From Remote Sensing to Artificial Intelligence in Coral Reef Monitoring
Abstract
:1. Introduction
Biomarkers Analyzed | Stress or Disease | Species or Material | Study Location | Sampling Location | Sampling Method | Ref. |
---|---|---|---|---|---|---|
Lipid peroxidation Total antioxidant capacity | Oxidative stress | Corals: Mussismilia harttii Millepora alcicornis | Field | Recife de Fora Marine Protected Area, Porto Seguro, Bahia, Brazil (South Atlantic reef) | SCUBA diving | [39] |
General ROS Reduced glutathione (GSH) Lipid peroxidation | Oxidative stress | Coral Pocillopora damicornis | Lab | Kaneohe Bay, Oahu, Hawai’i | - | [22] |
NOS activity ROS | NO production Oxidative stress | Symbiont algae from the coral Pocillopora acuta | Field and Lab | Fringing reef adjacent to the Hawai’i Institute of Marine Biology | - | [31] |
Hsp70 Hsp60 Hsp32 (Heme oxygenase-1) | Thermal stress | Corals: Goniopora lobata Porites lobata Seriatopora hystrix Stylophora pistillata | Field | Reefs of the central Red Sea near Thuwal, Saudi Arabia | SCUBA diving | [36] |
2. Coral Reef Applications Using Remote Sensing Technologies
2.1. Vehicles and Digital Image Processing Used for Coral Reef Surveying
2.1.1. Satellite Imagery
2.1.2. Unmanned Aerial Vehicles (UAVs)
2.1.3. Digital Image Processing
2.1.4. Artificial Intelligence (AI)
2.2. Marine Robotics
2.3. Autonomous Buoys
2.4. Unmanned Surface Vehicles (USVs)
2.5. Unmanned Underwater Vehicles (UUVs)
2.5.1. Remotely Operated Vehicles (ROVs)
Remotely Operated Crawlers (ROCs)
2.5.2. Autonomous Underwater Vehicles (AUVs)
Gliders
Bio-Inspired Underwater Vehicles
Autonomous Underwater Helicopters (AUHs)
2.5.3. Hybrid Remotely Operated Underwater Vehicles (H-ROVs)
Intervention Autonomous Underwater Vehicles (I-AUVs)
2.6. Hybrid Aerial Underwater Vehicles (HAUVs)
2.7. Collaborative Vehicles
2.8. Coral Reef Applications Using Marine Vehicles
2.8.1. Innovative Marine Vehicles Used for Coral Reef Surveying
2.8.2. Mature Marine Vehicles Used for Coral Reef Surveying
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AUH | Autonomous Underwater Helicopter |
AUV | Autonomous Underwater Vehicle |
ASC | Autonomous Surface Craft |
ASV | Autonomous Surface Vehicle/Vessel |
CFD | Computational Fluid Dynamics |
CFP | Coral Fluorescent Protein |
CNN | Convolutional Neural Networks |
CTD | Conductivity, Temperature, and Depth |
DEM | Digital Elevation Model |
DNA | Deoxyribonucleic Acid |
DoFs | Degrees of Freedom |
DL | Deep Learning |
DMS | Dimethylsulfide |
DMSP | Dimethylsulfoniopropionate |
DSM | Digital Surface Model |
eDNA | environmental DNA |
GFP | Green Fluorescent Protein |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
H-ROV | Hybrid Remotely Operated Underwater Vehicle |
H2O2 | Hydrogen Peroxide |
HAUV | Hybrid Aerial Underwater Vehicle |
HD | High-Definition |
HO• | Hydroxyl Radical |
Hsp(s) | Heat Shock Protein(s) |
I-AUV | Intervention Autonomous Underwater Vehicle |
LIDAR | Light Detection and Ranging |
MEMS | Micro Electro-Mechanical Systems |
ML | Machine Learning |
NN | Neural Networks |
NO | Nitric Oxide |
NOS | Nitric Oxide Synthase |
Superoxide Anion | |
1O2 | Singlet Oxygen |
PCR | Polymerase Chain Reaction |
ONOO− | Peroxynitrite |
pH | power of Hydrogen |
RADAR | Radiofrequency Detection and Ranging |
RNS | Reactive Nitrogen Species |
ROC | Remotely Operated Crawler |
ROS | Reactive Oxygen Species |
ROV | Remotely Operated Vehicle |
SFM | Structure From Motion |
SLAM | Simultaneous Localization and Mapping |
SOD | Superoxide Dismutase |
SONAR | Sound Navigation and Ranging |
UAV | Unmanned Aerial Vehicle |
UUV | Unmanned Underwater Vehicle |
USV | Unmanned Surface Vehicle |
References
- Alquezar, R.; Boyd, W. Development of Rapid, Cost Effective Coral Survey Technique: Tools for Management and Conservation Planning. J. Coast. Conserv. 2007, 11, 105–119. [Google Scholar] [CrossRef]
- Spalding, M.; Ravilious, C.; Green, E. World Atlas of Coral Reefs; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA; London, UK, 2001. [Google Scholar]
- Kaiser, M.J.; Attrill, M.J.; Jennings, S.; Thomas, D.N.; Barnes, D.K.A.; Polunin, N.V.C.; Raffaelli, D.G.; Williams, P. Marine Ecology: Processes, Systems, and Impacts; Oxford University Press Inc.: New York, NY, USA, 2005; 557p. [Google Scholar]
- Obura, D.O.; Aeby, G.; Amornthammarong, N.; Appeltans, W.; Bax, N.; Bishop, J.; Brainard, R.E.; Chan, S.; Fletcher, P.; Gordon, T.A.C.; et al. Coral reef monitoring, reef assessment technologies and ecosystem-based management. Front. Mar. Sci. 2019, 6, 580. [Google Scholar] [CrossRef]
- Allen Coral Atlas. Available online: Https://allencoralatlas.org/atlas?l=basemaplabels,crwbaa,monitoring,planet_2020,benthic&g=aca#1.91/-0.3686/27.1800 (accessed on 28 July 2024).
- Moberg, F.; Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 1999, 29, 215–233. [Google Scholar] [CrossRef]
- Hogson, G. A Global Assessment of Human Effects on Coral Reefs. Mar. Pollut. Bull. 1999, 38, 345–355. [Google Scholar] [CrossRef]
- Hughes, T.P.; Baird, A.H.; Bellwood, D.R.; Card, M.; Connolly, S.R.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J.B.C.; Kleypas, J.; et al. Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science 2003, 301, 929–933. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.M.; Chollett, I.; Harborne, A.R.; Heron, S.F.; Weeks, S.J.; Skirving, W.J.; Strong, A.E.; Eakin, C.M.; Christensen, T.R.L.; et al. Remote sensing of coral reef for monitoring and management: A review. Remote Sens. 2016, 8, 118. [Google Scholar] [CrossRef]
- Zapata-Ramírez, P.A.; Scaradozzi, D.; Sorbi, L.; Palma, M.; Pantaleo, U.; Ponti, M.; Cerrano, C. Innovative study methods for the Mediterranean coralligenous habitats. Adv. Oceanogr. Limnol. 2013, 4, 102–119. [Google Scholar] [CrossRef]
- Zapata-Ramírez, P.A.; Huete-Stauffer, C.; Scaradozzi, D.; Marconi, M.; Cerrano, C. Testing methods to support managenment decisions in coralligenous and cave enviroments. A case study at Porfino MPA. Mar. Environ. Res. 2016, 118, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.; Shin, P.K.S.; Bradbeer, R.; Randall, D.; Ku, K.K.K.; Hodgson, P.; Cheung, S.G. A comparison of video ans point intercept transect methods for monitoring subtropical coral communities. J. Exp. Mar. Biol. Ecol. 2006, 333, 115–128. [Google Scholar] [CrossRef]
- McManus, J.W.; Polsenberg, J.F. Coral-algal phase shifts on coral reefs: Ecological and environmental aspects. Prog. Oceanogr. 2004, 60, 263–279. [Google Scholar] [CrossRef]
- Hernández-Landa, R.C.; Acosta-González, G.; Núñez-Lara, E.; Arias-González, J.E. Spatial distribution of surgeonfish and parrotfish in the north sector of the Mesoamerican Barrier Reef System. Mar. Ecol. 2014, 36, 432–446. [Google Scholar] [CrossRef]
- Mumby, P.J. The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Ecol. Appl. 2006, 16, 747–769. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Hajibabaei, M.; Rieseberg, L.H. Environmental DNA. Mol. Ecol. 2012, 21, 1789–1793. [Google Scholar] [CrossRef]
- Valentini, A.; Taberlet, P.; Miaud, C.; Civade, R.; Herder, J.; Thomsen, P.F.; Bellemain, E.; Besnard, A.; Coissac, E.; Boyer, F.; et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 2016, 25, 929–942. [Google Scholar] [CrossRef]
- Brandl, S.J.; Goatley, C.H.R.; Bellwood, D.R.; Tornabene, L. The hidden half: Ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 2018, 93, 1846–1873. [Google Scholar] [CrossRef]
- Helgoe, J.; Davy, S.K.; Weis, V.M.; Rodriguez-Lanetty, M. Triggers, cascades, and endpoints: Connecting the dots of coral bleaching mechanisms. Biol. Rev. Camb. Philos. Soc. 2024, 99, 715–752. [Google Scholar] [CrossRef] [PubMed]
- Lesser, M.P. Coral Bleaching: Causes and Mechanisms. In Coral Reefs: An Ecosystem in Transition; Dubinsky, Z., Stambler, N., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 405–419. [Google Scholar]
- Gómez-Campo, K.; Enríquez, S.; Iglesias-Prieto, R. A Road Map for the Development of the Bleached Coral Phenotype. Front. Mar. Sci. 2022, 9, 806491. [Google Scholar] [CrossRef]
- Nielsen, D.A.; Petrou, K.; Gates, R.D. Coral bleaching from a single cell perspective. ISME J. 2018, 12, 1558–1567. [Google Scholar] [CrossRef]
- Tauffenberger, A.; Magistretti, P.J. Reactive Oxygen Species: Beyond Their Reactive Behavior. Neurochem. Res. 2021, 46, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Averill-Bates, D. Reactive oxygen species and cell signaling. Review. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119573. [Google Scholar] [CrossRef]
