Wearable Assistive Rehabilitation Robotic Devices—A Comprehensive Review
Abstract
:1. Introduction
2. Literature Survey
2.1. Head/Neck Mechanisms for Wearable Assistive Devices
2.2. Wearable Assistive Mechanisms for Ankle Rehabilitation Devices
2.3. Wearable Assistive Mechanisms for Upper-Limb Rehabilitation Devices
2.4. Intelligent Systems in Sensor-Integrated Wearable Rehabilitation Assistive Devices
2.5. AR/VR in Wearable Assistive Rehabilitation Devices
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guzmán, C.H.; Blanco, A.; Brizuela, J.A.; Gómez, F.A. Robust control of a hip–joint rehabilitation robot. Biomed. Signal Process. Control 2017, 35, 100–109. [Google Scholar] [CrossRef]
- Marini, F.; Hughes, C.M.; Squeri, V.; Doglio, L.; Moretti, P.; Morasso, P.; Masia, L. Robotic wrist training after stroke: Adaptive modulation of assistance in pediatric rehabilitation. Rob. Auton. Syst. 2017, 91, 169–178. [Google Scholar] [CrossRef]
- El-Tallawy, S.N.; Nalamasu, R.; Salem, G.I.; LeQuang, J.A.K.; Pergolizzi, J.V.; Christo, P.J. Management of Musculoskeletal Pain: An Update with Emphasis on Chronic Musculoskeletal Pain. Pain Ther. 2021, 10, 181–209. [Google Scholar] [CrossRef] [PubMed]
- Kirsch Micheletti, J.; Bláfoss, R.; Sundstrup, E.; Bay, H.; Pastre, C.M.; Andersen, L.L. Association between lifestyle and musculoskeletal pain: Cross-sectional study among 10,000 adults from the general working population. BMC Musculoskelet. Disord. 2019, 20, 609. [Google Scholar] [CrossRef] [PubMed]
- Tavakkol, R.; Karimi, A.; Hassanipour, S.; Gharahzadeh, A.; Fayzi, R. A multidisciplinary focus review of musculoskeletal disorders among operating room personnel. J. Multidiscip. Healthc. 2020, 13, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.V.; Gomes, A.R.S.; Tanhoffer, A.I.P.; Leite, N. Effects of exercise on pain of musculoskeletal disorders: A systematic review. Acta Ortop. Bras. 2014, 22, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Tseli, E.; Boersma, K.; Stålnacke, B.M.; Enthoven, P.; Gerdle, B.; Äng, B.O.; Grooten, W.J. Prognostic factors for physical functioning after multidisciplinary rehabilitation in patients with chronic musculoskeletal pain. Clin. J. Pain 2019, 35, 148–173. [Google Scholar] [CrossRef]
- Warren, M.D. 2. The Need for Rehabilitation; Springer: Berlin/Heidelberg, Germany, 1977; pp. 6–7. [Google Scholar]
- Evans, G. Identifying and Treating the Causes of Neck Pain. Med. Clin. N. Am. 2014, 98, 645–661. [Google Scholar] [CrossRef] [PubMed]
- Milhem, M.; Kalichman, L.; Ezra, D.; Alperovitch-Najenson, D. Work-related musculoskeletal disorders among physical therapists: A comprehensive narrative review. Int. J. Occup. Med. Environ. Health 2016, 29, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Hutting, N.; Oswald, W.; Staal, J.B.; Engels, J.A.; Nouwens, E.; Sanden, M.W.N.V.-D.; Heerkens, Y.F. Physical therapists and importance of work participation in patients with musculoskeletal disorders: A focus group study. BMC Musculoskelet. Disord. 2017, 18, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Lu, S.-R.; Yang, S.-Y.O.; Liang, F.-W.; Wang, J.-J.; Ho, C.-H.; Hsiao, P.-C. Work-related musculoskeletal disorders among physical therapists in Taiwan. Medicine 2022, 101, E28885. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, B.; Mruthyunjaya, T. The Stewart platform manipulator: A review. Mech. Mach. Theory 2000, 35, 94–114. [Google Scholar] [CrossRef]
- Arockia Selvakumar, A.; Arul Kumar, M. Experimental investigation on position analysis of 3—DOF parallel manipulators. Procedia Eng. 2014, 97, 1126–1134. [Google Scholar] [CrossRef]
- Thalman, C.; Artemiadis, P. A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications. Wearable Technol. 2020, 1, 1–27. [Google Scholar] [CrossRef]
