Structural Design and Experimental Analysis of the Self-Balancing Lower Limb Exoskeleton Robot
Abstract
:1. Introduction
2. Methods
2.1. Overall Design
2.1.1. Program Design
2.1.2. Structural Design
2.2. Kinematic Analysis
2.2.1. Constructing the D-H Model for Lower Limb Exoskeleton Robots
2.2.2. Constructing a Positive Kinematic Model
2.2.3. Modeling Inverse Kinematics
3. Result
3.1. Gait Generation
3.2. Comparison of Simulation Results
3.3. Exoskeleton Prototype Walking Experiment
3.3.1. Establishment of Control Framework
3.3.2. Stability Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, D.; Zhang, W.; Zhang, W.; Ding, X. A review on lower limb rehabilitation exoskeleton robots. Chin. J. Mech. Eng. 2019, 32, 1–11. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H.; Wang, Y. Analysis of Hot Topics Regarding Global Smart Elderly Care Research—1997–2021. China CDC Wkly. 2024, 6, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Ahmad, O.; Malik, A. HEXOSYS II-towards realization of light mass robotics for the hand. In Proceedings of the 2011 IEEE 14th International Multitopic Conference, Karachi, Pakistan, 22–24 December 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Lajeunesse, V.; Routhier, F.; Vincent, C.; Lettre, J.; Michaud, F. Perspectives of individuals with incomplete spinal cord injury concerning the usability of lower limb exoskeletons: An exploratory study. Technol. Disabil. 2018, 30, 63–76. [Google Scholar] [CrossRef]
- Pinto-Fernandez, D.; Torricelli, D.; del Carmen Sanchez-Villamanan, M.; Aller, F.; Mombaur, K.; Conti, R.; Vitiello, N.; Moreno, J.C.; Pons, J.L. Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1573–1583. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.C.; Brunetti, F.; Navarro, E.; Forner-Cordero, A.; Pons, J.L. Analysis of the human interaction with a wearable lower-limb exoskeleton. Appl. Bionics Biomech. 2009, 6, 245–256. [Google Scholar]
- Pan, C.T.; Chang, C.C.; Sun, P.Y.; Lee, C.-L.; Lin, T.-C.; Yen, C.-K.; Yang, Y.-S. Development of multi-axis motor control systems for lower limb robotic exoskeleton. J. Med. Biol. Eng. 2019, 39, 752–763. [Google Scholar] [CrossRef]
- Liu, J.; He, Y.; Yang, J.; Cao, W.; Wu, X. Design and analysis of a novel 12-DOF self-balancing lower extremity exoskeleton for walking assistance. Mech. Mach. Theory 2022, 167, 104519. [Google Scholar] [CrossRef]
- Copilusi, C.; Ceccarelli, M.; Dumitru, S.; Geonea, I.; Margine, A.; Popescu, D. A Novel Exoskeleton Design and Numerical Characterization for Human Gait Assistance. Machines 2023, 11, 925. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, X.; Miao, M.; Zhao, P. Design and Control of a Lower Limb Rehabilitation Robot Based on Human Motion Intention Recognition with Multi-Source Sensor Information. Machines 2022, 10, 1125. [Google Scholar] [CrossRef]
- Tian, D.; Li, W.; Li, J.; Li, F.; Chen, Z.; He, Y.; Sun, J.; Wu, X. Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, S.; Chang, J.; Sun, H.; Li, S.; Gao, H.; Jin, Z. Design and preliminary evaluation of a lower limb exoskeleton based on hydraulic actuator. Ind. Robot: Int. J. Robot. Res. Appl. 2024, 51, 44–57. [Google Scholar] [CrossRef]