- Szabó, M.; Larkum, A.W.D.; Vass, I. A Review: The Role of Reactive Oxygen Species in Mass Coral Bleaching. In Photosynthesis in Algae: Biochemical and Physiological Mechanisms; Larkum, A.W.D., Grossman, A.R., Raven, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 459–488. [Google Scholar]
- Bouchard, J.N.; Yamasaki, H. Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: A possible linkage between nitric oxide and the coral bleaching phenomenon. Plant Cell Physiol. 2008, 49, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Trapido-Rosenthal, H.; Zielke, S.; Owen, R.; Buxton, L.; Boeing, B.; Bhagooli, R.; Archer, J. Increased zooxanthellae nitric oxide synthase activity is associated with coral bleaching. Biol. Bull. 2005, 208, 3–6. [Google Scholar] [CrossRef]
- Safavi-Hemami, H.; Young, N.D.; Doyle, J.; Llewellyn, L.; Klueter, A. Characterisation of nitric oxide synthase in three cnidarian-dinoflagellate symbioses. PLoS ONE 2010, 5, e10379. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, T.D.; Davy, S.K. Nitric oxide production and tolerance differ among Symbiodinium types exposed to heat stress. Plant Cell Physiol. 2012, 53, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Jury, C.P.; Boeing, B.M.; Trapido-Rosenthal, H.; Gates, R.D.; Toonen, R.J. Nitric oxide production rather than oxidative stress and cell death is associated with the onset of coral bleaching in Pocillopora acuta. PeerJ 2022, 10, e13321. [Google Scholar] [CrossRef] [PubMed]
- Coles, S.L.; Brown, B.E. Coral bleaching–capacity for acclimatization and adaptation. Adv. Mar. Biol. 2003, 46, 183–223. [Google Scholar] [CrossRef]
- Balchin, D.; Hayer-Hartl, M.; Hartl, F.U. In vivo aspects of protein folding and quality control. Science 2016, 353, aac4354. [Google Scholar] [CrossRef] [PubMed]
- Junprung, W.; Supungul, P.; Tassanakajon, A. Structure, gene expression, and putative functions of crustacean heat shock proteins in innate immunity. Dev. Comp. Immunol. 2021, 115, 103875. [Google Scholar] [CrossRef]
- Jeyachandran, S.; Chellapandian, H.; Park, K.; Kwak, I.S. A Review on the Involvement of Heat Shock Proteins (Extrinsic Chaperones) in Response to Stress Conditions in Aquatic Organisms. Antioxidants 2023, 12, 1444. [Google Scholar] [CrossRef]
- Seveso, D.; Arrigoni, R.; Montano, S.; Maggioni, D.; Orlandi, I.; Berumen, M.L.; Galli, P.; Vai, M. Investigating the heat shock protein response involved in coral bleaching across scleractinian species in the central Red Sea. Coral Reefs 2020, 39, 85–98. [Google Scholar] [CrossRef]
- Rosic, N.N.; Pernice, M.; Dove, S.; Dunn, S.; Hoegh-Guldberg, O. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: Possible implications for coral bleaching. Cell Stress Chaperones 2011, 16, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Traylor-Knowles, N.; Baker, A.C.; Beavers, K.M.; Garg, N.; Guyon, J.R.; Hawthorn, A.; MacKnight, N.J.; Medina, M.; Mydlarz, L.D.; Peters, E.C.; et al. Advances in coral immunity ‘omics in response to disease outbreaks. Front. Mar. Sci. 2022, 9, 952199. [Google Scholar] [CrossRef]
- Marangoni, L.F.d.B.; Dalmolin, C.; Marques, J.A.; Klein, R.D.; Abrantes, D.P.; Pereira, C.M.; Calderon, E.N.; Castro, C.B.E.; Bianchini, A. Oxidative stress biomarkers as potential tools in reef degradation monitoring: A study case in a South Atlantic reef under influence of the 2015–2016 El Niño/Southern Oscillation (ENSO). Ecol. Indic. 2019, 106, 105533. [Google Scholar] [CrossRef]
- Parson, M.; Bratanov, D.; Gaston, K.J.; González, F. UAVs, hyperspectral remote sensing, and machine learning revolutionizing reef monitoring. Sensor 2018, 18, 2026. [Google Scholar] [CrossRef] [PubMed]
- Raber, G.T.; Schill, S.R. Reef Rover: A Low-Cost Small Autonomous Unmanned Surface Vehicle (USV) for Mapping and Monitoring Coral Reefs. Drones 2019, 3, 38. [Google Scholar] [CrossRef]
- Nalmpanti, M.; Chrysafi, A.; Meeuwig, J.J.; Tsikliras, A.C. Monitoring marine fishes using underwater video techniques in the Mediterranean Sea. Rev. Fish Biol. Fish. 2023, 33, 1291–1310. [Google Scholar] [CrossRef]
- Williams, S.B.; Pizarro, O.R.; Jakuba, M.V.; Johnson, C.R.; Barrett, N.S.; Babcock, R.C.; Kendrick, G.A.; Steinberg, P.D.; Heyward, A.J.; Doherty, P.J.; et al. Monitoring of Benthic Reference Sites: Using an Autonomous Underwater Vehicle. IEEE Robot. Autom. Mag. 2012, 19, 73–84. [Google Scholar] [CrossRef]
- Cabioch, G.; Davies, P.; Done, T.; Gischler, E.; Macintyre, I.G.; Wood, R.; Woodroffe, C. Encyclopedia of Modern Coral Reefs: Structure, Form and Process; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Yasir Haya, L.O.M.; Fujii, M. Mapping the change of coral reefs using remote sensing and in situ measurements: A case study in Pangkajene and Kepulauan Regency, Spermonde Archipelago, Indonesia. J. Oceanogr. 2017, 73, 623–645. [Google Scholar] [CrossRef]
- Bakker, A.C.; Gleason, A.C.R.; Dempsey, A.C.; Fox, H.E.; Green, R.H.; Purkis, S.J. Remotely sensed habitat diversity predicts species diversity on coral reefs. Remote Sens. Environ. 2024, 302, 113990. [Google Scholar] [CrossRef]
- Hafizt, M.; Adi, N.; Munawaroh, M.; Wouthuyzen, S.; Adji, A. Coral Reef Health Index Calculation from Remote Sensing Data: A Review. Int. J. Conserv. Sci. 2023, 14, 247–264. [Google Scholar] [CrossRef]
- Yamano, H.; Tamura, M. Detection limits of coral reef bleaching by satellite remote sensing: Simulation and data analysis. Remote Sens. Environ. 2004, 90, 86–103. [Google Scholar] [CrossRef]
- Kennedy, E.V.; Roelfsema, C.M.; Lyons, M.B.; Kovacs, E.M.; Borrego-Acevedo, R.; Roe, M.; Phinn, S.R.; Larsen, K.; Murray, N.J.; Yuwono, D.; et al. Reef Cover, a coral reef classification for global habitat mapping from remote sensing. Sci. Data 2021, 8, 196. [Google Scholar] [CrossRef]
- Barve, S.; Webster, J.M.; Chandra, R. Reef-Insight: A Framework for Reef Habitat Mapping with Clustering Methods Using Remote Sensing. Information 2023, 14, 373. [Google Scholar] [CrossRef]
- Araujo, J.C.; Seoane, J.C.S.; Lima, G.V.; da Silva, E.G.; França, L.G.; de Souza Santos, E.E.; de Oliveira, I.M.; Pereira, P.H.C. High-resolution optical remote sensing geomorphological mapping of coral reef: Supporting conservation and management of marine protected áreas. J. Sea Res. 2023, 196, 102453. [Google Scholar] [CrossRef]
- Williamson, M.J.; Tebbs, E.J.; Dawson, T.P.; Thompson, H.J.; Head, C.E.I.; Jacoby, D.M.P. Monitoring shallow coral reef exposure to environmental stressors using satellite earth observation: The reef environmental stress exposure toolbox (RESET). Remote Sens. Ecol. Conserv. 2022, 8, 855–874. [Google Scholar] [CrossRef]
- Neo, V.H.F.; Zinke, J.; Fung, T.; Merchant, C.J.; Zawada, K.J.A.; Krawczyk, H.; Maina, J.M. Inconsistent Coral Bleaching Risk Indicators Between Temperature Data Sources. Earth Space Sci. 2023, 10, e2022EA002688. [Google Scholar] [CrossRef]
- Little, C.M.; Liu, G.; De La Cour, J.L.; Eakin, C.M.; Manzello, D.; Heron, S.F. Global coral bleaching event detection from satellite monitoring of extreme heat stress. Front. Mar. Sci. 2022, 9, 883271. [Google Scholar] [CrossRef]
- Carlson, R.R.; Li, J.; Crowder, L.B.; Asner, G.P. Large-scale effects of turbidity on coral bleaching in the Hawaiian islands. Front. Mar. Sci. 2022, 9, 969472. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, X.; Dedman, S.; Rosso, M.; Zhu, J.; Yang, J.; Xia, Y.; Tian, Y.; Zhang, G.; Wang, J. UAV remote sensing applications in marine monitoring: Knowledge visualization and review. Sci. Total Environ. 2022, 838, 155939. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, M.; Zhao, J.; Li, D.; Zhang, H.; Zhong, J. Advancing sun glint correction in high-resolution marine UAV RGB imagery for coral reef monitoring. ISPRS J. Photogramm. Remote Sens. 2024, 207, 298–311. [Google Scholar] [CrossRef]
- Chong, W.S.; Zaki, N.H.M.; Hossain, M.S.; Muslim, A.M.; Pour, A.B. Introducing Theil-Sen estimator for sun glint correction of UAV data for coral mapping. Geocarto Int. 2022, 37, 4527–4556. [Google Scholar] [CrossRef]
- Hoffmann, T.K.; Pfennings, K.; Hitzegrad, J.; Brohmann, L.; Welzel, M.; Paul, M.; Goseberg, N.; Wehrmann, A.; Schlurmann, T. Low-cost UAV monitoring: Insights into seasonal volumetric changes of an oyster reef in the German Wadden Sea. Front. Mar. Sci. 2023, 10, 1245926. [Google Scholar] [CrossRef]
