Spline-Based Optimal Trajectory Generation for Autonomous Excavator
Abstract
:1. Introduction
- A method of finding topologically equivalent waypoints around the teaching excavation motion of a skilled operator;
- A spline-based trajectory optimization framework for generating optimal time-jerk optimality and satisfying kinodynamic feasibility;
- The sensing system, trajectory generation framework and control model are integrated into the autonomous excavator platform, and the aggressive excavation motion is presented in a field test.
2. Related Work
3. Manual Excavation Model
3.1. System Architecture
3.2. Excavator Kinematics
3.3. Manual Excavation Modeling and Waypoint Finding
3.3.1. Manual Excavation Modeling
3.3.2. Waypoint Finding
4. Spline-Based Trajectory Optimization
4.1. Problem Formulation
4.2. Spline Parameterization of Excavation Trajectory
4.3. Execution of the Algorithm
- Start from the given waypoints, the kinodynamic limits and maximum time of excavation;
- Find a suitable initial solution using Equations (21)–(28);
- Choose the appropriate solver and the corresponding optimization algorithm. In this research, SQP (sequential quadratic programming) [33], which tackles nonlinear programming problems by iteratively and locally approximating the original problem with a sequence of quadratic optimization subproblems, was utilized;
- Put the objective function, Equation (12), and constraints, Equations (14), (18) and (19), into the solver;
- Finally, obtain the solution to the optimization problem and trajectory sequence.
5. Results
5.1. Implementation Details
5.2. Field Test
6. Conclusions
- In this paper, the waypoints used for optimal trajectory generation were obtained by combining a manual excavation model with trajectory topology information using the excavation trajectories of skilled operators;
- These waypoints were iteratively optimized in a nonlinear optimization framework to generate fast, smooth and efficient excavation motions while satisfying kinodynamic feasibility constraints;
- A comparison experiment between autonomous excavation and manual excavation highlights the superiority of this method in aggressiveness.
- To add reactive local replanning to the current framework to handle a dynamic excavation environment. In this way, the generated repetitive trajectory will be used as a reference trajectory for the autonomous excavator. Then, the autonomous excavator will track the reference trajectory and avoid the problem of changes in trench size through local trajectory planning;
- Combine the excavation volume constraint, and transform it into a constraint of the trajectory optimization problem. Then, a full excavation bucket will be achieved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Melenbrink, N.; Werfel, J.; Menges, A. On-site autonomous construction robots: Towards unsupervised building. Autom. Constr. 2020, 119, 103312. [Google Scholar] [CrossRef]
- Du, Y.; Dorneich, M.C.; Steward, B. Virtual operator modeling method for excavator trenching. Autom. Constr. 2016, 70, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Sing, S. Synthesis of Tactical Plans for Robotic Excavation; Carnegie Mellon University: Pittsburgh, PA, USA, 1995. [Google Scholar]
- Bradley, D.A.; Seward, D.W. Developing real-time autonomous excavation-the LUCIE story. In Proceedings of the 1995 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, 13–15 December 1995; pp. 3028–3033. [Google Scholar]
- Stentz, A.; Bares, J.; Singh, S.; Rowe, P. A robotic excavator for autonomous truck loading. Auton. Robot. 1999, 7, 175–186. [Google Scholar] [CrossRef]
