Next Article in Journal
Small Area Estimation under Poisson–Dirichlet Process Mixture Models
Next Article in Special Issue
Uncertainty Degradation Model for Initiating Explosive Devices Based on Uncertain Differential Equations
Previous Article in Journal
Monogenity and Power Integral Bases: Recent Developments
Previous Article in Special Issue
Blow-Up Analysis of L2-Norm Solutions for an Elliptic Equation with a Varying Nonlocal Term
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Study of Structural Stability on the Bidispersive Flow in a Semi-Infinite Cylinder

School of Data Science, Guangzhou Huashang College, Guangzhou 511300, China
Axioms 2024, 13(7), 431; https://doi.org/10.3390/axioms13070431
Submission received: 24 May 2024 / Revised: 13 June 2024 / Accepted: 20 June 2024 / Published: 27 June 2024
(This article belongs to the Special Issue Advances in Differential Equations and Its Applications)

Abstract

:
We consider the bidispersive flow with nonlinear boundary conditions in a bounded region. By using the differential inequality technique, we get the bound for the L 4 -norm of the salinity which plays an important role. The continuous dependence and the convergence results on the Soret coefficient are established.

1. Introduction

In recent years, the stability of bidispersive porous medium has attracted extensive attention of scholars. One of the reasons why scholars did this is due to the important applications of bidispersive porous medium in many real life problems (see [1,2,3,4,5,6,7,8,9]).
Franchi et al. [10] considered a bidispersive medium diffusion model
μ u i + p , i + a ( u i v i ) = g i T , u i , i = 0 ,
ν v i + q , i a ( u i v i ) = g i T , v i , i = 0 ,
T , t Δ T + α ( u i + v i ) T , i = 0 ,
where u i , v i are the fluid velocities, T is the temperature, p , q are the pressures, a is the interaction coefficient and g i is the gravity function. α and μ , ν denote the thermal expansion coefficient and the dynamic viscosities of the saturated fluid, respectively. In (1)–(3) and the whole paper, the comma is used to indicate partial differentiation and the usual summation convection is employed, with repeated Latin subscripts summed from 1 to 3, e.g., u i , j u i , j = i , j = 1 3 u i x j 2 . We also use the summation convention summed from 1 to 2, e.g., u α , β u α , β = α , β = 1 2 u α x β 2 .
When we use models to simulate physical phenomena, errors are inevitably generated. The so-called structural stability is to study whether these errors will have a significant impact on the solution of the model. The study of bidispersive porous medium has attracted the attention of many researchers. The continuous dependence of the solution to (1)–(3) on the interaction coefficient, the viscosity coefficients and the radiation constant was established by Franchi et al. [10]. In another paper, Franchi et al. [11] developed a Brinkman theory for the bidispersive porous medium flow, where both salt and temperature field effects are present. Li et al. [12] further considered the structural stability of (1.1) in an infinite region. More results about structure stability of saturated porous medium can be found in [13,14,15,16,17,18,19,20,21,22,23,24,25,26].
In this paper, we consider a class of bidisperse porus media with salinity and temperature effects. Due to temperature gradient may directly influence salt concentration, we also consider Soret effect. The model can be written as
μ u i + p , i + a ( u i v i ) = g i T + h i C , u i , i = 0 , in Ω × ( 0 , τ ) ,
ν v i + q , i a ( u i v i ) = g i T + h i C , v i , i = 0 , in Ω × ( 0 , τ ) ,
T , t Δ T + α ( u i + v i ) T , i = 0 , in Ω × ( 0 , τ ) ,
C , t Δ C + α ( u i + v i ) C , i = σ Δ T , in Ω × ( 0 , τ ) ,
where C is the concentration of salt, h i is the gravity function and σ is the Soret coefficient. μ ˜ is the Brinkman viscosity coefficient. Without losing generality, we assume g i g i , h i h i 1 and μ = ν = 1 . The Soret effect is when a temperature gradient induces a change in solute concentration. This leads to complications in the ensuing stability analysis. To derive the continuous dependence on the Soret coefficient, we assume that the solutions to (4)–(7) satisfy
u i n i = v i n i = 0 , T = f 1 ( x , t ) , C = f 2 ( x , t ) , on Ω × ( 0 , τ ) ,
T ( x , 0 ) = T 0 ( x ) , C ( x , 0 ) = C 0 ( x ) , in Ω ,
where f 1 , f 2 and T 0 , C 0 are given functions greater than zero.
The main objective of this article is to investigate the structural stability of Equations (4)–(7) under different boundary conditions. We will use differential inequality technology to derive a prior estimates of the solution to Equations (4)–(7). Then, we use the “energy” method to establish the continuous dependence and the convergence result of the solution on Soret coefficient. Because we have considered the effect of Soret, the result derived by [27] no longer holds for C. We have to seek the bound of | | C | | 4 which will be derived in the next section.