- Mohamad, M.N.; Reba, M.N.M.; Hossain, M.S. A screening approach for the correction of distortion in UAV data for coral community mapping. Geocarto Int. 2022, 37, 7089–7121. [Google Scholar] [CrossRef]
- Casella, E.; Lewin, P.; Ghilardi, M.; Rovere, A.; Bejarano, S. Assessing the relative accuracy of coral heights reconstructed from drones and structure from motion photogrammetry on coral reefs. Coral Reefs 2022, 41, 869–875. [Google Scholar] [CrossRef]
- Casella, E.; Collin, A.; Harris, D.; Ferse, S.; Bejarano, S.; Parravicini, V.; Hench, J.L.; Rovere, A. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 2017, 36, 269–275. [Google Scholar] [CrossRef]
- Ridge, J.T.; DiGiacomo, A.E.; Rodriguez, A.B.; Himmelstein, J.D.; Johnston, D.W. Comparison of 3D structural metrics on oyster reefs using unoccupied aircraft photogrammetry and terrestrial LiDAR across a tidal elevation gradient. Remote Sens. Ecol. Conserv. 2023, 9, 501–511. [Google Scholar] [CrossRef]
- Manessa, M.; Handoko, D.; Pamungkas, F.; Putera, R.; Sutarko, D.; Yogiswara, A.; Mukhtar, M.; Supriatna, S. Preliminary Result of Drone UAV Derived Multispectral Bathymetry in Coral Reef Ecosystem: A Case Study of Pemuteran Beach. Int. J. Adv. Sci. Eng. Inf. Technol. 2022, 12, 1512. [Google Scholar] [CrossRef]
- Diruit, W.; Le Bris, A.; Bajjouk, T.; Richier, S.; Helias, M.; Burel, T.; Lennon, M.; Guyot, A.; Ar Gall, E. Seaweed Habitats on the Shore: Characterization through Hyperspectral UAV Imagery and Field Sampling. Remote Sens. 2022, 14, 3124. [Google Scholar] [CrossRef]
- Román, A.; Prasyad, H.; Oiry, S.; Davies, B.F.R.; Brunier, G.; Barillé, L. Mapping intertidal oyster farms using unmanned aerial vehicles (UAV) high-resolution multispectral data. Estuar. Coast. Shelf Sci. 2023, 291, 108432. [Google Scholar] [CrossRef]
- Young, G.C.; Dey, S.; Rogers, A.D.; Exton, D. Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models. PLoS ONE 2017, 12, e0175341. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.; Castagnetti, C.; Capra, A.; Brooks, A.J.; Mancini, F. Detecting change in coral reef 3D structure using underwater photogrammetry: Critical issues and performance metrics. Appl. Geomat. 2020, 12, 3–17. [Google Scholar] [CrossRef]
- Robert, K.; Huvenne, V.A.I.; Georgiopoulou, A.; Jones, D.O.B.; Marsh, L.; Carter, G.D.O.; Chaumillon, L. New approaches to high-resolution mapping of marine vertical structures. Sci. Rep. 2017, 7, 9005. [Google Scholar] [CrossRef] [PubMed]
- Swanborn, D.J.B.; Stefanoudis, P.V.; Huvenne, V.A.I.; Pittman, S.J.; Woodall, L.C. Structure-from-motion photogrammetry demonstrates that fine-scale seascape heterogeneity is essential in shaping mesophotic fish assemblages. Remote Sens. Ecol. Conserv. 2022, 8, 904–920. [Google Scholar] [CrossRef]
- Goodman, J.; Purkis, S.; Phinn, S. Coral Reef Remote Sensing: A Guide for Mapping, Monitoring and Management; Springer: Dordrecht, The Netherland, 2013. [Google Scholar]
- Apprill, A.; Girdhar, Y.; Mooney, T.A.; Hansel, C.M.; Long, M.H.; Liu, Y.; Zhang, W.G.; Kapit, J.; Hughen, K.; Coogan, J.; et al. Toward a New Era of Coral Reef Monitoring. Environ. Sci. Technol. 2023, 57, 5117–5124. [Google Scholar] [CrossRef]
- Marsh, L.; Copley, J.T.; Huvenne, V.A.I.; Tyler, P.A.; the Isis ROV Facility. Getting the bigger picture: Using precision Remotely Operated Vehicle (ROV) videography to acquire high-definition mosaic images of newly discovered hydrothermal vents in the Southern Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2013, 92, 124–135. [Google Scholar] [CrossRef]
- Garg, P.K. Remote Sensing Theory and Application; Mercury Learning and Information: Boston, MA, USA, 2024; pp. 326–332. ISBN 978-1-68392-748-8. [Google Scholar]
- Kim, T.W.; Yuh, J. A novel neuro-fuzzy controller for autonomous underwater vehicles. In Proceedings of the 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Seoul, Republic of Korea, 21–26 May 2001; Volume 2353, pp. 2350–2355. [Google Scholar]
- Lee, C.S.G.; Wang, J.-S.; Yuh, J. Self-adaptive neuro-fuzzy systems for autonomous underwater vehicle control. Adv. Robot. 2001, 15, 589–608. [Google Scholar] [CrossRef]
- Shojaei, K. Three-dimensional neural network tracking control of a moving target by underactuated autonomous underwater vehicles. Neural Comput. Appl. 2019, 31, 509–521. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, S.; Shi, L.; Pan, S.; He, Y. The application of PID control in motion control of the spherical amphibious robot. In Proceedings of the 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 3–6 August 2014; pp. 1901–1906. [Google Scholar]
- Healey, A.J. A neural network approach to failure diagnostics for underwater vehicles. In Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology, Washington, DC, USA, 2–3 June 1992; pp. 131–134. [Google Scholar]
- Song, S.; Liu, J.; Guo, J.; Wang, J.; Xie, Y.; Cui, J.H. Neural-Network-Based AUV Navigation for Fast-Changing Environments. IEEE Internet Things J. 2020, 7, 9773–9783. [Google Scholar] [CrossRef]
- Li, J.H.; Lee, P.M. A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle. Robot. Auton. Syst. 2005, 52, 132–147. [Google Scholar] [CrossRef]
- Shaukat, N.; Ali, A.; Javed Iqbal, M.; Moinuddin, M.; Otero, P. Multi-Sensor Fusion for Underwater Vehicle Localization by Augmentation of RBF Neural Network and Error-State Kalman Filter. Sensors 2021, 21, 1149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Ji, D.; Liu, S.; Zhu, X.; Xu, W. Autonomous Underwater Vehicle navigation: A review. Ocean Eng. 2023, 273, 113861. [Google Scholar] [CrossRef]
- Gafurov, S.A.; Klochkov, E.V. Autonomous Unmanned Underwater Vehicles Development Tendencies. Procedia Eng. 2015, 106, 141–148. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Feng, S.-N.; Lai, C.-Y.; Tseng, H.-T.; Huang, C.-W. Applying deep learning to predict SST variation and tropical cyclone patterns that influence coral bleaching. Ecol. Inform. 2023, 77, 102261. [Google Scholar] [CrossRef]
- Giles, A.B.; Ren, K.; Davies, J.E.; Abrego, D.; Kelaher, B. Combining Drones and Deep Learning to Automate Coral Reef Assessment with RGB Imagery. Remote Sens. 2023, 15, 2238. [Google Scholar] [CrossRef]
- Boonnam, N.; Udomchaipitak, T.; Puttinaovarat, S.; Chaichana, T.; Boonjing, V.; Muangprathub, J. Coral Reef Bleaching under Climate Change: Prediction Modeling and Machine Learning. Sustainability 2022, 14, 6161. [Google Scholar] [CrossRef]
- Zhang, H.; Gruen, A.; Li, M. Deep Learning for Semantic Segmentation of Coral Images in Underwater Photogrammetry. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 2, 343–350. [Google Scholar] [CrossRef]
- Mayfield, A.; Lin, C. Leveraging the power of artificial intelligence to identify resilient reef coral genotypes for cryopreservation. Platax 2022, 19, 43–58. [Google Scholar]
- Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Kendrick, G.; Fisher, R.B. Chapter 21—Deep Learning for Coral Classification. In Handbook of Neural Computation; Samui, P., Sekhar, S., Balas, V.E., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 383–401. [Google Scholar]
- Kopecky, K.L.; Pavoni, G.; Nocerino, E.; Brooks, A.J.; Corsini, M.; Menna, F.; Gallagher, J.P.; Capra, A.; Castagnetti, C.; Rossi, P.; et al. Quantifying the Loss of Coral from a Bleaching Event Using Underwater Photogrammetry and AI-Assisted Image Segmentation. Remote Sens. 2023, 15, 4077. [Google Scholar] [CrossRef]
- Beijbom, O.; Edmunds, P.J.; Kline, D.I.; Mitchell, B.G.; Kriegman, D. Automated annotation of coral reef survey images. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1170–1177. [Google Scholar]
- Chen, Q.; Beijbom, O.; Chan, S.; Bouwmeester, J.; Kriegman, D. A New Deep Learning Engine for CoralNet. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 3686–3695. [Google Scholar]
- Song, H.; Mehdi, S.R.; Zhang, Y.; Shentu, Y.; Wan, Q.; Wang, W.; Raza, K.; Huang, H. Development of Coral Investigation System Based on Semantic Segmentation of Single-Channel Images. Sensors 2021, 21, 1848. [Google Scholar] [CrossRef]
- CORALNET A Web Solution for Coral Reef Analysis. Available online: Https://coralnet.ucsd.edu (accessed on 29 July 2024).
- ReefCloud. Available online: Https://reefcloud.ai (accessed on 29 July 2024).
- TagLab. Available online: Https://taglab.isti.cnr.it (accessed on 29 July 2024).