- Sakaida, Y.; Chugo, D.; Kawabata, K.; Kaetsu, H.; Asama, H. The analysis of excavator operation by skillful operator. In Proceedings of the 23rd International Symposium on Automation and Robotics in Construction, Tokyo, Japan, 3–5 October 2006; pp. 543–547. [Google Scholar]
- Sakaida, Y.; Chugo, D.; Yamamoto, H.; Asama, H. The analysis of excavator operation by skillful operator-extraction of common skills-. In Proceedings of the 2008 SICE Annual Conference, Chofu, Japan, 20–22 August 2008; pp. 538–542. [Google Scholar]
- Zhang, Y.; Sun, Z.; Sun, Q.; Wang, Y.; Li, X.; Yang, J. Time-jerk optimal trajectory planning of hydraulic robotic excavator. Adv. Mech. Eng. 2021, 13, 16878140211034611. [Google Scholar] [CrossRef]
- Kim, Y.B.; Ha, J.; Kang, H.; Kim, P.Y.; Park, J.; Park, F.C. Dynamically optimal trajectories for earthmoving excavators. Autom. Constr. 2013, 35, 568–578. [Google Scholar] [CrossRef]
- Yang, Y.; Long, P.; Song, X.; Pan, J.; Zhang, L. Optimization-based framework for excavation trajectory generation. IEEE Robot. Autom. Lett. 2021, 6, 1479–1486. [Google Scholar] [CrossRef]
- Gao, F.; Wang, L.; Wang, K.; Wu, W.; Zhou, B.; Han, L.; Shen, S. Optimal trajectory generation for quadrotor teach-and-repeat. IEEE Robot. Autom. Lett. 2019, 4, 1493–1500. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Yamamoto, H. Motion analysis of hydraulic excavator in excavating and loading work for autonomous control. In Proceedings of the 23rd International Symposium on Automation and Robotics in Construction, Tokyo, Japan, 3–5 October 2006; pp. 602–607. [Google Scholar]
- Shao, H.; Yamamoto, H.; Sakaida, Y.; Yamaguchi, T.; Yanagisawa, Y.; Nozue, A. Automatic excavation planning of hydraulic excavator. In Proceedings of the International Conference on Intelligent Robotics and Applications, Wuhan, China, 15–17 October 2008; pp. 1201–1211. [Google Scholar]
- Koiwai, K.; Yamamoto, T.; Nanjo, T.; Yamazaki, Y.; Fujimoto, Y. Data-driven human skill evaluation for excavator operation. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 482–487. [Google Scholar]
- Sekizuka, R.; Ito, M.; Saiki, S.; Yamazaki, Y.; Kurita, Y. Evaluation system for hydraulic excavator operation skill using remote controlled excavator and virtual reality. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 3229–3234. [Google Scholar]
- Du, Y.; Dorneich, M.C.; Steward, B. Modeling expertise and adaptability in virtual operator models. Autom. Constr. 2018, 90, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.; Park, C.-G.; You, S.-H.; Lim, B. A dynamics-based optimal trajectory generation for controlling an automated excavator. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2010, 224, 2109–2119. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, J.; Pang, X. Task space-based dynamic trajectory planning for digging process of a hydraulic excavator with the integration of soil–bucket interaction. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2019, 233, 598–616. [Google Scholar] [CrossRef]
- Guan, C.; Wang, F.; Zhang, D.-y. NURBS-based time-optimal trajectory planning on robotic excavators. J. Jilin Univ. (Eng. Technol. Ed.) 2015, 45, 540–546. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Y.; Li, H.; Sun, Q.; Wang, Y. Time optimal trajectory planning of excavator. J. Mech. Eng. 2019, 55, 166–174. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, J.; Long, P.; Song, X.; Zhang, L. Time variable minimum torque trajectory optimization for autonomous excavator. arXiv 2020, arXiv:2006.00811. [Google Scholar] [CrossRef]
- Wind, H.; Renner, A.; Bender, F.A.; Sawodny, O. Trajectory generation for a hydraulic mini excavator using nonlinear model predictive control. In Proceedings of the 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020; pp. 107–112. [Google Scholar]