- Lingampally, P.K.; Doss, A.S.A.; Kadiyam, V.R. Wearable neck assistive device strain evaluation study on surface neck muscles for head/neck movements. Technol. Health Care 2022, 30, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Doss, A.S.A.; Lingampally, P.K.; Nurahmi, L. Synthesis of a parallel manipulator based rehabilitation cervical collar for C-spine injured patients. Int. J. Robot. Autom. 2021, 36, 1–8. [Google Scholar]
- Arockia Selvakumar, J.J.F.A. Kinematic and Dynamic Analysis of 3PUU Parallel Manipulator for Medical Applications. Procedia Comput. Sci. 2018, 133, 604–611. [Google Scholar]
- Lingampally, P.K.; Arockia Selvakumar, A. A humanoid neck using parallel manipulators. In Proceedings of the International Conference on Robotics and Automation for Humanitarian Applications, RAHA 2016—Conference Proceedings, Amritapuri, Kollam, India, 18–20 December 2016. [Google Scholar]
- Morris, L.; Diteesawat, R.S.; Rahman, N.; Turton, A.; Cramp, M.; Rossiter, J. The-state-of-the-art of soft robotics to assist mobility: A review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions. J. Neuroeng. Rehabil. 2023, 20, 1–15. [Google Scholar] [CrossRef]
- Chu, C.-Y.; Patterson, R.M. Soft robotic devices for hand rehabilitation and assistance: A narrative review. J. Neuroeng. Rehabil. 2018, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mallick, A.N.; Chander, A.; Pratap, A.; Chattar, H.K.; Sahani, A. Review_role of soft robot_medical_assistive devices. Int. J. Autom. Smart Technol. 2023, 13, 2416. [Google Scholar]
- Vatan, H.M.F.; Nefti-Meziani, S.; Davis, S.; Saffari, Z.; El-Hussieny, H. A review: A Comprehensive Review of Soft and Rigid Wearable Rehabilitation and Assistive Devices with a Focus on the Shoulder Joint. J. Intell. Robot. Syst. Theory Appl. 2021, 102, 1–24. [Google Scholar]
- Hamid, Q.; Hasan, W.W.; Hanim, M.A.; Nuraini, A.; Hamidon, M.; Ramli, H. Shape memory alloys actuated upper limb devices: A review. Sens. Actuators Rep. 2023, 5, 100160. [Google Scholar] [CrossRef]
- Copaci, D.; Arias, J.; Moreno, L.; Blanco, D. Shape Memory Alloy (SMA)-Based Exoskeletons for Upper Limb Rehabilitation. In Intech: Rehabilitation of the Human Bone-Muscle System; IntechOpen: London, UK, 2022; Volume i, pp. 1–17. [Google Scholar]
- Lingampally, P.K.; Arockia Selvakumar, A. Kinematic and workspace analysis of a parallel rehabilitation device for head-neck injured patients. FME Trans. 2019, 47, 405–411. [Google Scholar] [CrossRef]
- Lingampally, P.K.; Ramanathan, K.C.; Doss, A.S.A. Head/neck mechanisms for humanoid robots—A survey. AIP Conf. Proc. 2023, 2946, 020011. [Google Scholar]
- Doss, A.S.A.; Lingampally, P.K.; Nguyen, G.M.T.; Schilberg, D. A comprehensive review of wearable assistive robotic devices used for head and neck rehabilitation. Results Eng. 2023, 19, 101306. [Google Scholar] [CrossRef]
- Lingampally, P.K.; Arockia Selvakumar, A. Design, Implementation, and Experimental Study on 3-RPS Parallel Manipulator-Based Cervical Collar Therapy Device for Elderly. In Handbook of Smart Materials, Technologies, and Devices; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1, pp. 1–23. [Google Scholar]
- Peck, G.E.; Shipway, D.J.H.; Tsang, K.; Fertleman, M. Cervical spine immobilisation in the elderly: A literature review. Br. J. Neurosurg. 2018, 32, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Bang, S.H.; Kang, G.H.; Jang, Y.S.; Kim, W.; Choi, H.Y.; Kim, G.M. Comparison of the efficacy of three cervical collars in restricting cervical range of motion: A randomized study. Hong Kong J. Emerg. Med. 2018, 27, 24–29. [Google Scholar] [CrossRef]
- Haertel, S.R. Cervical Spine Collars. Orthop. Nurs. 2019, 38, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.; Difrancesca, M.; Slack, S.; Hudecek, L.; McIntosh, S.E. Improvised vs Standard Cervical Collar to Restrict Spine Movement in the Backcountry Environment. Wilderness Environ. Med. 2019, 30, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Yuk, M.; Yeo, W.; Lee, K.; Ko, J.; Park, T. Cervical collar makes difficult airway: A simulation study using the LEMON criteria. Clin. Exp. Emerg. Med. 2018, 5, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Beira, R.; Lopes, M.; Praca, M.; Santos-Victor, J.; Bernardino, A.; Metta, G.; Becchi, F.; Saltaren, R. Design of the Robot-Cub (iCub) Head. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 94–100. [Google Scholar]
