A Study of Structural Stability on the Bidispersive Flow in a Semi-Infinite Cylinder
Abstract
:1. Introduction
2. Bound of
3. Continuous Dependence Result
4. Convergence Result as Tends to Zero
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olusola, B.K.; Yu, G.; Aguilera, R. The use of electromagnetic mixing rules for petrophysical evaluation of dual and triple-porosity reservoirs. Int. J. Rock Mech. Mining Sci. 2013, 77, 220–236. [Google Scholar] [CrossRef]
- Borja, R.L.; Liu, X.; White, J.A. Multiphysics hillslope processes triggering landslides. Acta Geotech. 2012, 7, 261–269. [Google Scholar] [CrossRef]
- Pooley, E.J. Centrifuge Modelling of Ground Improvement for Double Porosity Clay. Ph.D. Thesis, ETH Zurich, Institut für Geotechnik, Zürich, Switzerland, 2015. [Google Scholar]
- Straughan, B. Mathematical Aspects of Multi-Porosity Continua, Advances in Mechanics and Mathematics; Springer: Berlin/Heidelberg, Germany, 2017; Volume 38. [Google Scholar]
- Straughan, B. Convection with Local Thermal Non-Equilibrium and Microfluidic Effects, Advances in Mechanics and Mathematics; Springer: Berlin/Heidelberg, Germany, 2015; Volume 32. [Google Scholar]
- Castro, A.; Córdoba, D.; Gancedo, F.; Orive, R. Incompressible flow in porous media with fractional diffusion. Nonlinearity 2008, 22, 1791–1815. [Google Scholar] [CrossRef]
- Ramchandraiah, C.; Kishan, N.; Reddy, G.S.; Paidipati, K.K.; Chesneau, C. Double-diffusive convection in bidispersive porous medium with coriolis effect. Math. Comput. Appl. 2022, 27, 56. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Cheng, P.; Hsu, C.T. A theoretical and experimental study on stagnant thermal conductivity of bi-dispersed porous media. Int. Commun. Heat Mass Transf. 2000, 27, 601–610. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Cheng, P.; Zhao, T.S. An experimental study of two phase flow and boiling heat transfer in bi-disperse porous channels. Int. Commun. Heat Mass Transf. 2000, 27, 293–302. [Google Scholar] [CrossRef]
- Franchi, F.; Nibbi, R.; Straughan, B. Continuous dependence on modelling for temperature-dependent bidispersive flow. Proc. R. Soc. A. 2017, 473, 20170485. [Google Scholar] [CrossRef]
- Franchi, F.; Nibbi, R.; Straughan, B. Continuous dependence on boundary and Soret coefficients in double diffusive bidispersive convection. Math Meth Appl Sci. 2020, 43, 8882–8893. [Google Scholar] [CrossRef]
- Li, Y.F.; Chen, X.J. Structural stability for temperature- dependent bidispersive flow in a semi-infinite pipe. Lith. Math. J. 2023, 63, 337–366. [Google Scholar] [CrossRef]
- Li, Y.F.; Xiao, S.Z. Continuous dependence of 2D large scale primitive equations on the boundary conditions. Appl. Math. 2022, 67, 103–124. [Google Scholar] [CrossRef]
- Ames, K.A.; Hughes, R.J. Structural stability for ill-posed problems in Banach space. Semigroup Forum 2005, 70, 127–145. [Google Scholar] [CrossRef]
- Eltayeb, I.A. Convective instabilities of Maxwell-Cattaneo fluids. Proc. R. Soc. A. 2017, 473, 20160712. [Google Scholar] [CrossRef]
- Harfash, A.J. Structural stability for two convection models in a reacting fluid with magnetic field effect. Ann. Henri Poincaré 2014, 15, 2441–2465. [Google Scholar] [CrossRef]
- Scott, N.L. Continuous dependence on boundary reaction terms in a porous medium of Darcy type. J. Math. Anal. Appl. 2013, 399, 667–675. [Google Scholar] [CrossRef]
- Li, Y.F.; Chen, X.J.; Shi, J.C. Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid. Appl. Math. Optim. 2021, 84, 979–999. [Google Scholar] [CrossRef]
- Liu, Y. Continuous dependence for a thermal convection model with temperature dependent solubitity. Appl. Math. Comput. 2017, 308, 18–30. [Google Scholar]
- Liu, Y.; Xiao, S.Z. Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain. Nonlinear Anal. Real World Appl. 2018, 42, 308–333. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, S.Z.; Lin, Y.W. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. Math. Comput. Simul. 2018, 150, 66–82. [Google Scholar] [CrossRef]
- Chen, W.; Palmieri, A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discret. Contin. Dyn. Syst. 2020, 40, 5513–5540. [Google Scholar] [CrossRef]
- Nuchpong, C.; Khoployklang, T.; Ntouyas, S.K.; Tariboon, J. Boundary value problems for Hilfer-Hadamard fractional differential inclusions with nonlocal integro-multi-point boundary conditions. J. Nonlinear Funct. Anal. 2022, 2022, 37. [Google Scholar]
- Zvereva, M. A model of deformations of a beam with nonlinear boundary conditions. J. Nonlinear Var. Anal. 2022, 6, 279–298. [Google Scholar]
- Chen, W.; Ikehata, R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. J. Differ. Equ. 2021, 292, 176–219. [Google Scholar] [CrossRef]
- Varsakelis, C.; Papalexandris, M.V. On the well-posedness of the Darcy-Brinkman-Forchheimer equations for coupled porous media-clear fluid flow. Nonlinearity 2017, 30, 1449–1464. [Google Scholar] [CrossRef]
- Liu, Y.; Du, Y.; Lin, C.H. Convergence and continuous dependence results for the Brinkman equations. Appl. Math. Comput. 2010, 215, 4443–4455. [Google Scholar] [CrossRef]
- Lin, C.; Payne, L.E. Continuous dependence on the Soret coefficient for double diffusive convection in Darcy flow. J. Math. Anal. Appl. 2008, 342, 311–325. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y. A Study of Structural Stability on the Bidispersive Flow in a Semi-Infinite Cylinder. Axioms 2024, 13, 431. https://doi.org/10.3390/axioms13070431
Li Y. A Study of Structural Stability on the Bidispersive Flow in a Semi-Infinite Cylinder. Axioms. 2024; 13(7):431. https://doi.org/10.3390/axioms13070431
Chicago/Turabian StyleLi, Yuanfei. 2024. "A Study of Structural Stability on the Bidispersive Flow in a Semi-Infinite Cylinder" Axioms 13, no. 7: 431. https://doi.org/10.3390/axioms13070431
APA StyleLi, Y. (2024). A Study of Structural Stability on the Bidispersive Flow in a Semi-Infinite Cylinder. Axioms, 13(7), 431. https://doi.org/10.3390/axioms13070431