2. Bound of | | C | | 4

By using the method of Liu et al. [27], we can obtain the following lemmas.
Lemma 1. 
(see (2.11) and (2.40) in [27]) Assuming that f 1 , f 2 L ( Ω × [ 0 , τ ] ) and T 0 L ( Ω ) , then
sup [ 0 , τ ] | | T | | T M ,
and
0 t Ω T , i T , i d x d η m 1 ( t ) ,
where   T M = max | | f 1 | | , | | T 0 | |   and   m 1 ( t )   is a positive function.
Next, we want to derive the L 4 -norm of C by using the Lemma 1.
Letting that C is a solution to
C t + ( u i + v i ) C , i = Δ C , in Ω × ( 0 , τ ) ,
C = f 2 ( x , t ) , on Ω × ( 0 , τ ) ,
C ( x , 0 ) = C 0 ( x ) , in Ω .
Then, we have
Ω C 2 d x Ω ( C C ) 2 d x + Ω C 2 d x ,
Ω C 4 d x Ω ( C C ) 4 d x + Ω C 4 d x .
For C , we can get the similar results to Lemma 1
sup [ 0 , τ ] | | C | | C M , 0 t Ω C , i C , i d x d η m 2 ( t )
where C M = max | | f 2 | | , | | C 0 | | and m 2 ( t ) is a positive function. Therefore, using (11), we have
Ω C 4 d x C M 4 | Ω | ,
where | Ω | is the measure of Ω . Combining (7), (8), (9), (10), (11) and (12), we can obtain that C C satisfies the following equations
( C C ) t + ( u i + v i ) ( C C ) , i = σ Δ T + Δ ( C C ) , in Ω × ( 0 , τ ) ,
( C C ) ( x , t ) = 0 , on Ω × ( 0 , τ ) ,
( C C ) ( x , 0 ) = 0 , in Ω .
Using (17)–(19), the Young inequality and Lemma 1, we obtain
1 4 d d t Ω ( C C ) 4 d x = 3 Ω ( C C ) , i ( C C ) 2 ( C C ) , i d x 3 σ Ω T , i ( C C ) 2 ( C C ) , i d x = 3 Ω ( C C ) 2 ( C C ) , i ( C C ) , i d x + 3 σ Ω T ( C C ) ( C C ) , i ( C C ) , i d x 3 σ Ω ( C C ) T , i + T ( C C ) , i ( C C ) ( C C ) , i d x 3 3 2 σ ε 1 3 2 σ ε 2 Ω ( C C ) , i ( C C ) 2 ( C C ) , i d x + 3 2 ε 1 σ Ω T ( C C ) , i + ( C C ) T , i T ( C C ) , i + ( C C ) T , i d x + 3 2 ε 2 σ T M 2 Ω ( C C ) , i ( C C ) , i d x ,
where ε 1 and ε 2 are positive constants. To bound the last term on the right of (20), using (6) and (17), we compute
1 2 d d t Ω T 2 ( C C ) 2 d x = Ω T T t ( C C ) 2 d x + Ω T 2 ( C C ) ( C C ) t d x = Ω T Δ T ( u i + v i ) T , i ( C C ) 2 d x + Ω T 2 ( C C ) σ Δ T + Δ ( C C ) ( u i + v i ) ( C C ) , i d x = Ω T ( C C ) , i + ( C C ) T , i T ( C C ) , i + ( C C ) T , i d x 2 Ω T ( C C ) , i T , i ( C C ) d x + σ Ω T 2 T , i ( C C ) , i d x 2 σ Ω T T , i T ( C C ) , i + ( C C ) T , i d x σ ε 4 1 Ω T ( C C ) , i + ( C C ) T , i T ( C C ) , i + ( C C ) T , i d x + ε 3 Ω ( C C ) 2 ( C C ) , i ( C C ) , i d x + 1 ε 3 + 1 + 1 ε 4 σ T M 2 Ω T , i T , i d x + σ T M 2 Ω ( C C ) , i ( C C ) , i d x ,
where ε 3 and ε 4 are positive constants. Choosing ε 1 = ε 2 = ε 4 = 1 2 σ and ε 3 = 1 4 σ 4 and combining (20) and (21),
d d t Ω ( C C ) 4 d x + 12 σ 2 Ω T 2 ( C C ) 2 d x 6 ε 2 + 12 σ 3 σ T M 2 Ω ( C C ) , i ( C C ) , i d x + 12 σ 3 1 ε 3 + 1 + 1 ε 4 T M 2 Ω T , i T , i d x .
Integrating (22) from 0 to t, we obtain
Ω ( C C ) 4 d x + 12 σ 2 Ω T 2 ( C C ) 2 d x 6 ε 2 + 12 σ 3 σ T M 2 0 t Ω ( C C ) , i ( C C ) , i d x d η + 12 σ 3 1 ε 3 + 1 + 1 ε 4 T M 2 0 t Ω T , i T , i d x d η .
Using (17)–(19), we have
1 2 d d t Ω ( C C ) 2 d x = Ω ( C C ) , i ( C C ) , i d x σ Ω T , i ( C C ) , i d x 1 2 Ω ( C C ) , i ( C C ) , i d x + σ 2 2 Ω T , i T , i d x .
Integrating (24) from 0 to t and using Lemma 1, we obtain
Ω ( C C ) 2 d x + 0 t Ω ( C C ) , i ( C C ) , i d x d η σ 2 m 1 ( t ) .
Inserting (25) into (23) and using Lemma 1, we obtain
Ω ( C C ) 4 d x 6 ε 2 + 12 σ 3 σ T M 2 σ 2 m 1 ( t ) + 12 σ 3 1 ε 3 + 1 + 1 ε 4 T M 2 m 2 ( t ) .
Inserting (26) and (16) into (14), we obtain
Ω C 4 d x 6 ε 2 + 12 σ 3 σ T M 2 σ 2 m 1 ( t ) + 12 σ 3 1 ε 3 + 1 + 1 ε 4 T M 2 m 2 ( t ) + C M 2 | Ω | n 1 ( t ) .