- Brouwer, D.; Bennik, J.; Leideman, J.; Soemers, H.; Stramigioli, S. Mechatronic design of a fast and long range 4 degrees of freedom humanoid neck. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 574–579. [Google Scholar]
- Gao, B.; Song, H.; Sun, L.; Tang, Y. Inverse kinematics and workspace analysis of a bio-inspired flexible parallel robot. In Proceedings of the 2013 IEEE 3rd Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Nanjing, China, 26–29 May 2013; pp. 138–143. [Google Scholar]
- Gao, B.; Hu, J.; Guo, S.; Li, W.; Kan, Q. Lateral bending models of spring spine for cable-driven parallel mechanism. Proc. World Congr. Intell. Control Autom. 2015, 2015, 3176–3180. [Google Scholar]
- Setiawan, B.; Giandi, O.; Pramadihanto, D.; Dewanto, R.S.; Sukaridhoto, S.; Khaillulah, A.S. FLoW head: 7 DOF mechanism for FLoW humanoid. In Proceedings of the 2015 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), Bandung, Indonesia, 18–27 August 2015; pp. 98–102. [Google Scholar]
- Wu, D.; Wang, L.; Li, P. A 6-DOF exoskeleton for head and neck motion assist with parallel manipulator and sEMG based control. Int. Conf. Control. Decis. Inf. Technol. CoDIT 2016, 2016, 341–344. [Google Scholar]
- Ke, X.; Yang, Y.; Xin, J. Facial expression on robot SHFR-III based on head-neck coordination. In Proceedings of the 2015 IEEE International Conference on Information and Automation (ICIA), Lijiang, China, 8–10 August 2015; pp. 1622–1627. [Google Scholar]
- Nori, F.; Jamone, L.; Metta, G.; Sandini, G. Accurate Control of a Human-like Tendon-driven Neck. In Proceedings of the 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, PN, USA, 29 November–1 December 2007; pp. 371–378. [Google Scholar]
- Mahmood, M.N.; Tabasi, A.; Kingma, I.; van Dieën, J.H. A novel passive neck orthosis for patients with degenerative muscle diseases: Development & evaluation. J. Electromyogr. Kinesiol. 2021, 57, 102515. [Google Scholar] [PubMed]
- Shoaib, M.; Lai, C.Y.; Bab-Hadiashar, A. A novel design of cable-driven neck rehabilitation robot (CarNeck). In Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019; pp. 819–825. [Google Scholar]
- Kim, H.; Park, H.; Lee, W.; Kim, J.; Park, Y.-L. Design of wearable orthopedic devices for treating forward head postures using pneumatic artificial muscles and flex sensors. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Republic of Korea, 28 June–1 July 2017; pp. 809–814. [Google Scholar]
- Uyama, S.; Hanaki, K. Seating arrangements for children with insufficient head control: Lessons from trials using the i2i head & neck positioning & support system. J. Phys. Ther. Sci. 2015, 23, 947–950. [Google Scholar]
- Dai, Y.; Shi, P.; Zheng, H.; Li, S.; Fang, F. Design and kinematics analysis of powered cervical exoskeleton based on human biomechanics. J. Shanghai Univ. Sci. Technol. 2022, 44, 18–26. [Google Scholar]
- Ibrahem, M.E.-H.; Mohandes, M.S.E.; El-Wakad, M.T.; Sami, S.A. Design and Analysis of a Dynamic Neck Brace. In Proceedings of the NILES 2021—3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 21–23 October 2021; pp. 236–240. [Google Scholar]
- Lozano, A.; Ballesteros, M.; Cruz-ortiz, D.; Chairez, I. Active neck orthosis for musculoskeletal cervical disorders rehabilitation using a parallel mini-robotic device. Control Eng. Pract. 2022, 128, 105312. [Google Scholar] [CrossRef]
- Rueda-Arreguín, J.L.; Ceccarelli, M.; Torres-SanMiguel, C.R. Design of an Articulated Neck to Assess Impact Head-Neck Injuries. Life 2022, 12, 313. [Google Scholar] [CrossRef]
