes. J. Appl. Phys. 2007, 102, 064901. [Google Scholar] [CrossRef]
- Ruffatto, D.; Shah, J.; Spenko, M. Optimization and Experimental Validation of Electrostatic Adhesive Geometry. In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Guo, J.; Bamber, T.; Chamberlain, M.; Justham, L.; Jackson, M. Optimization and experimental verification of coplanar interdigital electroadhesives. J. Phys. D Appl. Phys. 2016, 49, 415304. [Google Scholar] [CrossRef]
- Yuan, K.L.; Chen, X.; Peng, J. Optimization of Electrostatic Adhesion Using Concentric Ring Electrodes. In Intelligent Robotics and Applications, Proceedings of the 17th International Conference, ICIRA 2024, Xi’an, China, 31 July–2 August 2024; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2025; pp. 360–371. [Google Scholar] [CrossRef]
- Guo, J.; Xiang, C.; Zanini, P.; Rossiter, J. Magnetic Augmented Self-sensing Flexible Electroadhesive Grippers. IEEE Robot. Autom. Lett. 2019, 4, 2364–2369. [Google Scholar] [CrossRef]
- Mastrangelo, M.; Caruso, F.; Carbone, G.; Cacucciolo, V. Electroadhesion zipping with soft grippers on curved objects. Extrem. Mech. Lett. 2023, 61, 101999. [Google Scholar] [CrossRef]
- Shintake, J.; Rosset, S.; Schubert, B.; Floreano, D.; Shea, H. Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators. Adv. Mater. 2016, 28, 231–238. [Google Scholar] [CrossRef]
- Alizadehyazdi, V.; Bonthron, M.; Spenko, M. An Electrostatic/Gecko-Inspired Adhesives Soft Robotic Gripper. IEEE Robot. Autom. Lett. 2020, 5, 4679–4686. [Google Scholar] [CrossRef]
- Caruso, F.; Shea, H.; Cacucciolo, V. Electroadhesion Suction Cups. Adv. Mater. 2025, 37, 2420231. [Google Scholar] [CrossRef]
- Cacucciolo, V.; Shea, H.; Carbone, G. Peeling in electroadhesion soft grippers. Extrem. Mech. Lett. 2022, 50, 101529. [Google Scholar] [CrossRef]
- An, S.; Xiang, C.; Ji, C.; Liu, S.; He, L.; Li, L.; Wang, Y. Design and development of a variable structure gripper with electroadhesion. Smart Mater. Struct. 2024, 33, ad3bf8. [Google Scholar] [CrossRef]
- Xiang, C.; Li, W.; Guan, Y. A Variable Stiffness Electroadhesive Gripper Based on Low Melting Point Alloys. Polymers 2022, 14, 4469. [Google Scholar] [CrossRef]
- Kim, D.G.; Je, H.; Hart, A.J.; Kim, S. Additive manufacturing of flexible 3D surface electrodes for electrostatic adhesion control and smart robotic gripping. Friction 2023, 11, 1974–1986. [Google Scholar] [CrossRef]
- Cacucciolo, V.; Shintake, J.; Shea, H. Delicate yet Strong: Characterizing the electro-adhesion lifting force with a soft gripper. In Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Republic of Korea, 14–18 April 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Xiong, Q.; Li, D.; Li, X.; Liu, L.; Zhou, X.; Ju, H.; Zhu, Y.; Yeow, R.C.-H. EA-SoGripper: Electroadhesion-Stiffening Self-Adaptive Soft Robotic Gripper. IEEE/ASME Trans. Mechatron. 2025, 1–11. [Google Scholar] [CrossRef]
- Kanno, R.; Nguyen, P.H.; Pinskier, J.; Howard, D.; Song, S.; Kovac, M. Hybrid Soft Electrostatic Metamaterial Gripper for Multi-surface, Multi-object Adaptation. In Proceedings of the 2024 IEEE 7th International Conference on Soft Robotics, RoboSoft 2024, San Diego, CA, USA, 14–17 April 2024; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2024; pp. 851–857. [Google Scholar] [CrossRef]
- Carloni, A.; Valori, M.; Bertolucci, F.; Agostini, L.; Berselli, G.; Fassi, I.; Tosatti, L.M.; Vertechy, R. Enhancing compliant gripper performance: Exploiting electro-adhesion to increase lifting force over grasping force. Robot. Comput. Integr. Manuf. 2025, 91, 102843. [Google Scholar] [CrossRef]