3. Continuous Dependence Result

Assuming that ( u i , v i , T , C , p , q ) and ( u i * , v i * , T * , C * , p * , q * ) are solutions of (4)–(7) under the initial-boundary conditions (8) and (9), but with different Soret coefficients σ 1 and σ 2 . If we let
w i = u i u i * , r i = v i v i * , Σ 1 = T T * , Σ 2 = C C * , π 1 = p p * , π 2 = q q * , σ = σ 1 σ 2 ,
then ( w i , r i , Σ 1 , Σ 2 , π 1 , π 2 ) satisfies
w i + a ( w i r i ) = π 1 , i + g i Σ 1 + h i Σ 2 , w i , i = 0 , in Ω × ( 0 , τ ) ,
r i a ( w i r i ) = π 2 , i + g i Σ 1 + h i Σ 2 , r i , i = 0 , in Ω × ( 0 , τ ) ,
Σ 1 , t Δ Σ 1 + α ( u i + v i ) Σ 1 , i + α ( w i + r i ) T , i * = 0 , in Ω × ( 0 , τ ) ,
Σ 2 , t Δ Σ 2 + α ( u i + v i ) Σ 2 , i + α ( w i + r i ) C , i * = σ Δ T + σ 2 Δ Σ 1 , in Ω × ( 0 , τ ) ,
w i n i = r i n i = 0 , Σ 1 = Σ 2 = 0 , on Ω × ( 0 , τ ) ,
Σ 1 ( x , 0 ) = Σ 2 ( x , 0 ) = 0 , in Ω .
We can obtain the following theorem.
Theorem 1. 
Let ( w i , r i , Σ 1 , Σ 2 , π 1 , π 2 ) be solution to (28)–(33). If f 1 , f 2 L ( Ω × [ 0 , τ ] ) and C 0 , T 0 L ( Ω ) , then
u i u i * , v i v i * , T T * , C C * , a s σ 1 σ 2 .
Specifically,
Ω Γ Σ 1 2 + Σ 2 2 d x L 1 ( t ) σ 2 , Ω w i w i + r i r i + 2 a ( w i r i ) ( w i r i ) d x L 2 ( t ) σ 2 ,
where L 1 ( t ) and L 2 ( t ) are positive functions.
Proof. 
By multiplying (28) and (29) by w i and r i , respectively, and integrating by parts in Ω we have
Ω w i w i + a ( w i r i ) + π 1 , i g i Σ 1 h i Σ 2 d x = 0 , Ω r i r i a ( w i r i ) + π 2 , i g i Σ 1 h i Σ 2 d x = 0 .
Therefore, we obtain
Ω [ w i w i + r i r i + a ( w i r i ) ( w i r i ) ] d x = Ω w i g i Σ 1 + h i Σ 2 d x + Ω r i g i Σ 1 + h i Σ 2 d x 1 2 Ω w i w i + r i r i d x + 2 Ω Σ 1 2 + Σ 2 2 d x .
Using the Hölder inequality, we have from (34)
Ω [ w i w i + r i r i + 2 a ( w i r i ) ( w i r i ) ] d x 4 Ω Σ 1 2 + Σ 2 2 d x .
Multiplying (30) by Σ 1 , integrating in Ω and using Lemma 1, we have
1 2 d d t Ω Σ 1 2 d x + Ω Σ 1 , i Σ 1 , i d x = α Ω ( w i + r i ) T * Σ 1 , i d x α T M Ω ( w i w i + r i r i ) d x 1 2 Ω Σ 1 , i Σ 1 , i d x 1 2 . ϵ 1 Ω Σ 1 , i Σ 1 , i d x + α 2 T M 2 4 ϵ 1 Ω ( w i w i + r i r i ) d x ,
where ϵ 1 is a positive constant.
Multiplying (31) by Σ 2 and integrating in Ω , we have
1 2 d d t Ω Σ 2 2 d x + Ω Σ 2 , i Σ 2 , i d x = α Ω ( w i + r i ) C * Σ 2 , i d x σ 2 Ω Σ 1 , i Σ 2 , i d x σ Ω T , i Σ 2 , i d x σ 2 Ω Σ 1 , i Σ 1 , i d x 1 2 Ω Σ 2 , i Σ 2 , i d x 1 2 + σ Ω T , i T , i d x 1 2 Ω Σ 2 , i Σ 2 , i d x 1 2 + α Ω ( | w | 4 + | r | 4 ) d x 1 4 Ω ( C * ) 4 d x 1 4 Ω Σ 2 , i Σ 2 , i d x 1 2 .
Using (27) and the result given in p674 of Scott [17] (as well as the result derived by Lin and Payne in Appendix B of [28])
Ω ψ 4 d x 1 2 k 1 Ω ψ 2 d x + k 2 Ω ψ 2 d x 1 4 Ω ψ , i ψ , i d x 3 4 , k 1 , k 2 > 0 ,