- Lee, D.; Jang, I.; Byun, J.; Seo, H.; Kim, H.J. Real-time motion planning of a hydraulic excavator using trajectory optimization and model predictive control. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 2135–2142. [Google Scholar]
- Son, B.; Kim, C.; Kim, C.; Lee, D. Expert-emulating excavation trajectory planning for autonomous robotic industrial excavator. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2021; pp. 2656–2662. [Google Scholar]
- Jud, D.; Hottiger, G.; Leemann, P.; Hutter, M. Planning and control for autonomous excavation. IEEE Robot. Autom. Lett. 2017, 2, 2151–2158. [Google Scholar] [CrossRef]
- Jud, D.; Leemann, P.; Kerscher, S.; Hutter, M. Autonomous free-form trenching using a walking excavator. IEEE Robot. Autom. Lett. 2019, 4, 3208–3215. [Google Scholar] [CrossRef] [Green Version]
- Jelavic, E.; Berdou, Y.; Jud, D.; Kerscher, S.; Hutter, M. Terrain-adaptive planning and control of complex motions for walking excavators. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2021; pp. 2684–2691. [Google Scholar]
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control, 1st ed.; Springer: London, UK, 2009; p. 632. [Google Scholar] [CrossRef]
- Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles Algorithms and Applications, 4th ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2007; p. 1104. [Google Scholar]
- Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartogr.Int. J. Geogr. Inf. Geovisualization 1973, 10, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Chang, P.; Luh, J. Formulation and optimization of cubic polynomial joint trajectories for industrial robots. IEEE Trans. Autom. Control 1983, 28, 1066–1074. [Google Scholar] [CrossRef]
- Gasparetto, A.; Zanotto, V. A technique for time-jerk optimal planning of robot trajectories. Robot. Comput. Integr. Manuf. 2008, 24, 415–426. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer: New York, NY, USA, 2006; p. 664. [Google Scholar] [CrossRef] [Green Version]
i | di (mm) | ai (mm) | αi (°) | θi (°) |
---|---|---|---|---|
1 | 1125 | 860 | 90 | [−180, 180] |
2 | 0 | 2845 | 0 | [−60, 65] |
3 | 0 | 1495 | 0 | [−15, −25] |
4 | 0 | 835 | 0 | [−135, 40] |
Constraints | Swing | Boom | Stick | Bucket |
---|---|---|---|---|
Velocity (°/s) | 70 | 45 | 50 | 90 |
Acceleration (°/s2) | 160 | 140 | 135 | 135 |
Operation Mode | Standard Deviation | Time | ||
---|---|---|---|---|
Boom | Stick | Bucket | ||
Manual | 9.1591 | 9.1110 | 30.0052 | 83.2 |
Autonomous | 8.8264 | 10.3288 | 33.9250 | 80.4 |
Operation Mode | Standard Deviation | Maximum Absolute Pressure | ||||
---|---|---|---|---|---|---|
Boom | Stick | Bucket | Boom | Stick | Bucket | |
Manual | 4.6216 | 5.5551 | 5.0018 | 17 | 26.4 | 17.4 |
Autonomous | 7.2873 | 8.1524 | 6.6024 | 18.6 | 27.2 | 18.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Hu, Y.; Liu, C.; Tian, M.; Xia, X. Spline-Based Optimal Trajectory Generation for Autonomous Excavator. Machines 2022, 10, 538. https://doi.org/10.3390/machines10070538
Zhao J, Hu Y, Liu C, Tian M, Xia X. Spline-Based Optimal Trajectory Generation for Autonomous Excavator. Machines. 2022; 10(7):538. https://doi.org/10.3390/machines10070538
Chicago/Turabian StyleZhao, Jiangying, Yongbiao Hu, Chengshuo Liu, Mingrui Tian, and Xiaohua Xia. 2022. "Spline-Based Optimal Trajectory Generation for Autonomous Excavator" Machines 10, no. 7: 538. https://doi.org/10.3390/machines10070538
APA StyleZhao, J., Hu, Y., Liu, C., Tian, M., & Xia, X. (2022). Spline-Based Optimal Trajectory Generation for Autonomous Excavator. Machines, 10(7), 538. https://doi.org/10.3390/machines10070538