- Modasshir, M.; Rahman, S.; Youngquist, O.; Rekleitis, I. Coral Identification and Counting with an Autonomous Underwater Vehicle. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 524–529. [Google Scholar]
- de Oliveira, L.M.C.; Lim, A.; Conti, L.A.; Wheeler, A.J. High-resolution 3D mapping of cold-water coral reefs using machine learning. Front. Environ. Sci. 2022, 10, 1044706. [Google Scholar] [CrossRef]
- Davis, A.; Paneerselvam, S. Design and Development of AUV for Coral Reef Inspection and Geotagging Using CV/ML. In Innovations in Data Analytics; Springer: Singapore, 2023; pp. 595–610. [Google Scholar]
- Antonelli, G.; Fossen, T.; Yoerger, D. Underwater Robotics. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008; Volume 1, pp. 987–1008. [Google Scholar]
- Petillot, Y.R.; Antonelli, G.; Casalino, G.; Ferreira, F. Underwater Robots: From Remotely Operated Vehicles to Intervention-Autonomous Underwater Vehicles. IEEE Robot. Autom. Mag. 2019, 26, 94–101. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, H.; Huang, S.H.; Si, Y.; Shi, K.; Quan, X.; Guo, C.; Chen, C.-W.; Wang, Z.; Wang, Y.; et al. AUH, a New Technology for Ocean Exploration. Engineering 2023, 25, 21–27. [Google Scholar] [CrossRef]
- Yuh, J.; Marani, G.; Blidberg, D.R. Applications of marine robotic vehicles. Intell. Serv. Robot. 2011, 4, 221–231. [Google Scholar] [CrossRef]
- Antonelli, G. Underwater Robots, 3rd ed.; STAR (Springer Tracts in Advance Robotics); Springer: Berlin, Germany, 2014; ISBN 978-3-319-02876-7. [Google Scholar]
- Huvenne, V.A.I.; Robert, K.; Marsh, L.; Lo Iacono, C.; Le Bas, T.; Wynn, R.B. ROVs and AUVs. In Submarine Geomorphology; Micallef, A., Krastel, S., Savini, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 93–108. [Google Scholar]
- Ura, T. Development Timeline of the Autonomous Underwater Vehicle in Japan. J. Robot. Mechatron. 2020, 32, 713–721. [Google Scholar] [CrossRef]
- Manjakkal, L.; Mitra, S.; Petillot, Y.R.; Shutler, J.; Scott, E.M.; Willander, M.; Dahiya, R. Connected Sensors, Innovative Sensor Deployment, and Intelligent Data Analysis for Online Water Quality Monitoring. IEEE Internet Things J. 2021, 8, 13805–13824. [Google Scholar] [CrossRef]
- Vallegra, F.; Mateo, D.; Tokić, G.; Bouffanais, R.; Yue, D.K.P. Gradual Collective Upgrade of a Swarm of Autonomous Buoys for Dynamic Ocean Monitoring. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–7. [Google Scholar]
- Zoss, B.; Mateo, D.; Kuan, Y.K.; Tokić, G.; Chamanbaz, M.; Goh, L.; Vallegra, F.; Bouffanais, R.; Yue, D. Distributed system of autonomous buoys for scalable deployment and monitoring of large waterbodies. Auton. Robot. 2018, 42, 1669–1689. [Google Scholar] [CrossRef]
- Albaladejo, C.; Soto, F.; Torres, R.; Sánchez, P.; López, J.A. A Low-Cost Sensor Buoy System for Monitoring Shallow Marine Environments. Sensors 2012, 12, 9613–9634. [Google Scholar] [CrossRef] [PubMed]
- Pirisi, A.; Grimaccia, F.; Mussetta, M.; Zich, R.E.; Johnstone, R.; Palaniswami, M.; Rajasegarar, S. Optimization of an energy harvesting buoy for coral reef monitoring. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 629–634. [Google Scholar]
- Sergiy, F.; Dmitry, B.G.; Chad, L. Autonomous buoy platform for low-cost visual maritime surveillance: Design and initial deployment. In Proc. SPIE 7317, Ocean Sensing and Monitoring; SPIE: Bellingham, WA USA, 2009; p. 73170A. [Google Scholar]
- Vesecky, J.F.; Laws, K.; Petersen, S.I.; Bazeghi, C.; Wiberg, D. Prototype autonomous mini-buoy for use in a wireless networked, ocean surface sensor array. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 4987–4990. [Google Scholar]
- Derevnin, V.A.; Morozov, A.K.; Stepin, V.A. Oceanology controlled buoyancy autonomous buoys. In Proceedings of the IEEE Oceanic Engineering Society. OCEANS’98. Conference Proceedings (Cat. No.98CH36259), Nice, France, 28 September–1 October 1998; Volume 1813, pp. 1812–1816. [Google Scholar]
- Jiang, B.; Xu, Z.; Yang, S.; Chen, Y.; Ren, Q. Profile Autonomous Underwater Vehicle System for Offshore Surveys. Sensors 2023, 23, 3722. [Google Scholar] [CrossRef]
- Fossen, T. Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles; Marine Cybernetics: Trondheim, Norway, 2002. [Google Scholar]
- Md Naiem, M.A.; Adnan, F.; Md zain, M.Z. Review of Course Keeping Control System for Unmanned Surface Vehicle. J. Teknol. 2015, 74, 11–20. [Google Scholar] [CrossRef]
- Humphries, F.; Horne, R.; Olsen, M.; Dunbabin, M.; Tranter, K. Uncrewed autonomous marine vessels test the limits of maritime safety frameworks. WMU J. Marit. Aff. 2022, 22, 317–344. [Google Scholar] [CrossRef]
- Bolbot, V.; Sandru, A.; Saarniniemi, T.; Puolakka, O.; Kujala, P.; Valdez Banda, O.A. Small Unmanned Surface Vessels—A Review and Critical Analysis of Relations to Safety and Safety Assurance of Larger Autonomous Ships. J. Mar. Sci. Eng. 2023, 11, 2387. [Google Scholar] [CrossRef]
- Manley, J.E. Unmanned surface vehicles, 15 years of development. In Proceedings of the OCEANS 2008, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–4. [Google Scholar]
- Siramdasu, Y.; Fahimi, F. Test of a Sliding Mode Controller for Trajectory Tracking of an Underactuated Surface Vessel. In Proceedings of the ASME International Mechanical Engineering Congress & Exposition 2011, Denver, CO, USA, 11–17 November 2011; Volume 7. [Google Scholar]
- Siramdasu, Y.; Fahimi, F. Nonlinear dynamic model identification methodology for real robotic surface vessels. Int. J. Control 2013, 86, 2315–2324. [Google Scholar] [CrossRef]
- Kale, S. Developments in Unmanned Surface Vehicles (USVs): A Review. Int. Conf. Appl. Eng. Nat. Sci. 2023, 1, 596–600. [Google Scholar] [CrossRef]
- Aguiar, A.P.; Almeida, J.; Bayat, M.; Cardeira, B.; Cunha, R.; Häusler, A.; Maurya, P.; Oliveira, A.; Pascoal, A.; Pereira, A.; et al. Cooperative Control of Multiple Marine Vehicles Theoretical Challenges and Practical Issues. IFAC Proc. Vol. 2009, 42, 412–417. [Google Scholar] [CrossRef]
- Soares, J.M.; Aguiar, A.P.; Pascoal, A.M.; Martinoli, A. Joint ASV/AUV range-based formation control: Theory and experimental results. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 5579–5585. [Google Scholar]
- Wang, X.; Shang, J.; Luo, Z.; Tang, L.; Zhang, X.; Li, J. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles. Renew. Sustain. Energy Rev. 2012, 16, 1958–1970. [Google Scholar] [CrossRef]
- Capocci, R.; Dooly, G.; Omerdić, E.; Coleman, J.; Newe, T.; Toal, D. Inspection-Class Remotely Operated Vehicles—A Review. J. Mar. Sci. Eng. 2017, 5, 13. [Google Scholar] [CrossRef]
- McLean, D.L.; Parsons, M.J.G.; Gates, A.R.; Benfield, M.C.; Bond, T.; Booth, D.J.; Bunce, M.; Fowler, A.M.; Harvey, E.S.; Macreadie, P.I.; et al. Enhancing the Scientific Value of Industry Remotely Operated Vehicles (ROVs) in Our Oceans. Front. Mar. Sci. 2020, 7, 220. [Google Scholar] [CrossRef]
- Fossen, T. Guidance and Control of Ocean Vehicles; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- González-García, J.; Gómez-Espinosa, A.; García-Valdovinos, L.G.; Salgado-Jiménez, T.; Cuan-Urquizo, E.; Cabello, J.A. Model-Free High-Order Sliding Mode Controller for Station-Keeping of an Autonomous Underwater Vehicle in Manipulation Task: Simulations and Experimental Validation. Sensors 2022, 22, 4347. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A. Adaptive disturbance observer for trajectory tracking control of underwater vehicles. Ocean Eng. 2020, 200, 107080. [Google Scholar] [CrossRef]
- Clark, C.; Olstad, C.; Buhagiar, K.; Gambin, T. Archaeology via Underwater Robots: Mapping and Localization within Maltese Cistern Systems. In Proceedings of the 10 th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December 2008. [Google Scholar]
- Ferrera, M.; Moras, J.; Trouvé-Peloux, P.; Creuze, V.; Dégez, D. The Aqualoc Dataset: Towards Real-Time Underwater Localization from a Visual-Inertial-Pressure Acquisition System. In Proceedings of the IROS 2018 Workshop, Madrid, Spain, 5 October 2018. [Google Scholar]
- Kwasnitschka, T.; Hansteen, T.H.; Devey, C.W.; Kutterolf, S. Doing fieldwork on the seafloor: Photogrammetric techniques to yield 3D visual models from ROV video. Comput. Geosci. 2013, 52, 218–226. [Google Scholar] [CrossRef]