we have from (37)
1 2 d d t Ω Σ 2 2 d x + Ω Σ 2 , i Σ 2 , i d x 1 4 Ω Σ 2 , i Σ 2 , i d x + 2 α 2 n 1 ( t ) k 1 Ω w i w i d x + k 2 Ω w i w i d x 1 4 Ω w i , j w i , j d x 3 4 + 2 α 2 n 1 ( t ) k 1 Ω r i r i d x + k 2 Ω r i r i d x 1 4 Ω r i , j r i , j d x 3 4 + ϵ 3 Ω Σ 2 , i Σ 2 , i d x + σ 2 2 4 ε 3 Ω Σ 1 , i Σ 1 , i d x + ϵ 4 Ω Σ 2 , i Σ 2 , i d x + σ 2 4 ε 4 Ω T , i T , i d x 1 4 + ϵ 3 + ϵ 4 Ω Σ 2 , i Σ 2 , i d x + σ 2 2 4 ϵ 3 Ω Σ 1 , i Σ 1 , i d x + σ 2 4 ϵ 4 Ω T , i T , i d x + 2 α 2 n 1 ( t ) k 1 + 1 4 ϵ 2 3 k 2 Ω w i w i d x + 3 4 k 2 ϵ 2 Ω w i , j w i , j d x + 2 α 2 n 1 ( t ) k 1 + 1 4 ϵ 2 3 k 2 Ω r i r i d x + 3 4 k 2 ϵ 2 Ω r i , j r i , j d x ,
where ϵ 2 , ϵ 3 and ϵ 4 are positive constants. Combining (36) and (39), we have
1 2 d d t Ω Γ Σ 1 2 + Σ 2 2 d x + Γ Γ ϵ 1 σ 2 2 4 ϵ 3 Ω Σ 1 , i Σ 1 , i d x + 3 4 ϵ 3 ϵ 4 Ω Σ 2 , i Σ 2 , i d x k 3 ( t ) Ω ( w i w i + r i r i ) d x + k 4 ( t ) ϵ 2 Ω ( w i , j w i , j + r i , j r i , j ) d x + σ ˜ 2 4 ϵ 4 Ω T , i T , i d x ,
where k 3 ( t ) = α 2 T M 2 4 ϵ 1 + 2 α 2 n 1 ( t ) k 1 + 1 4 ϵ 2 3 k 2 , k 4 ( t ) = 3 2 k 2 α 2 n 1 ( t ) .
Choosing ϵ 1 = 1 2 , ϵ 3 = ϵ 4 = 1 8 , Γ = 6 σ 2 2 and using (35), we obtain
d d t Ω Γ Σ 1 2 + Σ 2 2 d x + 2 σ 2 2 Ω Σ 1 , i Σ 1 , i d x + Ω Σ 2 , i Σ 2 , i d x 2 k 3 ( t ) max { 1 , 1 Γ } Ω Γ Σ 1 2 + Σ 2 2 d x + 2 k 4 ( t ) ϵ 2 Ω ( w i , j w i , j + r i , j r i , j ) d x + 4 σ 2 Ω T , i T , i d x .
Next, we derive bound of Ω ( w i , j w i , j + r i , j r i , j ) d x . To do this, we follow the methods of [17,28]. Now, we give following identity
Ω w i , j w i , j d x = Ω ( w i , j w j , i ) w i , j d x + Ω w j , i w i , j d x .
We compute
Ω ( w i , j w j , i ) w i , j d x = a Ω ( w i , j r i , j ) ( w j , i r j , i ) w i , j d x + Ω ( g i , j g j , i ) Σ 1 w i , j d x + Ω ( g i Σ 1 , j g j Σ 1 , i ) w i , j d x + Ω ( h i , j h j , i ) Σ 2 w i , j d x Ω ( h i Σ 2 , j h j Σ 2 , i ) w i , j d x .
Using the Hölder inequality and the AG mean inequaity, we obtain from (43)
Ω ( w i , j w j , i ) w i , j d x a Ω ( w i , j r i , j ) ( w j , i r j , i ) w i , j d x + 4 Ω Σ 1 2 d x + 1 4 Ω w i , j w i , j d x + 4 Ω Σ 2 2 d x + 4 Ω Σ 1 , i Σ 1 , i d x + 1 4 Ω w i , j w i , j d x + 4 Ω Σ 2 , i Σ 2 , i d x ,
where we have assumed that | g | , | h | 1 for convenience. Inserting (44) into (42), we obtain
Ω w i , j w i , j d x + 2 a Ω ( w i , j r i , j ) w i , j d x 2 a Ω ( w j , i r j , i ) w i , j d x + 2 Ω w j , i w i , j d x + 8 Ω Σ 1 2 + Σ 2 2 d x + 8 Ω Σ 1 , i Σ 1 , i + Σ 2 , i Σ 2 , i d x .
Similar to (45), we have for Ω r i , j r i , j d x
Ω r i , j r i , j d x 2 a Ω ( w i , j r i , j ) r i , j d x 2 a Ω ( w j , i r j , i ) r i , j d x + 2 Ω r j , i r i , j d x + 8 Ω Σ 1 2 + Σ 2 2 d x + 8 Ω Σ 1 , i Σ 1 , i + Σ 2 , i Σ 2 , i d x .