- Hussain, F.; Goecke, R.; Mohammadian, M. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 1375–1385. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, K.H.; Kroemer, H.J.; Kroemer-Elbert, K.E. Engineering Physiology: Bases of Human Factors/Ergonomics; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Huang, Y.; Li, H.; Gao, Y.; Yang, L. Structure Design of Hip Joint Parallel Rehabilitation Exoskeleton. Chin. J. Med. Instrum. 2023, 47, 612–616. [Google Scholar]
- Huang, L.; Chen, M.; Zheng, S.; Yang, L. Research on the kinematic calibration of the 3-PTT parallel mechanism. J. Mech. Sci. Technol. 2023, 37, 4311–4325. [Google Scholar] [CrossRef]
- Ortega-Palacios, M.A.; Palomino-Merino, A.D.; Reyes-Cortes, F. Inverse kinematics model for a 18 degrees of freedom robot. J. Autom. Mob. Robot. Intell. Syst. 2023, 17, 22–29. [Google Scholar]
- Park, J.; Youm, Y. General ZMP preview control for bipedal walking. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 2682–2687. [Google Scholar]
- Kajita, S.; Kanehiro, F.; Kaneko, K.; Fujiwara, K.; Harada, K.; Yokoi, K.; Hirukawa, H. Biped walking pattern generation by using preview control of zero-moment point. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 2, pp. 1620–1626. [Google Scholar]
- Jha, A.K.; Roy, P.P.; Dutta, A.K.; Saha, J. Modeling and simulation of SCORA-ER14 robot in ADAMS platform. Int. J. Eng. Tech. Res. (IJETR) 2014, 2, 105–109. [Google Scholar]
- Zhao, Y.; Wang, H. Kinematics simulation analysis and trajectory planning of a moving robot based on ADAMS. Math. Models Eng. 2017, 3, 71–77. [Google Scholar] [CrossRef]
Symbol | Parameter Description | Parameter | Unit |
---|---|---|---|
DOF | Degrees of Freedom | 12 | pcs |
W | Total Mass | 84.766 | kg |
H | Total Height | 160 | mm |
Lu | Thigh Length | 440 | mm |
Ld | Calf Length | 400 | mm |
Ltw | Waist Thickness | 200 | mm |
Lw | Waist Width | 400 | mm |
Lah | Ankle Height | 136 | mm |
Lfw | Foot Width | 130 | mm |
Lfl | Foot Length | 290 | mm |
Joint Name | i | αi − 1 | ai − 1 | di | θi | Range |
---|---|---|---|---|---|---|
Hip Abduction/Adduction | 1/7 | 90° | L1 | 0 | θ1/θ7 | −30~40° |
Hip External/Internal Rotation | 2/8 | −90° | Lw | 0 | θ2/θ8 | −22~30° |
Hip Flexion/Extension | 3/9 | 90° | 0 | L2 | θ3/θ9 | −40~15° |
Knee Flexion/Extension | 4/10 | 0° | Lu | 0 | θ4/θ10 | −3~70° |
Ankle Dorsiflexion/Plantar flexion | 5/11 | 0° | Ld | 0 | θ5/θ11 | −36~40° |
Ankle Eversion/Inversion | 6/12 | 90° | 0 | 0 | θ6/θ12 | −25~20° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yin, M.; Chen, X.; Wu, X. Structural Design and Experimental Analysis of the Self-Balancing Lower Limb Exoskeleton Robot. Machines 2024, 12, 692. https://doi.org/10.3390/machines12100692
Li M, Yin M, Chen X, Wu X. Structural Design and Experimental Analysis of the Self-Balancing Lower Limb Exoskeleton Robot. Machines. 2024; 12(10):692. https://doi.org/10.3390/machines12100692
Chicago/Turabian StyleLi, Ming, Meng Yin, Xu Chen, and Xinyu Wu. 2024. "Structural Design and Experimental Analysis of the Self-Balancing Lower Limb Exoskeleton Robot" Machines 12, no. 10: 692. https://doi.org/10.3390/machines12100692
APA StyleLi, M., Yin, M., Chen, X., & Wu, X. (2024). Structural Design and Experimental Analysis of the Self-Balancing Lower Limb Exoskeleton Robot. Machines, 12(10), 692. https://doi.org/10.3390/machines12100692