- Teague, J.; Scott, T. Underwater Photogrammetry and 3D reconstruction of Submerged Objects in Shallow Environments by ROV and Underwater GPS. J. Mar. Sci. Res. Technol. 2017, 1, 005. [Google Scholar]
- Goldstein, A.; Bentley, S. Use of highly portable micro-sized remotely operated vehicles for environmental monitoring and mapping. In Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, USA, 20–23 September 2010; pp. 1–6. [Google Scholar]
- Aras, M.; Zainal, I.; Abdullah, S.S.B.; Kassim, A.M.; Jaafar, H.I. Development of an Unmanned Underwater Remotely Operated Crawler (ROC) For Monitoring Application. J. Mech. Eng. Technol. 2015, 7, 41–55. [Google Scholar]
- Mohd Aras, M.S.; Kamarudin, M.N.; Zainal, I.; Rusli, M. Small Scale Unmanned Underwater Remotely Operated Crawler (ROC). TELKOMNIKA Indones. J. Electr. Eng. 2016, 3, 481–488. [Google Scholar] [CrossRef]
- Shim, H.; Yoo, S.-Y.; Kang, H.; Jun, B.-H. Development of arm and leg for seabed walking robot CRABSTER200. Ocean Eng. 2016, 116, 55–67. [Google Scholar] [CrossRef]
- Aripin, M.K.; Aras, M.S.M.; Sulaiman, M.; Zainal, M.I.M.; Harun, M.H.; Zambri, M.K.M. Low cost expansion of unmanned underwater remotely operated crawler (ROC) for pipeline inspection. In Proceedings of the 2017 IEEE 7th International Conference on Underwater System Technology: Theory and Applications (USYS), Kuala Lumpur, Malaysia, 18–20 December 2017; pp. 1–5. [Google Scholar]
- Wood, S.; Harris, W.; Ismail, T.; Malone, J.M.; Nanney, M.; Ojeda, J.; Pugatch, B.; Vandedrinck, S. Hybrid robot crawler / flyer for use in underwater archaeology. In Proceedings of the 2013 OCEANS—San Diego, San Diego, CA, USA, 23–27 September 2013; pp. 1–11. [Google Scholar]
- Falahzadeh, A.; Toma, D.M.; Francescangeli, M.; Chatzievangelou, D.; Nogueras, M.; Martínez, E.; Carandell, M.; Tangerlini, M.; Thomsen, L.; Picardi, G.; et al. A New Coastal Crawler Prototype to Expand the Ecological Monitoring Radius of OBSEA Cabled Observatory. J. Mar. Sci. Eng. 2023, 11, 857. [Google Scholar] [CrossRef]
- Thomsen, L. Temporal and spatial benthic data collection via mobile robots: Present and future applications. In Proceedings of the OCEANS 2015—Genova, Genova, Italy, 18–21 May 2015. [Google Scholar] [CrossRef]
- Dudek, G.; Giguère, P.; Prahacs, C.; Saunderson, S.; Sattar, J.; Torres-Méndez, L.A.; Jenkin, M.; German, A.; Hogue, A.; Ripsman, A.; et al. AQUA: An amphibious autonomous robot. Computer 2007, 40, 46–53. [Google Scholar] [CrossRef]
- Sahoo, A.; Dwivedy, S.K.; Robi, P.S. Advancements in the field of autonomous underwater vehicle. Ocean Eng. 2019, 181, 145–160. [Google Scholar] [CrossRef]
- Antonelli, G.; Chiaverini, S.; Sarkar, N.; West, M. Adaptive control of an autonomous underwater vehicle: Experimental results on ODIN. IEEE Trans. Control Syst. Technol. 2001, 9, 756–765. [Google Scholar] [CrossRef]
- Palomeras, N.; El-Fakdi, A.; Carreras, M.; Ridao, P. COLA2: A control architecture for AUVs. IEEE J. Ocean. Eng. 2012, 37, 695–716. [Google Scholar] [CrossRef]
- Galceran, E.; Carreras, M. Planning Coverage Paths on Bathymetric Maps for In-Detail Inspection of the Ocean Floor. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013. [Google Scholar]
- Carreras, M.; Hernández, J.D.; Vidal, E.; Palomeras, N.; Ribas, D.; Ridao, P. Sparus II AUV—A Hovering Vehicle for Seabed Inspection. IEEE J. Ocean. Eng. 2018, 43, 344–355. [Google Scholar] [CrossRef]
- Rong, H.; Guan, L.; Gao, Y. Design and Experiment of an Autonomous Underwater Vehicle for Twilight Zone Surveying. In Proceedings of the 2019 International Conference on Communications, Signal Processing, and Their Applications (ICCSPA), Sharjah, United Arab Emirates, 19–21 March 2019; pp. 1–6. [Google Scholar]
- Natu, A.; Garg, V.; Gaur, P.; Dhruv; Raj, P.A.C.; Sain, S.; Biswas, U.; Bansal, D.; Biswas, N.J. Design and Development of an Autonomous Underwater Vehicle VARUNA 2.0. Int. J. Eng. Res. Technol. 2020, 9, 1495–1502. [Google Scholar]
- Edge, C.; Sakib, S.; Fulton, M.; Hong, J.; Mo, J.; Barthelemy, K.; Bashaw, H.; Kallevig, B.; Knutson, C.; Orpen, K.; et al. Design and Experiments with LoCO AUV: A Low Cost Open-Source Autonomous Underwater Vehicle. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 1761–1768. [Google Scholar]
- Castillo-Zamora, J.J.; Camarillo-Gómez, K.A.; Pérez-Soto, G.I.; Rodríguez-Reséndiz, J.; Morales-Hernández, L.A. Mini-AUV Hydrodynamic Parameters Identification via CFD Simulations and Their Application on Control Performance Evaluation. Sensors 2021, 21, 820. [Google Scholar] [CrossRef]
- Bianchi Figueiredo, A.; Coimbra Matos, A. MViDO: A High Performance Monocular Vision-Based System for Docking A Hovering AUV. Appl. Sci. 2020, 10, 2991. [Google Scholar] [CrossRef]
- Gutnik, Y.; Avni, A.; Treibitz, T.; Groper, M. On the Adaptation of an AUV into a Dedicated Platform for Close Range Imaging Survey Missions. J. Mar. Sci. Eng. 2022, 10, 974. [Google Scholar] [CrossRef]
- Flores, H.; Zuniga, A.; Hossein Motlagh, N.; Liyanage, M.; Passananti, M.; Tarkoma, S.; Youssef, M.; Nurmi, P. PENGUIN: Aquatic plastic pollution sensing using AUVs. In Proceedings of the ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, Toronto, ON, Canada, 15 June 2020. [Google Scholar] [CrossRef]
- Webb, D.C.; Simonetti, P.J.; Jones, C.P. SLOCUM: An underwater glider propelled by environmental energy. IEEE J. Ocean. Eng. 2001, 26, 447–452. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Dong, H.; Tan, M.; Yu, J. Development and Control of Underwater Gliding Robots: A Review. IEEE/CAA J. Autom. Sin. 2022, 9, 1543–1560. [Google Scholar] [CrossRef]
- Wood, S. Autonomous Underwater Gliders; InTech: Vienna, Austria, 2009. [Google Scholar]
- Griffiths, G.; Jones, C.; Ferguson, J.; Bose, N. Undersea gliders. J. Ocean Technol. 2007, 2, 64–75. [Google Scholar]
- Claus, B.; Bachmayer, R. Terrain-aided Navigation for an Underwater Glider. J. Field Robot. 2015, 32, 935–951. [Google Scholar] [CrossRef]
- Stuntz, A.; Kelly, J.S.; Smith, R.N. Enabling Persistent Autonomy for Underwater Gliders with Ocean Model Predictions and Terrain-Based Navigation. Front. Robot. AI 2016, 3, 23. [Google Scholar] [CrossRef]
- Garau, B.; Ruiz, S.; Zhang, W.; Pascual, A.; Heslop, E.; Kerfoot, J.; Tintoré, J. Thermal Lag Correction on Slocum CTD Glider Data. J. Atmos. Ocean. Technol. 2011, 28, 1065–1071. [Google Scholar] [CrossRef]
- Webster, S.E.; Freitag, L.E.; Lee, C.M.; Gobat, J.I. Towards real-time under-ice acoustic navigation at mesoscale ranges. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 537–544. [Google Scholar]
- Thurnherr, A.M.; Symonds, D.; Laurent, L.S. Processing explorer ADCP data collected on slocum gliders using the LADCP shear method. In Proceedings of the 2015 IEEE/OES Eleveth Current, Waves and Turbulence Measurement (CWTM), St. Petersburg, FL, USA, 2–6 March 2015; pp. 1–7. [Google Scholar]
- Bhatta, P.; Fiorelli, E.; Lekien, F.; Leonard, N.E.; Paley, D.A.; Zhang, F.; Bachmayer, R.; Sepulchre, R. Coordination of an underwater glider fleet for adaptive ocean sampling. In Proceedings of the International Workshop on Underwater Robotics, Genoa, Italy, 9–11 November 2005. [Google Scholar]
- Alvarez, A.; Caffaz, A.; Caiti, A.; Casalino, G.; Gualdesi, L.; Turetta, A.; Viviani, R. Fòlaga: A low-cost autonomous underwater vehicle combining glider and AUV capabilities. Ocean Eng. 2009, 36, 24–38. [Google Scholar] [CrossRef]
- Leonard, N.E.; Paley, D.A.; Davis, R.E.; Fratantoni, D.M.; Lekien, F.; Zhang, F. Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Robot. 2010, 27, 718–740. [Google Scholar] [CrossRef]
- Sherman, J.; Davis, R.E.; Owens, W.B.; Valdes, J. The autonomous underwater glider “Spray”. IEEE J. Ocean. Eng. 2001, 26, 437–446. [Google Scholar] [CrossRef]
- Eriksen, C.; Osse, T.J.; Light, R.D.; Wen, T.; Lehman, T.W.; Sabin, P.L.; Ballard, J.W.; Chiodi, A.M. Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Ocean. Eng. 2001, 26, 424–436. [Google Scholar] [CrossRef]
- Chemori, A.; Kuusmik, K.; Salumäe, T.; Kruusmaa, M. Depth control of the biomimetic U-CAT turtle-like AUV with experiments in real operating conditions. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4750–4755. [Google Scholar]