Combining (45) and (46), we have
Ω ( w i , j w i , j + r i , j r i , j ) d x + 2 a Ω ( w i , j r i , j ) ( w i , j r i , j ) d x 2 a Ω ( w j , i r j , i ) ( w i , j r i , j ) d x + 2 Ω w j , i w i , j d x + 2 Ω r j , i r i , j d x + 16 Ω Σ 1 2 + Σ 2 2 d x + 16 Ω Σ 1 , i Σ 1 , i + Σ 2 , i Σ 2 , i d x .
Lin and Payne [28] have proved that Ω w j , i w i , j d x 0 if Ω is a convex region. if Ω is a non-convex region, we adopt the methods which have been used by Scott [10]. We let ψ i to satisfy that
| ψ i | , | ψ i , j M , i n Ω , ψ i n i ψ 0 > 0 , o n Ω .
We have
ψ 0 Ω w i w i d S Ω ψ j n j w i w i d S = Ω ψ j , j w i w i d x + 2 Ω ψ j w i w i , j d x M 2 Ω w i w i d x + Ω w i , j w i , j d x
In view of (8) and since Ω is a non-convex region, we get
Ω w i , j w j , i d x = Ω w i , j w j n i d S = Ω ( w i n i ) , j w j d S Ω w i n i , j w j d S m Ω w i w i d S .
Combining (48) and (49), we have
Ω w j , i w i , j d x k 5 Ω w i w i d x + k 6 δ 1 Ω w i , j w i , j d x , k 5 , k 6 > 0 ,
if Ω is a non-convex region, where δ 1 is a positive arbitrary constant. Obviously, (49) is also valid for Ω r j , i r i , j d x and Ω ( w j , i r j , i ) ( w i , j r i , j ) d x , i.e.,
Ω r j , i r i , j d x k 5 Ω r i r i d x + k 6 δ 2 Ω r i , j r i , j d x ,
Ω ( w j , i r j , i ) ( w i , j r i , j ) d x k 5 Ω ( w i r i ) ( w i r i ) d x + k 6 δ 3 Ω ( w i , j r i , j ) ( w i , j r i , j ) d x ,
where δ 2 and δ 3 are positive arbitrary constants. Inserting (49)–(51) into (47) and using (35), we have
Ω ( w i , j w i , j + r i , j r i , j ) d x + 2 a Ω ( w i , j r i , j ) ( w i , j r i , j ) d x 4 a k 5 Ω ( w i r i ) ( w i r i ) d x + 4 k 5 Ω w i w i d x + 4 k 5 Ω r i r i d x + 32 Ω Σ 1 2 + Σ 2 2 d x + 32 Ω Σ 1 , i Σ 1 , i + Σ 2 , i Σ 2 , i d x 16 ( k 5 + 2 ) Ω Σ 1 2 + Σ 2 2 d x + 32 Ω Σ 1 , i Σ 1 , i + Σ 2 , i Σ 2 , i d x ,
where we have chosen that δ 1 = δ 2 = δ 3 = 1 4 k 6 . Inserting (52) into (41) and choosing that ϵ 2 min { σ 2 2 32 k 4 , 1 64 k 4 } , we obtain
d d t Ω Γ Σ 1 2 + Σ 2 2 d x k 7 ( t ) Ω Γ Σ 1 2 + Σ 2 2 d x + 4 σ 2 Ω T , i T , i d x ,
where k 7 ( t ) = 2 k 3 + 32 k 4 ϵ 2 ( k 5 + 2 ) max { 1 , 1 Γ } . Integrating (53) from 0 to t and using Lemma 1, we obtain
Ω Γ Σ 1 2 + Σ 2 2 d x 4 σ 2 e 0 t k 7 ( η ) d η 0 t e 0 s k 7 ( η ) d η Ω T , i T , i d x d s 4 σ 2 e 0 t k 7 ( η ) d η 0 t Ω T , i T , i d x d s 4 m 1 ( t ) σ 2 e 0 t k 7 ( η ) d η .
Inserting (54) into (35), we obtain
Ω [ w i w i + r i r i + 2 a ( w i r i ) ( w i r i ) ] d x 16 max { 1 , 1 Γ } m 1 ( t ) σ 2 e 0 t k 7 ( η ) d η .
Choosing
L 1 ( t ) = 4 m 1 ( t ) e 0 t k 7 ( η ) d η , L 2 ( t ) = 16 max { 1 , 1 Γ } m 1 ( t ) e 0 t k 7 ( η ) d η ,
we can complete the proof of Theorem 1. □