- Han, C.; Lv, J.; Dong, C.; Li, J.; Luo, Y.; Wu, W.; Abdeen, M.A. Classification, Advanced Technologies, and Typical Applications of End-Effector for Fruit and Vegetable Picking Robots. Agriculture 2024, 14, 1310. [Google Scholar] [CrossRef]
- Rizzello, G.; Naso, D.; York, A.; Seelecke, S. A Self-Sensing Approach for Dielectric Elastomer Actuators Based on Online Estimation Algorithms. IEEE/ASME Trans. Mechatron. 2017, 22, 728–738. [Google Scholar] [CrossRef]



| Gripper | Prehension Mechanism | Fruit Type | Electrode Geometry | Dielectric Material | Active Area (cm2) | Max. Voltage (kV), AC/DC | Overall Load Capacity (kg) | Response Time (s) | TRL |
|---|---|---|---|---|---|---|---|---|---|
| 1 | EA + Pneumatic | Apple, orange | Interdigited electrode; 2, 3, and 4 mm spacing | Ecoflex™ 00-30 Silicone | 22.2 | 4.4 | 0.2 | - | 4 |
| 2 | EA + Gecko Adhesion | Tangerine | Electrodes with width = 1.5 mm, length = 8 mm, patterned on rectangular and zigzag-T 3D pillars (slanted 15–75°) | Elastomer Resin | Up to 5 | 3 (DC) | - | - | 4 |
| 3 | DEA + EA | Cherry tomato | Interdigitated, width = 0.5 and 2.1 mm and gap = 0.5 mm | Sylgard 186 PDMS | 1 | 3.5 (DC) | 1.63 | <5 | 4 |
| 4 | EA + Pneumatic | Tomato | Interdigitated electrodes | Silicone rubber (HY-E630) | 34.1 | 4 (DC) | 1.11 | - | 4 |
| 5 | EA + Pneumatic stiffening | Cherry tomato, apple, lemon, grape | Two electrodes arranged in an electrostatic clutch | PI film | 24 | 1 (AC) | 0.4 | 2 | 4 |
| 6 | EA + Passive Vacuum | Grape, orange | Interdigitated circular electrodes, 0.5 mm spacing | Elastosil 2030 PDMS | 22 | 3 (DC) | 1 | 0.2 (pick)/0.15 (release) | 4 |
| 7 | EA | Cherry tomato, lime, mango | Interdigitated electrodes | Sylgard 184 PDMS | 6 | 4 (AC) | 0.6 | <0.3 s (release) | 4 |
| 8 | Hybrid EA + Metamaterial Adhesion | Apple | Interdigitated electrodes, width = gap = 1 mm in square metamaterial pattern (4 × 4 grid, 10 mm × 15 mm) | Urethane upper layer PET bottom layer | 6 | 4–6 (DC) | 0.33 | - | 4 |
| 9 | EA | Grape, mango, lemon | Interdigitated, width = 0.5 mm and gap = 0.7 mm | Sylgard 184 PDMS | 4.32 | 4 (DC and AC) | - | 0.7 | 4 |
| 10 | FinRay + EA | Lemon, tangerine, apple, tomato | Interdigitated, width and gap = 0.4 mm | Caplinq PIT1N/210 PI film | 7 | 4 (DC) | 0.384 | - | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozcelik, T.I.; Masi, E.; Kargar, S.M.; Scagliarini, C.; Fatima, A.; Vertechy, R.; Berselli, G. Recent Developments in Electroadhesion Grippers for Automated Fruit Grasping. Machines 2025, 13, 1128. https://doi.org/10.3390/machines13121128
Ozcelik TI, Masi E, Kargar SM, Scagliarini C, Fatima A, Vertechy R, Berselli G. Recent Developments in Electroadhesion Grippers for Automated Fruit Grasping. Machines. 2025; 13(12):1128. https://doi.org/10.3390/machines13121128
Chicago/Turabian StyleOzcelik, Turac I., Enrico Masi, Seyyed Masoud Kargar, Chiara Scagliarini, Adyan Fatima, Rocco Vertechy, and Giovanni Berselli. 2025. "Recent Developments in Electroadhesion Grippers for Automated Fruit Grasping" Machines 13, no. 12: 1128. https://doi.org/10.3390/machines13121128
APA StyleOzcelik, T. I., Masi, E., Kargar, S. M., Scagliarini, C., Fatima, A., Vertechy, R., & Berselli, G. (2025). Recent Developments in Electroadhesion Grippers for Automated Fruit Grasping. Machines, 13(12), 1128. https://doi.org/10.3390/machines13121128