- Hernández-Jaramillo, D.C.; Vásquez, R.E. Design of a Bioinspired Underwater Glider for Oceanographic Research. Biomimetics 2023, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Ratas, M.; Chemori, A.; Kruusmaa, M. PHA-Based Feedback Control of a Biomimetic AUV for Diver Following: Design, Simulations and Real-Time Experiments. In Proceedings of the 2022 European Control Conference (ECC), London, UK, 12–15 July 2022; pp. 503–509. [Google Scholar]
- Barngrover, C.; Kastner, R.; Denewiler, T.; Mills, G. The stingray AUV: A small and cost-effective solution for ecological monitoring. In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–8. [Google Scholar]
- Glushko, I.; Olenew, E.; Komar, M.; Kniese, L.; Sokolovskyi, R.; Kebkal, O.; Bannasch, R.; Kebkal, K. Software Control Architecture for the BOSS Manta Ray AUV Actuation System. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9 November 2018; pp. 1–5. [Google Scholar]
- Berlinger, F.; Gauci, M.; Nagpal, R. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm. Sci. Robot. 2021, 6, eabd8668. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Pedro dos Santos, S.; Cuenca-Jiménez, F.; Gomez-Valdez, P.; Morales-Lopez, O.; Wilhelmus, M. RoboKrill: A metachronal drag-based swimmer robot. arXiv 2022, arXiv:2202.01037. [Google Scholar]
- Bujard, T.; Giorgio-Serchi, F.; Weymouth, G.D. A resonant squid-inspired robot unlocks biological propulsive efficiency. Sci. Robot. 2021, 6, eabd2971. [Google Scholar] [CrossRef] [PubMed]
- Plum, F.; Labisch, S.; Dirks, J.-H. SAUV—A Bio-Inspired Soft-Robotic Autonomous Underwater Vehicle. Front. Neurorobot. 2020, 14, 8. [Google Scholar] [CrossRef]
- Raja, V.; Solaiappan, S.K.; Kumar, L.; Marimuthu, A.; Gnanasekaran, R.K.; Choi, Y. Design and Computational Analyses of Nature Inspired Unmanned Amphibious Vehicle for Deep Sea Mining. Minerals 2022, 12, 342. [Google Scholar] [CrossRef]
- Zimmerman, S.; Abdelkefi, A. Review of marine animals and bioinspired robotic vehicles: Classifications and characteristics. Prog. Aerosp. Sci. 2017, 93, 95–119. [Google Scholar] [CrossRef]
- Salazar, R.; Campos, A.; Fuentes, V.; Abdelkefi, A. A review on the modeling, materials, and actuators of aquatic unmanned vehicles. Ocean Eng. 2019, 172, 257–285. [Google Scholar] [CrossRef]
- Consi, T.R.; Mueller, W.; Leep, N.; Keifenheim, J.; Houdek, S. The shrimpfish as a model for a novel, highly maneuverable AUV. In Proceedings of the OCEANS 2015—MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 1–7. [Google Scholar]
- Font, D.; Tresanchez, M.; Siegentahler, C.; Pallejà, T.; Teixidó, M.; Pradalier, C.; Palacin, J. Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle. Sensors 2011, 11, 11168–11187. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, X.; Huang, H.; Chen, Y. Development of an Autonomous Underwater Helicopter with High Maneuverability. Appl. Sci. 2019, 9, 4072. [Google Scholar] [CrossRef]
- Du, P.; Huang, S.H.; Yang, W.; Wang, Y.; Wang, Z.; Hu, R.; Chen, Y. Design of a Disc-Shaped Autonomous Underwater Helicopter with Stable Fins. J. Mar. Sci. Eng. 2022, 10, 67. [Google Scholar] [CrossRef]
- Zhou, J.; He, J.; Huang, H.; Wang, Y.; Si, Y.; Huang, S.; Xu, B.; Chen, Y. Closeup exploration of the seafloor with an autonomous underwater helicopter. Res. Sq. 2021. [CrossRef]
- Birk, A.; Doernbach, T.; Mueller, C.; Luczynski, T.; Chavez, A.G.; Koehntopp, D.; Kupcsik, A.; Calinon, S.; Tanwani, A.K.; Antonelli, G.; et al. Dexterous Underwater Manipulation from Onshore Locations: Streamlining Efficiencies for Remotely Operated Underwater Vehicles. IEEE Robot. Autom. Mag. 2018, 25, 24–33. [Google Scholar] [CrossRef]
- Brantner, G.; Khatib, O. Controlling Ocean One: Human–robot collaboration for deep-sea manipulation. J. Field Robot. 2021, 38, 28–51. [Google Scholar] [CrossRef]
- Bowen, A.D.; Jakuba, M.V.; Farr, N.E.; Ware, J.; Taylor, C.; Gomez-Ibanez, D.; Machado, C.R.; Pontbriand, C. An un-tethered ROV for routine access and intervention in the deep sea. In Proceedings of the 2013 OCEANS–San Diego, San Diego, CA, USA, 23–27 September 2013; pp. 1–7. [Google Scholar]
- Yoerger, D.R.; Govindarajan, A.F.; Howland, J.C.; Llopiz, J.K.; Wiebe, P.H.; Curran, M.; Fujii, J.; Gomez-Ibanez, D.; Katija, K.; Robison, B.H.; et al. A hybrid underwater robot for multidisciplinary investigation of the ocean twilight zone. Sci. Robot. 2021, 6, eabe1901. [Google Scholar] [CrossRef] [PubMed]
- Marani, G.; Choi, S.K.; Yuh, J. Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng. 2009, 36, 15–23. [Google Scholar] [CrossRef]
- Prats, M.; Ribas, D.; Palomeras, N.; García, J.C.; Nannen, V.; Wirth, S.; Fernández, J.J.; Beltrán, J.P.; Campos, R.; Ridao, P.; et al. Reconfigurable AUV for intervention missions: A case study on underwater object recovery. Intell. Serv. Robot. 2012, 5, 19–31. [Google Scholar] [CrossRef]
- Ribas, D.; Palomeras, N.; Ridao, P.; Carreras, M.; Mallios, A. Girona 500 AUV: From survey to intervention. IEEE/ASME Trans. Mechatron. 2012, 17, 46–53. [Google Scholar] [CrossRef]
- Ridao, P.; Carreras, M.; Ribas, D.; Sanz, P.J.; Oliver, G. Intervention AUVs: The Next Challenge. In Proceedings of the 19th World Congress The International Federation of Automatic Control, Cape Town, South Africa, 24–29 August 2014. [Google Scholar]
- Simetti, E.; Casalino, G.; Torelli, S.; Sperindé, A.; Turetta, A. Floating Underwater Manipulation: Developed Control Methodology and Experimental Validation within the TRIDENT Project. J. Field Robot. 2014, 31, 364–385. [Google Scholar] [CrossRef]
- Lane, D.M.; Davies, J.B.C.; Casalino, G.; Bartolini, G.; Cannata, G.; Veruggio, G.; Canals, M.; Smith, C.; Brien, D.J.O.; Pickett, M.; et al. AMADEUS: Advanced manipulation for deep underwater sampling. IEEE Robot. Autom. Mag. 1997, 4, 34–45. [Google Scholar] [CrossRef]
- Evans, J.; Redmond, P.; Plakas, C.; Hamilton, K.; Lane, D. Autonomous docking for Intervention-AUVs using sonar and video-based real-time 3D pose estimation. In Proceedings of the Oceans 2003. Celebrating the Past … Teaming Toward the Future (IEEE Cat. No.03CH37492), San Diego, CA, USA, 22–26 September 2003; Volume 2204, pp. 2201–2210. [Google Scholar]
- Suming, Q.; Weicheng, C. An overview on aquatic unmanned aerial vehicles. Ann. Rev. Res. 2019, 5, 555663. [Google Scholar] [CrossRef]
- Neto, A.A.; Mozelli, L.A.; Drews, P.L.J.; Campos, M.F.M. Attitude control for an Hybrid Unmanned Aerial Underwater Vehicle: A robust switched strategy with global stability. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 395–400. [Google Scholar]
- Villegas, A.; Mishkevich, V.; Gulak, Y.; Diez, F.J. Analysis of key elements to evaluate the performance of a multirotor unmanned aerial–aquatic vehicle. Aerosp. Sci. Technol. 2017, 70, 412–418. [Google Scholar] [CrossRef]
- Alzu’bi, H.; Mansour, I.; Rawashdeh, O. Loon Copter: Implementation of a hybrid unmanned aquatic–aerial quadcopter with active buoyancy control. J. Field Robot. 2018, 35, 764–778. [Google Scholar] [CrossRef]
- Lu, D.; Xiong, C.; Lyu, B.; Zeng, Z.; Lian, L. Multi-Mode Hybrid Aerial Underwater Vehicle with Extended Endurance. In Proceedings of the 2018 OCEANS—MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 28–31 May 2018; pp. 1–7. [Google Scholar]
- Mercado Ravell, D.A.; Maia, M.M.; Diez, F.J. Modeling and control of unmanned aerial/underwater vehicles using hybrid control. Control Eng. Pract. 2018, 76, 112–122. [Google Scholar] [CrossRef]
- Vyas, A.; Puppala, R.; Sivadasan, N.; Molawade, A.; Ranganathan, T.; Thondiyath, A. Modelling and Dynamic Analysis of a Novel Hybrid Aerial—Underwater Robot—Acutus. In Proceedings of the OCEANS 2019–Marseille, Marseille, France, 17–20 June 2019; pp. 1–6. [Google Scholar]
- Li, L.; Wang, S.; Zhang, Y.; Song, S.; Wang, C.; Tan, S.; Zhao, W.; Wang, G.; Sun, W.; Yang, F.; et al. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces. Sci. Robot. 2022, 7, eabm6695. [Google Scholar] [CrossRef]
- Bi, Y.; Jin, Y.; Lyu, C.; Zeng, Z.; Lian, L. Nezha-Mini: Design and Locomotion of a Miniature Low-Cost Hybrid Aerial Underwater Vehicle. IEEE Robot. Autom. Lett. 2022, 7, 6669–6676. [Google Scholar] [CrossRef]
- Bi, Y.; Jin, Y.; Zhou, H.; Bai, Y.; Lyu, C.; Zeng, Z.; Lian, L. Surfing Algorithm: Agile and Safe Transition Strategy for Hybrid Aerial Underwater Vehicle in Waves. IEEE Trans. Robot. 2023, 39, 4262–4278. [Google Scholar] [CrossRef]
- Maia, M.; Soni, P.; Diez-Garias, F. Demonstration of an Aerial and Submersible Vehicle Capable of Flight and Underwater Navigation with Seamless Air-Water Transition. arXiv 2015, arXiv:1507.01932. [Google Scholar]
- Shkurti, F.; Xu, A.; Meghjani, M.; Higuera, J.C.G.; Girdhar, Y.; Giguère, P.; Dey, B.B.; Li, J.; Kalmbach, A.; Prahacs, C.; et al. Multi-domain monitoring of marine environments using a heterogeneous robot team. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 1747–1753. [Google Scholar]
- Leonessa, A.; Morel, Y. Indirect Collaborative Control of Autonomous Vehicles with Limited Communication Bandwidth. In Proceedings of the 2006 Florida Conference on Recent Advances in Robotics, FCRAR 2006, Miami, FL, USA, 25–26 May 2006. [Google Scholar]
- Belbachir, A.; Ingrand, F.; Lacroix, S. A cooperative architecture for target localization using multiple AUVs. Intell. Serv. Robot. 2012, 5, 119–132. [Google Scholar] [CrossRef]
- Chrpa, L.; Pinto, J.; Marques, T.S.; Ribeiro, M.A.; Sousa, J. Mixed-initiative planning, replanning and execution: From concept to field testing using AUV fleets. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 6825–6830. [Google Scholar]
- Schmickl, T.; Thenius, R.; Moslinger, C.; Timmis, J.; Tyrrell, A.; Read, M.; Hilder, J.; Halloy, J.; Campo, A.; Stefanini, C.; et al. CoCoRo—The Self-Aware Underwater Swarm. In Proceedings of the 2011 Fifth IEEE Conference on Self-Adaptive and Self-Organizing Systems Workshops, Arbor, MI, USA, 3–7 October 2011; pp. 120–126. [Google Scholar]
- Leonard, N.E.; Fiorelli, E. Virtual leaders, artificial potentials and coordinated control of groups. In Proceedings of the Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), Orlando, FL, USA, 4–7 December 2001; Volume 2963, pp. 2968–2973. [Google Scholar]
- Ogren, P.; Leonard, N.E. Obstacle avoidance in formation. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 2492, pp. 2492–2497. [Google Scholar]
- Yoon, S.; Qiao, C. Cooperative Search and Survey Using Autonomous Underwater Vehicles (AUVs). IEEE Trans. Parallel Distrib. Syst. 2011, 22, 364–379. [Google Scholar] [CrossRef]
- González-García, J.; Gómez-Espinosa, A.; Cuan-Urquizo, E.; García-Valdovinos, L.G.; Salgado-Jiménez, T.; Cabello, J.A. Autonomous Underwater Vehicles: Localization, Navigation, and Communication for Collaborative Missions. Appl. Sci. 2020, 10, 1256. [Google Scholar] [CrossRef]
- Phillips, A.B.; Salavasidis, G.; Kingsland, M.; Harris, C.; Pebody, M.; Templeton, D.R.R.; McPhail, S.; Prampart, T.; Wood, T.; Taylor, R.; et al. Autonomous Surface/Subsurface Survey System Field Trials. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9 November 2018; pp. 1–6. [Google Scholar]
- Lin, Y.; Hsiung, J.; Piersall, R.; White, C.; Lowe, C.G.; Clark, C.M. A Multi-Autonomous Underwater Vehicle System for Autonomous Tracking of Marine Life. J. Field Robot. 2017, 34, 757–774. [Google Scholar] [CrossRef]
- Yang, D.; Cai, L.; Jamieson, S.; Girdhar, Y. Robot Goes Fishing: Rapid, High-Resolution Biological Hotspot Mapping in Coral Reefs with Vision-Guided Autonomous Underwater Vehicles. arXiv 2023, arXiv:2305.02330. [Google Scholar] [CrossRef]
- Girdhar, Y.; McGuire, N.; Cai, L.; Jamieson, S.; McCammon, S.; Claus, B.; Soucie, J.E.S.; Todd, J.E.; Mooney, T.A. CUREE: A Curious Underwater Robot for Ecosystem Exploration. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 11411–11417. [Google Scholar]
- Mou, S.; Tsai, D.; Dunbabin, M. Reconfigurable Robots for Scaling Reef Restoration. arXiv 2022, arXiv:2205.04612. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, N.; Che, Y.; Gao, J.; Zhao, L.; Huang, H.; Chen, Y. Design and Development of an Autonomous Underwater Helicopter for Ecological Observation of Coral Reefs. Sensors 2022, 22, 1770. [Google Scholar] [CrossRef] [PubMed]
- Dunbabin, M.; Manley, J.; Harrison, P.L. Uncrewed Maritime Systems for Coral Reef Conservation. In Proceedings of the Global Oceans 2020: Singapore—U.S. Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–6. [Google Scholar]
- Arima, M.; Yoshida, K.; Tonai, H. Development of a coral monitoring system for the use of underwater vehicle. In Proceedings of the OCEANS 2014—TAIPEI, Taipei, Taiwan, 7–10 April 2014; pp. 1–6. [Google Scholar]
- Clement, R.; Dunbabin, M.; Wyeth, G. Toward Robust Image Detection of Crown-of-Thorns Starfish for Autonomous Population Monitoring. In Proceedings of the 2005 Australasian Conference on Robotics and Automation, ACRA 2005, Sydney, Australia, 5–7 December 2005. [Google Scholar]
- Dunbabin, M.; Roberts, J.; Usher, K.; Winstanley, G.; Corke, P. A Hybrid AUV Design for Shallow Water Reef Navigation. In Proceedings of the Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 2105–2110. [Google Scholar]
- Dunbabin, M.; Roberts, J.; Usher, K.; Corke, P. A new robot for environmental monitoring on the Great Barrier Reef. In Proceedings of the 2004 Australasian Conference on Robotics and Automation, Canberra, Australia, 6–8 December 2004; Barnes, N., Austin, D., Eds.; Australian Robotics and Automation Association (ARAA): Sydney, Australia, 2004; pp. 1–7. [Google Scholar]
- Montes-Herrera, J.C.; Hill, N.; Cummings, V.J.; Johnstone, G.J.; Stark, J.S.; Lucieer, V. Remote sensing of Antarctic polychaete reefs (Serpula narconensis): Reproducible workflows for quantifying benthic structural complexity with action cameras, remotely operated vehicles and structure-from-motion photogrammetry. Remote Sens. Ecol. Conserv. 2024, 10, 72–90. [Google Scholar] [CrossRef]
- Price, D.M.; Robert, K.; Callaway, A.; Lo lacono, C.; Hall, R.A.; Huvenne, V.A.I. Using 3D photogrammetry from ROV video to quantify cold-water coral reef structural complexity and investigate its influence on biodiversity and community assemblage. Coral Reefs 2019, 38, 1007–1021. [Google Scholar] [CrossRef]
- Galloway, K.; Becker, K.; Phillips, B.; Kirby, J.; Licht, S.; Wood, R.; Gruber, D. Soft Robotic Grippers for Biological Sampling on Deep Reefs. Soft Robot. 2016, 3, 23–33. [Google Scholar] [CrossRef]
- Marouchos, A.; Underwood, M.; Babcock, R. Starbug X AUV: Field trials and analysis of in-situ multi-channel AUV data. In Proceedings of the 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), Tokyo, Japan, 6–9 November 2016; pp. 76–80. [Google Scholar]
- Marouchos, A.; Muir, B.; Babcock, R.; Dunbabin, M. A shallow water AUV for benthic and water column observations. In Proceedings of the OCEANS 2015—Genova, Genova, Italy, 18–21 May 2015; pp. 1–7. [Google Scholar]
- Beall, C.; Dellaert, F.; Mahon, I.; Williams, S. Bundle adjustment in large-scale 3D reconstructions based on underwater robotic surveys. In Proceedings of the OCEANS 2011 IEEE—Spain, Santander, Spain, 6–9 June 2011; pp. 1–6. [Google Scholar]
- Williams, S.; Pizarro, O.; How, M.; Mercer, D.; Powell, G.; Marshall, J.; Hanlon, R. Surveying noctural cuttlefish camouflage behaviour using an AUV. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 214–219. [Google Scholar]
- Singh, H.; Armstrong, R.; Gilbes, F.; Eustice, R.; Roman, C.; Pizarro, O.; Torres, J. Imaging coral I: Imaging coral habitats with the SeaBED AUV. Subsurf. Sens. Technol. Appl. 2004, 5, 25–42. [Google Scholar] [CrossRef]
- Patterson, M.R.; Relles, N.J. Autonomous Underwater Vehicles resurvey Bonaire: A new tool for coral reef management. In Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, FL, USA, 7–11 July 2008. [Google Scholar]
- Grasmueck, M.; Eberli, G.; Correa, T.; Viggiano, D.A.; Luo, J.; Wyatt, G.J.; Reed, J.; Wright, A.; Pomponi, S.A. AUV-Based Environmental Characterization of Deepwater Coral Mounds in the Straits of Florida. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2007; Volume 18510. [Google Scholar] [CrossRef]
- Cardenas, J.A.; Samadikhoshkho, Z.; Rehman, A.U.; Valle-Pérez, A.U.; de León, E.H.-P.; Hauser, C.A.E.; Feron, E.M.; Ahmad, R. A systematic review of robotic efficacy in coral reef monitoring techniques. Mar. Pollut. Bull. 2024, 202, 116273. [Google Scholar] [CrossRef] [PubMed]
- Madin, E.M.P.; Darling, E.S.; Hardt, M.J. Emerging Technologies and Coral Reef Conservation: Opportunities, Challenges, and Moving Forward. Front. Mar. Sci. 2019, 6, 727. [Google Scholar] [CrossRef]
- Paraschiv, M.; Padrino, R.; Casari, P.; Bigal, E.; Scheinin, A.; Tchernov, D.; Fernández Anta, A. Classification of Underwater Fish Images and Videos via Very Small Convolutional Neural Networks. J. Mar. Sci. Eng. 2022, 10, 736. [Google Scholar] [CrossRef]