4. Convergence Result as σ Tends to Zero

Convergence is to study the trend of solution changes when the parameter of the equation tends zero. It is different from continuous dependence of solution. Franchi et al. [10,11] derived the continuous dependence of the solutions to the double diffusive bidispersive convection. However, there have been no studies on the convergence of solutions to the double diffusive bidispersive convection by scholars. In this section, we study convergence result as σ tends to zero. To do this, we let that ( u i * , v i * , T * , C * , p * , q * ) is the solution to (1)–(9) with σ = 0 , i.e.,
u i * + a ( u i * v i * ) = p , i * + g i T * + h i C * , u i , i * = 0 , in Ω × ( 0 , τ ) ,
v i * a ( u i * v i * ) = q , i * + g i T * + h i C * , v i , i * = 0 , in Ω × ( 0 , τ ) ,
T , t * Δ T * + α ( u i * + v i * ) T , i * = 0 , in Ω × ( 0 , τ ) ,
C , t * Δ C * + α ( u i * + v i * ) C , i * = 0 , in Ω × ( 0 , τ ) ,
u i n i = v i n i = 0 , T = f 1 ( x , t ) , C = f 2 ( x , t ) , on Ω × ( 0 , τ ) ,
T ( x , 0 ) = T 0 ( x ) , C ( x , 0 ) = C 0 ( x ) , in Ω .
Obviously, Lemma 1 is also valid for T * and C * , i.e.,
sup [ 0 , τ ] | T * | T M , sup [ 0 , τ ] | C * | C M ,
where C M = max | | f 2 | | , | | C 0 | | .
If we let
w i = u i u i * , r i = v i v i * , Σ 1 = T T * , Σ 2 = C C * , π 1 = p p * , π 2 = q q * ,
then ( w i , r i , Σ 1 , Σ 2 , π 1 , π 2 ) satisfies
w i + a ( w i r i ) = π 1 , i + g i Σ 1 + h i Σ 2 , w i , i = 0 , in Ω × ( 0 , τ ) ,
r i a ( w i r i ) = π 2 , i + g i Σ 1 + h i Σ 2 , r i , i = 0 , in Ω × ( 0 , τ ) ,
Σ 1 , t Δ Σ 1 + α ( u i + v i ) Σ 1 , i + α ( w i + r i ) T , i * = 0 , in Ω × ( 0 , τ ) ,
Σ 2 , t Δ Σ 2 + α ( u i + v i ) Σ 2 , i + α ( w i + r i ) C , i * = σ Δ T , in Ω × ( 0 , τ ) ,
w i n i = r i n i = 0 , Σ 1 = Σ 2 = 0 , on Ω × ( 0 , τ ) ,
Σ 1 ( x , 0 ) = Σ 2 ( x , 0 ) = 0 , in Ω .
We can have the following result.
Theorem 2. 
Let ( w i , r i , Σ 1 , Σ 2 , π 1 , π 2 ) be solution to (63)–(68). If f 1 , f 2 L ( Ω × [ 0 , τ ] ) and C 0 , T 0 L ( Ω ) , then
u i u i * , v i v i * , T T * , C C * , a s σ 0 .
Specifically,
Ω Σ 1 2 + Σ 2 2 d x L 3 ( t ) σ 2 , Ω w i w i + r i r i + 2 a ( w i r i ) ( w i r i ) d x 4 L 3 ( t ) σ 2 ,
where L 3 ( t ) > 0 is a function.
Proof. 
We multiply (65) by Σ 2 , integrate in Ω and use (62) to have
1 2 d d t Ω Σ 2 2 d x + Ω Σ 2 , i Σ 2 , i d x = α Ω ( w i + r i ) C * Σ 2 , i d x σ Ω T , i Σ 2 , i d x α C M Ω ( w i w i + r i r i ) d x 1 2 Ω Σ 2 , i Σ 2 , i d x 1 2 + σ Ω T , i T , i d x 1 2 Ω Σ 2 , i Σ 2 , i d x 1 2 Ω Σ 2 , i Σ 2 , i d x + 1 2 α 2 C M 2 Ω ( w i w i + r i r i ) d x + 1 2 σ 2 Ω T , i T , i d x ,
where we have used (62).
Therefore, we have
d d t Ω Σ 2 2 d x α 2 C M 2 Ω ( w i w i + r i r i ) d x + σ 2 Ω T , i T , i d x .
Combining (36) and (69), we have
d d t Ω Σ 1 2 + Σ 2 2 d x 1 4 b 1 Ω ( w i w i + r i r i ) d x + σ 2 Ω T , i T , i d x ,
where b 1 = 4 α 2 C M 2 + 2 α 2 T M 2 . Inserting (35) into (70), we have
d d t Ω Σ 1 2 + Σ 2 2 d x b 1 Ω ( Σ 1 2 + Σ 2 2 ) d x + σ 2 Ω T , i T , i d x ,
where we have chosen that ε 1 = 1 .
Integrating (71) from 0 to t and using Lemma 1, from (71), we obtain
Ω Σ 1 2 + Σ 2 2 d x σ 2 e b 1 t m 2 ( t ) .
Inserting (72) into (35), we obtain
Ω w i w i + r i r i + 2 a ( w i r i ) ( w i r i ) d x 4 σ 2 e b 1 t m 2 ( t ) .
Choosing L 3 ( t ) = e b 1 t m 2 ( t ) , we can obtain Theorem 2. □