- Raffin, A.; Deutschmann, B.; Stulp, F. Fault-Tolerant Six-DoF Pose Estimation for Tendon-Driven Continuum Mechanisms. Front. Robot. AI 2021, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Berns, K.; Braum, T. Design concept of a human-like robot head. In Proceedings of the 2005 5th IEEE-RAS International Conference Humanoid Robot, Tsukuba, Japan, 5–7 December 2005; Volume 2005, pp. 32–37. [Google Scholar]
- Tsagarakis, N.G.; Metta, G.; Sandini, G.; Vernon, D.; Beira, R.; Becchi, F.; Righetti, L.; Santos-Victor, J.; Ijspeert, A.J.; Carrozza, M.C.; et al. ICub: The design and realization of an open humanoid platform for cognitive and neuroscience research. Adv. Robot. 2007, 21, 1151–1175. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Y.; Zhang, S.; Lu, Z.; Gao, G. Design and Analysis of a Rigid-Flexible Parallel Mechanism for a Neck Brace. Math. Probl. Eng. 2019, 2019, 9014653. [Google Scholar] [CrossRef]
- Boyraz, P.; Yigit, C.B.; Bicer, H.O. UMAY1: A modular humanoid platform for education and rehabilitation of children with autism spectrum disorders. In Proceedings of the 2013 9th Asian Control Conference (ASCC), Istanbul, Turkey, 23–26 June 2013. [Google Scholar]
- Barker, S.; Fuente, L.A.; Hayatleh, K.; Fellows, N.; Steil, J.J.; Crook, N.T. Design of a biologically inspired humanoid neck. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 25–30. [Google Scholar]
- Tadesse, Y.; Subbarao, K.; Priya, S. Realizing a Humanoid Neck with Serial Chain Four-bar Mechanism. J. Intell. Mater. Syst. Struct. 2010, 21, 1169–1191. [Google Scholar] [CrossRef]
- Penčić, M.; Čavić, M.; Savić, S.; Rackov, M.; Borovac, B.; Lu, Z. Assistive humanoid robot MARKO: Development of the neck mechanism. MATEC Web Conf. 2017, 121, 08005. [Google Scholar] [CrossRef]
- Sharma, D.; Shaik, S.; Parab, H.; Saran, R.; Mohan, M.; Lingampally, P.; Ramanathan, K.; Selvakumar, A. Design and evaluation of various knee assistive mechanisms for rehabilitation. AIP Conf. Proc. 2023, 2946, 020003. [Google Scholar]
- Ayas, M.S.; Altas, I.H. Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot. Control. Eng. Pract. 2017, 59, 44–54. [Google Scholar] [CrossRef]
- Saglia, J.A.; Tsagarakis, N.G.; Dai, J.S.; Caldwell, D.G. A high performance 2-dof over-actuated parallel mechanism for ankle rehabilitation. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12–17 May 2009; pp. 2180–2186. [Google Scholar]
- Jamwal, P.K.; Xie, S.Q.; Hussain, S.; Parsons, J.G. An Adaptive Wearable Parallel Robot for the Treatment of Ankle Injuries. IEEE/ASME Trans. Mechatronics 2012, 19, 64–75. [Google Scholar] [CrossRef]
- Zuo, S.; Li, J.; Dong, M.; Zhou, X.; Fan, W.; Kong, Y. Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation. Front. Neurorobotics 2020, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Ceccarelli, M. Analysis of a Wearable Robotic System for Ankle Rehabilitation. Machines 2020, 8, 48. [Google Scholar] [CrossRef]
- Takemura, H.; Onodera, T.; Ming, D.; Mizoguchi, H. Design and Control of a Wearable Stewart Platform-Type Ankle-Foot Assistive Device. Int. J. Adv. Robot. Syst. 2012, 9, 202. [Google Scholar] [CrossRef]
- Kwon, J.; Park, J.-H.; Ku, S.; Jeong, Y.; Paik, N.-J.; Park, Y.-L. A Soft Wearable Robotic Ankle-Foot-Orthosis for Post-Stroke Patients. IEEE Robot. Autom. Lett. 2019, 4, 2547–2552. [Google Scholar] [CrossRef]
- Ishak, N.; Mohamaddan, S.; Kamaruddin, A.; Khamis, H.; Yamamoto, S.; Dawal, S. Development of Ankle Foot Orthosis (AFO) Using Pneumatic Artificial Muscle for Disabled Children. MATEC Web Conf. 2017, 87, 02031. [Google Scholar] [CrossRef]
- Jimenez-Fabian, R.; Geeroms, J.; Flynn, L.; Vanderborght, B.; Lefeber, D. Reduction of the torque requirements of an active ankle prosthesis using a parallel spring. Robot. Auton. Syst. 2017, 92, 187–196. [Google Scholar] [CrossRef]
- Hyun, D.J.; Lim, H.; Park, S.; Yoon, J.; Jung, K.; Bae, K.; Lee, I. Walking propulsion generation in double stance by powered exoskeleton for paraplegics. Robot. Auton. Syst. 2019, 116, 24–37. [Google Scholar] [CrossRef]