- Khan, C.; Blount, D.; Parham, J.; Holmberg, J.; Hamilton, P.; Charlton, C.; Christiansen, F.; Johnston, D.; Rayment, W.; Dawson, S.; et al. Artificial intelligence for right whale photo identification: From data science competition to worldwide collaboration. Mamm. Biol. 2022, 102, 1025–1042. [Google Scholar] [CrossRef]
- Ramos-Arredondo, R.; Carvajal-Gámez, B.; Gallegos-Funes, F.; Gendron, D. Multi-spatial Classifier for Blue Whale Images using Photo-identification Method. Res. Comput. Sci. 2014, 82, 31–40. [Google Scholar] [CrossRef]
- Suárez-Domínguez, E.A.; Martínez-Serrano, I.; Righini, N.; Chamlaty-Fayad, Y.E.; Bello-Sánchez, E.A.; Ramos-Díaz, A.H. Fibropapillomatosis in free-ranging green sea turtles (Chelonia mydas) off the central coast of Veracruz, Mexico. Cienc. Mar. 2020, 46, 133–143. [Google Scholar] [CrossRef]
- Knot, I.E.; Zouganelis, G.D.; Weedall, G.D.; Wich, S.A.; Rae, R. DNA Barcoding of Nematodes Using the MinION. Front. Ecol. Evol. 2020, 8, 100. [Google Scholar] [CrossRef]
- Chang, J.J.M.; Ip, Y.C.A.; Ng, C.S.L.; Huang, D. Takeaways from Mobile DNA Barcoding with BentoLab and MinION. Genes 2020, 11, 1121. [Google Scholar] [CrossRef] [PubMed]
- Johri, S.; Solanki, J.; Cantu, V.A.; Fellows, S.R.; Edwards, R.A.; Moreno, I.; Vyas, A.; Dinsdale, E.A. ‘Genome skimming’ with the MinION hand-held sequencer identifies CITES-listed shark species in India’s exports market. Sci. Rep. 2019, 9, 4476. [Google Scholar] [CrossRef] [PubMed]
- Enya, K.; Sasaki, S.; Kunieda, T. A polymerase chain reaction experiment using Excherichia coli and Mars sand simulant for detection and analysis of extraterrestrial life. Life Sci. Space Res. 2024, 42, 84–90. [Google Scholar] [CrossRef]
Vehicle/Feature | CUREE | FloatyBoat | Coral-AUH | RangerBot | Reef Rover v2 | Tonai60 | AQUA | Starbug |
---|---|---|---|---|---|---|---|---|
Class | AUV | USV | AUH | AUV | USV | Glider | Amphibious | AUV |
Length (m) | ∼68.6 | — | 0.5 | 0.75 | 0.95 | 1.650 | 0.65 | 1.02 |
Width (m) | ∼40.6 | — | 0.5 | 0.44 | 0.66 | 1.03 (wing-span) | 0.45 | 0.45 |
Height (m) | ∼22.9 | — | 0.32 | — | ∼0.47 | 0.528 | 0.13 | 0.15 |
Mass (kg) | ∼24.9 | — | 12 | 16 | ∼5 | 92 | ∼16 | 26 |
Max depth (m) | 100 | NA | 200 | 100 | NA | 60 | 30 | 100 |
Max speed (m/s) | — | — | ∼1.03 | — | 3.0 | 0.5 | 1.0 | 1.5 |
Autonomy (h) | — | 2 (0.75 m/s) | 1 | 6 | ∼0.7 | 10 | ∼3 | 3 (0.7 m/s) |
DoF | 6 | 3 | — | 6 | — | — | — | 6 |
Thrusters | 6 | 2 | 6 | 6 | 2 | — | 6 (remus) | 6 |
Cameras | 2 | 1 | 1 | 4 | 2 | 1 | 2 | 4 |
Stereo vision | ✓ | — | — | ✓ | — | — | ✓ | ✓ |
GPS | — | ✓ | — | — | ✓ | — | ✓ | ✓ |
IMU | ✓ | — | ✓ | — | — | ✓ | ✓ | ✓ |
Depth sensor | — | — | ✓ | — | — | ✓ | — | ✓ |
Altitude | ✓ | — | ✓ | — | — | — | — | ✓ |
Compass | — | ✓ | ✓ | — | — | ✓ | ✓ | ✓ |
LEDs lamps | 2 | — | — | ✓ | — | ✓ | ✓ | ✓ |
Scientific sensors | — | — | ✓ | — | — | ✓ | — | — |
Teleoperated | — | ✓ | — | ✓ | ✓ | ✓ | ✓ | ✓ |
Heading | ✓ | — | ✓ | — | ✓ | ✓ | — | ✓ |
Depth control | ✓ | — | ✓ | — | — | ✓ | — | — |
Collision avoid | ✓ | — | — | ✓ | — | — | — | ✓ |
Object following | ✓ | — | — | — | — | — | — | ✓ |
Mission planning | ✓ | ✓ | ✓ | ✓ | ✓ | — | — | ✓ |
References | [222,223] | [224] | [225] | [119,226] | [41] | [227] | [98,145,211] | [228,229,230] |
App | CUREE | FloatyBoat | Coral-AUH | RangerBot | Reef Rover v2 | Tonai60 | AQUA | Starbug |
---|---|---|---|---|---|---|---|---|
1 | Photo-grammetry | Larval collection and dispersal system | Coral reef observation | Larval distribution | Coral reef mapping | Coral reef mapping | 3D models of coral reefs | Transect surveying |
2 | DL for coral reef biodiversity identification | Path following, photogrammetry, and mapping | Physical–chemical data collected in situ | Onboard vision for navigation in coral reefs | Photo-grammetry and SFM | Coral reef detection by Coral Fluorescent Protein (CFP) | Coral reef monitoring | Water quality monitoring |
3 | Animal tracking on coral reefs | Substrate classification, DL-CNN (Convolutional Neural Networks) | Water quality data collected | Restoration of coral communities | Digital Surface Model (DSM) of coral reefs | Ocean environment monitoring | Deep Learning for coral identification | Texture-based Marine Biota Classification |
References | [222,223] | [224] | [225] | [119,226] | [41] | [227] | [98,145,211] | [228,229,230] |
Vehicle/Feature | BlueROV2 | Holland 1 | Isis | Falcon-srg | Starbug-X | Sirius | Gabia | Fetch1 | Hugin 3000 |
---|---|---|---|---|---|---|---|---|---|
Class | ROV | ROV | ROV | ROV | AUV | AUV | Glider | Glider | AUV |
Length (m) | 0.45 | 3.02 | 2.7 | 1 | 1.02 | 2 | 2.4 | 2.3 | 5.2–6.4 |
Width (m) | 0.33 | 1.81 | 1.5 | 0.6 | 0.45 | 1.5 | 0.2 | — | 0.75 |
Height (m) | 0.25 | 1.79 | 2.0 | 1 | 0.15 | 1.5 | 0.2 | — | 0.75 |
Mass (kg) | 10–11 | 3240 | ∼3400 | 300 | <32 | 200 | 55 | 91 | 1000–1550 |
Max depth (m) | 100 | 3000 | 6500 | 300 | 100 | 800 | 500 | 100 | 3000–4500 |
Max speed (m/s) | 1.5 | — | 0.75 | ∼1.54 | 1.5 | 1.0 | 3.0 | — | ∼1.03–3.08 |
Autonomy (h) | 2–3 | — | — | — | 8 (0.6 m/s) | — | 6 | 4 | 24–74 |
DoF | 6 | 4 | 6 | 5 (of the arm) | 4 | 4 | 4 | 4 | 4 |
Thrusters | 6–8 | 7 | 6 | 5 | 5 | 3 | 1 | 1 | 1 |
Cameras | 1 | 11 | 5 | 1 | 4 | 2 | 1 | 1 | 1 |
Stereo vision | — | — | — | — | ✓ | ✓ | — | — | — |
GPS | — | — | — | — | ✓ | ✓ | — | — | ✓ |
IMU | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Depth sensor | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Altitude | — | ✓ | ✓ | ✓ | ✓ | ✓ | — | — | — |
Compass | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | — | — | ✓ |
LED lamps | 2–4 | 14 | 4 | 2 | — | 2 | 1 | — | — |
Scientific sensors | — | — | ✓ | — | ✓ | ✓ | ✓ | ✓ | ✓ |
Teleoperated | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | — | — | — |
Arms | — | 2 | 2 | 1 | — | — | — | — | — |
Heading control | — | ✓ | ✓ | ✓ | ✓ | ✓ | — | — | ✓ |
Depth control | ✓ | ✓ | ✓ | ✓ | — | ✓ | ✓ | ✓ | — |
Collision avoid | — | — | — | — | ✓ | ✓ | — | — | — |
Object following | — | — | — | — | — | — | — | — | — |
Mission planning | ✓ | — | — | — | ✓ | — | — | ✓ | ✓ |
References | [231] | [99] | [73,232] | [233] | [234,235] | [43,236,237,238] | [239] | [239] | [240] |
App | BlueROV2 | Holland 1 | Isis | Falcon-srg | Starbug-X | Sirius | Gabia | Fetch1 | Hugin 3000 |
---|---|---|---|---|---|---|---|---|---|
1 | Photo-grammetry and SFM | Photo-grammetry and SFM | Photo-grammetry and SFM, | Benthic sampling in situ by soft robot grasping | Sampling data of shallow water coastal benthic habitat | 3D models of dense coral coverage by SLAM | Mapping coral distribution | Mapping coral distribution | High-resolution bathymetry of coral reefs |
2 | Benthic fauna and substrate classification | ML for coral reef classification | Rugosity metrics (cold-water reefs) | Gripper characterization for coral reefs | Water column data | Bathymetry of coral reefs | Coral reef bathymetry | Coral reef bathymetry | Mapping of coral mound morphology |
3 | Biogenic structural complexity analysis | High-resolution mapping of coral reefs | Digital Elevation Models (DEMs) and orthomosaics of coral reefs | Molecular biological samples capture capabilities | Benthic habitat mapping and characterization | Navigated time-series benthic imagery | Under-ice thermal structure | Neural Networks (NN) processing and target recognition | Environmental characterization of cold-water reefs |
References | [231] | [99] | [73,232] | [233] | [234,235] | [43,236,237,238] | [239] | [239] | [240] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piñeros, V.J.; Reveles-Espinoza, A.M.; Monroy, J.A. From Remote Sensing to Artificial Intelligence in Coral Reef Monitoring. Machines 2024, 12, 693. https://doi.org/10.3390/machines12100693
Piñeros VJ, Reveles-Espinoza AM, Monroy JA. From Remote Sensing to Artificial Intelligence in Coral Reef Monitoring. Machines. 2024; 12(10):693. https://doi.org/10.3390/machines12100693
Chicago/Turabian StylePiñeros, Victor J., Alicia Maria Reveles-Espinoza, and Jesús A. Monroy. 2024. "From Remote Sensing to Artificial Intelligence in Coral Reef Monitoring" Machines 12, no. 10: 693. https://doi.org/10.3390/machines12100693
APA StylePiñeros, V. J., Reveles-Espinoza, A. M., & Monroy, J. A. (2024). From Remote Sensing to Artificial Intelligence in Coral Reef Monitoring. Machines, 12(10), 693. https://doi.org/10.3390/machines12100693