5. Conclusions

In this article, we consider the bidispersive fluid affected by salinity. On the basis of prior estimation, the continuous dependence of the Soret coefficient is derived. If the region is replaced by a semi-infinite cylinder, considering the influence of the Soret coefficient on the model would be a meaningful topic. Next, we will investigate this issue.

Funding

This research was funded by the Research team project of Guangzhou Huashang College (2021HSKT01).

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Acknowledgments

The authors would like to deeply thank all the reviewers for their insightful and constructive comments.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Olusola, B.K.; Yu, G.; Aguilera, R. The use of electromagnetic mixing rules for petrophysical evaluation of dual and triple-porosity reservoirs. Int. J. Rock Mech. Mining Sci. 2013, 77, 220–236. [Google Scholar] [CrossRef]
  2. Borja, R.L.; Liu, X.; White, J.A. Multiphysics hillslope processes triggering landslides. Acta Geotech. 2012, 7, 261–269. [Google Scholar] [CrossRef]
  3. Pooley, E.J. Centrifuge Modelling of Ground Improvement for Double Porosity Clay. Ph.D. Thesis, ETH Zurich, Institut für Geotechnik, Zürich, Switzerland, 2015. [Google Scholar]
  4. Straughan, B. Mathematical Aspects of Multi-Porosity Continua, Advances in Mechanics and Mathematics; Springer: Berlin/Heidelberg, Germany, 2017; Volume 38. [Google Scholar]
  5. Straughan, B. Convection with Local Thermal Non-Equilibrium and Microfluidic Effects, Advances in Mechanics and Mathematics; Springer: Berlin/Heidelberg, Germany, 2015; Volume 32. [Google Scholar]
  6. Castro, A.; Córdoba, D.; Gancedo, F.; Orive, R. Incompressible flow in porous media with fractional diffusion. Nonlinearity 2008, 22, 1791–1815. [Google Scholar] [CrossRef]
  7. Ramchandraiah, C.; Kishan, N.; Reddy, G.S.; Paidipati, K.K.; Chesneau, C. Double-diffusive convection in bidispersive porous medium with coriolis effect. Math. Comput. Appl. 2022, 27, 56. [Google Scholar] [CrossRef]
  8. Chen, Z.Q.; Cheng, P.; Hsu, C.T. A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media. Int. Commun. Heat Mass Transf. 2000, 27, 601–610. [Google Scholar] [CrossRef]
  9. Chen, Z.Q.; Cheng, P.; Zhao, T.S. An experimental study of two phase flow and boiling heat transfer in bi-disperse porous channels. Int. Commun. Heat Mass Transf. 2000, 27, 293–302. [Google Scholar] [CrossRef]
  10. Franchi, F.; Nibbi, R.; Straughan, B. Continuous dependence on modelling for temperature-dependent bidispersive flow. Proc. R. Soc. A. 2017, 473, 20170485. [Google Scholar] [CrossRef]
  11. Franchi, F.; Nibbi, R.; Straughan, B. Continuous dependence on boundary and Soret coefficients in double diffusive bidispersive convection. Math Meth Appl Sci. 2020, 43, 8882–8893. [Google Scholar] [CrossRef]
  12. Li, Y.F.; Chen, X.J. Structural stability for temperature- dependent bidispersive flow in a semi-infinite pipe. Lith. Math. J. 2023, 63, 337–366. [Google Scholar] [CrossRef]
  13. Li, Y.F.; Xiao, S.Z. Continuous dependence of 2D large scale primitive equations on the boundary conditions. Appl. Math. 2022, 67, 103–124. [Google Scholar] [CrossRef]