- Sado, F.; Yap, H.J.; Ghazilla, R.A.R.; Ahmad, N. Design and control of a wearable lower-body exoskeleton for squatting and walking assistance in manual handling works. Mechatronics 2019, 63, 102272. [Google Scholar] [CrossRef]
- Bridger, R.; Ashford, A.; Wattie, S.; Dobson, K.; Fisher, I.; Pisula, P. Sustained attention when squatting with and without an exoskeleton for the lower limbs. Int. J. Ind. Ergon. 2018, 66, 230–239. [Google Scholar] [CrossRef]
- Ko, H.K.; Lee, S.W.; Koo, D.H.; Lee, I.; Hyun, D.J. Waist-assistive exoskeleton powered by a singular actuation mechanism for prevention of back-injury. Robot. Auton. Syst. 2018, 107, 1–9. [Google Scholar] [CrossRef]
- Girone, M.; Burdea, G.; Bouzit, M.; Popescu, V.; Deutsch, J.E. Orthopedic rehabilitation using the ‘rutgers ankle’ interface. Stud. Health Technol. Inform. 2000, 70, 89–95. [Google Scholar] [PubMed]
- Yoon, J.; Ryu, J. A novel reconfigurable ankle/foot rehabilitation robot. Proc. IEEE Int. Conf. Robot. Autom. 2005, 2005, 2290–2295. [Google Scholar]
- Liu, G.; Gao, J.; Yue, H.; Zhang, X.; Lu, G. Design and Kinematics Analysis of Parallel Robots for Ankle. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 253–258. [Google Scholar]
- Wang, C.; Fang, Y.; Guo, S.; Chen, Y. Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation. J. Mech. Robot. 2013, 5, 041003. [Google Scholar] [CrossRef]
- Vallés, M.; Cazalilla, J.; Valera, Á.; Mata, V.; Page, Á.; DIáz-Rodríguez, M. A 3-PRS parallel manipulator for ankle rehabilitation: Towards a low-cost robotic rehabilitation. Robotica 2017, 35, 1939–1957. [Google Scholar] [CrossRef]
- Dong, M.; Kong, Y.; Li, J.; Fan, W. Kinematic Calibration of a Parallel 2-UPS/RRR Ankle Rehabilitation Robot. J. Health Eng. 2020, 2020, 3053629. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhang, A.; Zhang, Q.; Zhang, B.; Wu, X.; Qin, T. Design and Experimental Research of 3-RRS Parallel Ankle Rehabilitation Robot. Micromachines 2022, 13, 950. [Google Scholar] [CrossRef] [PubMed]
- Ficanha, E.M.; Rastgaar, M.; Kaufman, K.R. A two-axis cable-driven ankle-foot mechanism. Robot. Biomim. 2014, 1, 1–13. [Google Scholar] [CrossRef]
- Martinez-Hernandez, U.; Metcalfe, B.; Assaf, T.; Jabban, L.; Male, J.; Zhang, D. Wearable Assistive Robotics: A Perspective on Current Challenges and Future Trends. Sensors 2021, 21, 6751. [Google Scholar] [CrossRef] [PubMed]
- Varghese, R.; Freer, D.; Deligianni, F.; Liu, J. Wearable Robotics for Upper-Limb Rehabilitation and Assistance: A Review of the State-of-the-Art challenges and Future Research. In Wearable Technology in Medicine and Health Care; Academic Press: Cambridge, MA, USA, 2018; pp. 23–69. ISBN 9780128118108. [Google Scholar]
- Kapsalyamov, A.; Hussain, S.; Jamwal, P.K. State-of-the-art assistive powered upper limb exoskeletons for elderly. IEEE Access 2020, 8, 178991–179001. [Google Scholar] [CrossRef]
- Palli, G.; Melchiorri, C. Friction compensation techniques for tendon-driven robotic hands. Mechatronics 2014, 24, 108–117. [Google Scholar] [CrossRef]
- Jung, Y.; Bae, J. An asymmetric cable-driven mechanism for force control of exoskeleton systems. Mechatronics 2016, 40, 41–50. [Google Scholar] [CrossRef]
- Arockia Doss, A.S.; Mishra, B.; Mohammed, S.; Lingampally, P.K.; Short, M. Robotic Arm for Biomedical Applications. In Handbook of Smart Materials, Technologies, and Devices; Teesside University: Middlesbrough, UK, 2022; pp. 1–24. [Google Scholar]
- Kitano, Y.; Tanzawa, T.; Yokota, K. Development of wearable rehabilitation device using parallel link mechanism: Rehabilitation of compound motion combining palmar/dorsi flexion and radial/ulnar deviation. ROBOMECH J. 2018, 5, 13. [Google Scholar] [CrossRef]
- Kim, Y.; Jung, S.; Moon, I. Design of a Wearable Upper-Limb Rehabilitation Robot Using Parallel Mechanism; ICCAS-SICE: Fukuoka, Japan, 2009; pp. 785–789. [Google Scholar]
- Chen, X.; Zhang, S.; Cao, K.; Wei, C.; Zhao, W.; Yao, J. Development of a Wearable Upper Limb Rehabilitation Robot Based on Reinforced Soft Pneumatic Actuators. Chin. J. Mech. Eng. 2022, 35, 1–9. [Google Scholar] [CrossRef]
- Pang, Z.; Wang, T.; Wang, Z.; Yu, J.; Sun, Z.; Liu, S. Design and Analysis of a Wearable Upper Limb Rehabilitation Robot with Characteristics of Tension Mechanism. AIP Adv. 2021, 11, 5122–5136. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X. Design of a Gravity Balanced Upper Limb Exoskeleton with Bowden Cable Actuators; IFAC: Geneva, Switzerland, 2013; Volume 46. [Google Scholar]
- Dinh, B.K.; Xiloyannis, M.; Cappello, L.; Antuvan, C.W.; Yen, S.-C.; Masia, L. Adaptive backlash compensation in upper limb soft wearable exoskeletons. Robot. Auton. Syst. 2017, 92, 173–186. [Google Scholar] [CrossRef]
- Park, Y.; Jo, I.; Lee, J.; Bae, J. A Dual-cable Hand Exoskeleton System for Virtual Reality. Mechatronics 2018, 49, 177–186. [Google Scholar] [CrossRef]
- Yang, J.; Xie, H.; Shi, J. A novel motion-coupling design for a jointless tendon-driven finger exoskeleton for rehabilitation. Mech. Mach. Theory 2016, 99, 83–102. [Google Scholar] [CrossRef]
- Gezgin, E.; Chang, P.-H.; Akhan, A.F. Synthesis of a Watt II six-bar linkage in the design of a hand rehabilitation robot. Mech. Mach. Theory 2016, 104, 177–189. [Google Scholar] [CrossRef]
- Robson, N.; Soh, G.S. Geometric design of eight-bar wearable devices based on limb physiological contact task. Mech. Mach. Theory 2016, 100, 358–367. [Google Scholar] [CrossRef]
- Conti, R.; Meli, E.; Ridolfi, A. A novel kinematic architecture for portable hand exoskeletons. Mechatronics 2016, 35, 192–207. [Google Scholar] [CrossRef]
- Peña-Pitarch, E.; Falguera, N.T.; Martinez, J.A.L.; Al Omar, A.; Larrión, I.A. Driving device for a hand movement without external force. Mech. Mach. Theory 2016, 105, 388–396. [Google Scholar] [CrossRef]
- Lee, H.-D.; Lee, B.-K.; Kim, W.-S.; Han, J.-S.; Shin, K.-S.; Han, C.-S. Human–robot cooperation control based on a dynamic model of an upper limb exoskeleton for human power amplification. Mechatronics 2014, 24, 168–176. [Google Scholar] [CrossRef]
- Liu, H.; Tao, J.; Lyu, P.; Tian, F. Human-robot cooperative control based on sEMG for the upper limb exoskeleton robot. Robot. Auton. Syst. 2019, 125, 103350. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Cui, Y.; Dong, M.; Fang, B.; Zhang, P. Design and performance analysis of a parallel wrist rehabilitation robot (PWRR). Robot. Auton. Syst. 2019, 125, 103390. [Google Scholar] [CrossRef]
- Wirekoh, J.; Parody, N.; Riviere, C.N.; Park, Y.-L. Design of fiber-reinforced soft bending pneumatic artificial muscles for wearable tremor suppression devices. Smart Mater. Struct. 2020, 30, 015013. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Chang, Y.; Li, S.; Fan, Y.; Yu, H. A Human Joint Torque Estimation Method for Elbow Exoskeleton Control. Int. J. Humanoid Robot. 2020, 17, 1950039. [Google Scholar] [CrossRef]
- Varghese, R.J.; Lo, B.P.L.; Yang, G.Z. Design and Prototyping of a Bio-Inspired Kinematic Sensing Suit for the Shoulder Joint: Precursor to a Multi-DoF Shoulder Exosuit. IEEE Robot. Autom. Lett. 2020, 5, 540–547. [Google Scholar] [CrossRef]
- Vélez-Guerrero, M.A.; Callejas-Cuervo, M.; Mazzoleni, S. Artificial intelligence-based wearable robotic exoskeletons for upper limb rehabilitation: A review. Sensors 2021, 21, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Boukhennoufa, I.; Zhai, X.; Utti, V.; Jackson, J.; McDonald-Maier, K.D. Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review. Biomed. Signal Process. Control 2022, 71, 103197. [Google Scholar] [CrossRef]
- Ai, Q.; Liu, Z.; Meng, W.; Liu, Q.; Xie, S.Q. Machine Learning in Robot Assisted Upper Limb Rehabilitation: A Focused Review. IEEE Trans. Cogn. Dev. Syst. 2021, 15, 2053–2063. [Google Scholar] [CrossRef]
- Sabry, F.; Eltaras, T.; Labda, W.; Alzoubi, K.; Malluhi, Q. Machine Learning for Healthcare Wearable Devices: The Big Picture. J. Healthc. Eng. 2022, 2022, 4653923. [Google Scholar] [CrossRef] [PubMed]
- Kaku, A.; Parnandi, A.; Venkatesan, A.; Pandit, N.; Schambra, H.; Fernandez-Granda, C. Towards data-driven stroke rehabilitation via wearable sensors and deep learning. Proc. Mach. Learn. Res. 2020, 126, 143–171. [Google Scholar]
- Wu, Q.; Chen, B.; Wu, H. Neural-network-enhanced torque estimation control of a soft wearable exoskeleton for elbow assistance. Mechatronics 2019, 63, 102279. [Google Scholar] [CrossRef]
- Iosa, M.; Capodaglio, E.; Pelà, S.; Persechino, B.; Morone, G.; Antonucci, G.; Paolucci, S.; Panigazzi, M. Artificial Neural Network Analyzing Wearable Device Gait Data for Identifying Patients with Stroke Unable to Return to Work. Front. Neurol. 2021, 12, 650542. [Google Scholar] [CrossRef]
- Zaroug, A.; Lai, D.T.H.; Mudie, K.; Begg, R. Lower Limb Kinematics Trajectory Prediction Using Long Short-Term Memory Neural Networks. Front. Bioeng. Biotechnol. 2020, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.Y.; Hoang, N.S.; Chui, C.K.; Lim, J.H.; Chua, M.C.H. Development of Wearable Gait Assistive Device Using Recurrent Neural Network. In Proceedings of the 2019 IEEE/SICE International Symposium on System Integration (SII), Paris, France, 14–16 January 2019; Volume 117575, pp. 626–631. [Google Scholar]
- Yang, G.; Deng, J.; Pang, G.; Zhang, H.; Li, J.; Deng, B.; Pang, Z.; Xu, J.; Jiang, M.; Liljeberg, P.; et al. An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning. IEEE J. Transl. Eng. Health Med. 2018, 6, 2100510. [Google Scholar] [CrossRef] [PubMed]
- Mekruksavanich, S.; Jitpattanakul, A. Exercise Activity Recognition with Surface Electromyography Sensor using Machine Learning Approach. In Proceedings of the 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), Pattaya, Thailand, 11–14 March 2020; pp. 75–78. [Google Scholar]
- Kańtoch, E. Human activity recognition for physical rehabilitation using wearable sensors fusion and artificial neural networks. Comput. Cardiol. 2017, 44, 1–4. [Google Scholar]
- Siu, H.C.; Sloboda, J.; McKindles, R.J.; Stirling, L.A. A Neural Network Estimation of Ankle Torques from Electromyography and Accelerometry. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1624–1633. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Tang, Y.; Zhou, Y.; Zhang, K.; Fan, Z.; Yang, Y.; Leng, Y.; Fu, C. Foot gesture recognition with flexible high-density device based on convolutional neural network. In Proceedings of the 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), Chongqing, China, 3–5 July 2021; pp. 306–311. [Google Scholar]
- Herath, H.; Nishshanka, N.; Madhumali, P.; Gunawardena, S. Voice Control System for Upper Limb Rehabilitation Robots using Machine Learning. In Proceedings of the 7th IEEE World Forum Internet Things, WF-IoT 2021, New Orleans, LA, USA, 14 June–31 July 2021; pp. 729–734. [Google Scholar]
- Zhang, H.; Guo, Y.; Zanotto, D. Accurate Ambulatory Gait Analysis in Walking and Running Using Machine Learning Models. IEEE Trans. Neural Syst. Rehabilitation Eng. 2019, 28, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Hua, A.; Chaudhari, P.; Johnson, N.; Quinton, J.; Schatz, B.; Buchner, D.; Hernandez, M.E. Evaluation of Machine Learning Models for Classifying Upper Extremity Exercises Using Inertial Measurement Unit-Based Kinematic Data. IEEE J. Biomed. Health Informatics 2020, 24, 2452–2460. [Google Scholar] [CrossRef]
- Panwar, M.; Biswas, D.; Bajaj, H.; Jobges, M.; Turk, R.; Maharatna, K.; Acharyya, A. Rehab-Net: Deep Learning Framework for Arm Movement Classification Using Wearable Sensors for Stroke Rehabilitation. IEEE Trans. Biomed. Eng. 2019, 66, 3026–3037. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wang, Y.; Gao, S. Utilizing Wearable GRF and EMG Sensing System and Machine Learning Algorithms to Enable Locomotion Mode Recognition for In-home Rehabilitation. In Proceedings of the 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Virtual, 16–19 August 2020; pp. 4–7. [Google Scholar]
- Ibrahim, A.; Zhou, Y.; Jenkins, M.E.; Trejos, A.L.; Naish, M.D. Real-Time Voluntary Motion Prediction and Parkinson’s Tremor Reduction Using Deep Neural Networks. IEEE Trans. Neural Syst. Rehabilitation Eng. 2021, 29, 1413–1423. [Google Scholar] [CrossRef] [PubMed]
- Toczko, H.; Troka, P.; Przystup, P.; Kocejko, T.; Krzyzanowski, P.; Kaczmarek, M. ReFlexeNN—The Wearable EMG Interface with Neural Network Based Gesture Classification. In Proceedings of the 11th International Conference on Human System Interaction, Gdansk, Poland, 4–6 July 2018; pp. 255–260. [Google Scholar]
- Xu, P.F.; Liu, Z.X.; Li, F.; Wang, H.P. A Low-Cost Wearable Hand Gesture Detecting System Based on IMU and Convolutional Neural Network. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Online, 1–5 November 2021; pp. 6999–7002. [Google Scholar]
- De Cannière, H.; Corradi, F.; Smeets, C.J.; Schoutteten, M.; Varon, C.; Van Hoof, C.; Van Huffel, S.; Groenendaal, W.; Vandervoort, P. Wearable monitoring and interpretable machine learning can objectively track progression in patients during cardiac rehabilitation. Sensors 2020, 20, 3601. [Google Scholar] [CrossRef] [PubMed]
- Topini, A.; Sansom, W.; Secciani, N.; Bartalucci, L.; Ridolfi, A.; Allotta, B. Variable Admittance Control of a Hand Exoskeleton for Virtual Reality-Based Rehabilitation Tasks. Front. Neurorobot. 2022, 15, 789743. [Google Scholar] [CrossRef] [PubMed]
- Zanatta, F.; Giardini, A.; Pierobon, A.; D’addario, M.; Steca, P. A systematic review on the usability of robotic and virtual reality devices in neuromotor rehabilitation: Patients’ and healthcare professionals’ perspective. BMC Health Serv. Res. 2022, 22, 523. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.E.; Sivan, M.; O’Connor, R.J. Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review. J. Rehabil. Assist. Technol. Eng. 2019, 6, 205566831986355. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.C.; Yin, L.; Cao, Y. Effectiveness of Virtual Reality in the Rehabilitation of Motor Function of Patients with Subacute Stroke: A Meta-Analysis. Front. Neurol. 2021, 12, 639535. [Google Scholar] [CrossRef] [PubMed]
Source | DoF | Mechanism/Type of Operation | Range of Motion (ROM) | Control Method | Application |
---|---|---|---|---|---|
| 6 |
|
|
|
|
| 6 |
|
|
|
|
| 6 |
|
|
|
|
| 4 |
|
|
|
|
| 4 |
|
|
|
|
3 |
|
|
|
| |
| 3 |
|
|
|
|
| 3 |
|
|
|
|
| 3 |
|
|
|
|
| 3 |
|
|
|
|
| 3 |
|
|
|
|
| 3 |
|
|
|
|
| 2 |
|
|
|
|
| 2 |
|
|
|
|
Source | DoF | Configuration | Range of Motion (ROM) | Control Method | Application |
---|---|---|---|---|---|
| 6 |
|
|
|
|
| 6 |
|
|
|
|
| 4 |
|
|
|
|
| 4 |
|
|
|
|
| 3 |
|
|
|
|
| 3 |
|
|
|
|
| 3 |
|
|
|
|
| 3 |
|
|
|
|
| 3 |
|
|
|
|
| 3 |
|
|
|
|
| 3 |
|
|
|
|
| 2 |
|
|
|
|
| 2 |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lingampally, P.K.; Ramanathan, K.C.; Shanmugam, R.; Cepova, L.; Salunkhe, S. Wearable Assistive Rehabilitation Robotic Devices—A Comprehensive Review. Machines 2024, 12, 415. https://doi.org/10.3390/machines12060415
Lingampally PK, Ramanathan KC, Shanmugam R, Cepova L, Salunkhe S. Wearable Assistive Rehabilitation Robotic Devices—A Comprehensive Review. Machines. 2024; 12(6):415. https://doi.org/10.3390/machines12060415
Chicago/Turabian StyleLingampally, Pavan Kalyan, Kuppan Chetty Ramanathan, Ragavanantham Shanmugam, Lenka Cepova, and Sachin Salunkhe. 2024. "Wearable Assistive Rehabilitation Robotic Devices—A Comprehensive Review" Machines 12, no. 6: 415. https://doi.org/10.3390/machines12060415
APA StyleLingampally, P. K., Ramanathan, K. C., Shanmugam, R., Cepova, L., & Salunkhe, S. (2024). Wearable Assistive Rehabilitation Robotic Devices—A Comprehensive Review. Machines, 12(6), 415. https://doi.org/10.3390/machines12060415