  14. Ames, K.A.; Hughes, R.J. Structural stability for ill-posed problems in Banach space. Semigroup Forum 2005, 70, 127–145. [Google Scholar] [CrossRef]
  15. Eltayeb, I.A. Convective instabilities of Maxwell-Cattaneo fluids. Proc. R. Soc. A. 2017, 473, 20160712. [Google Scholar] [CrossRef]
  16. Harfash, A.J. Structural stability for two convection models in a reacting fluid with magnetic field effect. Ann. Henri Poincaré 2014, 15, 2441–2465. [Google Scholar] [CrossRef]
  17. Scott, N.L. Continuous dependence on boundary reaction terms in a porous medium of Darcy type. J. Math. Anal. Appl. 2013, 399, 667–675. [Google Scholar] [CrossRef]
  18. Li, Y.F.; Chen, X.J.; Shi, J.C. Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid. Appl. Math. Optim. 2021, 84, 979–999. [Google Scholar] [CrossRef]
  19. Liu, Y. Continuous dependence for a thermal convection model with temperature dependent solubitity. Appl. Math. Comput. 2017, 308, 18–30. [Google Scholar]
  20. Liu, Y.; Xiao, S.Z. Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain. Nonlinear Anal. Real World Appl. 2018, 42, 308–333. [Google Scholar] [CrossRef]
  21. Liu, Y.; Xiao, S.Z.; Lin, Y.W. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. Math. Comput. Simul. 2018, 150, 66–82. [Google Scholar] [CrossRef]
  22. Chen, W.; Palmieri, A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discret. Contin. Dyn. Syst. 2020, 40, 5513–5540. [Google Scholar] [CrossRef]
  23. Nuchpong, C.; Khoployklang, T.; Ntouyas, S.K.; Tariboon, J. Boundary value problems for Hilfer-Hadamard fractional differential inclusions with nonlocal integro-multi-point boundary conditions. J. Nonlinear Funct. Anal. 2022, 2022, 37. [Google Scholar]
  24. Zvereva, M. A model of deformations of a beam with nonlinear boundary conditions. J. Nonlinear Var. Anal. 2022, 6, 279–298. [Google Scholar]
  25. Chen, W.; Ikehata, R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. J. Differ. Equ. 2021, 292, 176–219. [Google Scholar] [CrossRef]
  26. Varsakelis, C.; Papalexandris, M.V. On the well-posedness of the Darcy-Brinkman-Forchheimer equations for coupled porous media-clear fluid flow. Nonlinearity 2017, 30, 1449–1464. [Google Scholar] [CrossRef]
  27. Liu, Y.; Du, Y.; Lin, C.H. Convergence and continuous dependence results for the Brinkman equations. Appl. Math. Comput. 2010, 215, 4443–4455. [Google Scholar] [CrossRef]
  28. Lin, C.; Payne, L.E. Continuous dependence on the Soret coefficient for double diffusive convection in Darcy flow. J. Math. Anal. Appl. 2008, 342, 311–325. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, Y. A Study of Structural Stability on the Bidispersive Flow in a Semi-Infinite Cylinder. Axioms 2024, 13, 431. https://doi.org/10.3390/axioms13070431

AMA Style

Li Y. A Study of Structural Stability on the Bidispersive Flow in a Semi-Infinite Cylinder. Axioms. 2024; 13(7):431. https://doi.org/10.3390/axioms13070431

Chicago/Turabian Style

Li, Yuanfei. 2024. "A Study of Structural Stability on the Bidispersive Flow in a Semi-Infinite Cylinder" Axioms 13, no. 7: 431. https://doi.org/10.3390/axioms13070431

APA Style

Li, Y. (2024). A Study of Structural Stability on the Bidispersive Flow in a Semi-Infinite Cylinder. Axioms, 13(7), 431. https://doi.org/10.3390/axioms13070431

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop