Blow-Up Analysis of L2-Norm Solutions for an Elliptic Equation with a Varying Nonlocal Term
Abstract
:1. Introduction and Main Results
- (c1)
- for and for ;
- (c2)
- for and for ;
- (c3)
- for , for and where is given by (5);
- (c4)
- for , for , and .
2. Existence and Nonexistence Analyses of Minimizers
3. Refined Energy Estimation
4. Proof of Theorems 2 and 3
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alves, C.O.; Corrêa, F.J.S.A.; Ma, T.F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 2005, 49, 85–93. [Google Scholar] [CrossRef]
- Corrêa, F.J.S.A.; Figueiredo, G.M. On an elliptic equation of p-Kirchhoff type via variational methods. Bull. Aust. Math. Soc. 2006, 74, 263–277. [Google Scholar]
- Corrêa, F.J.S.A.; Figueiredo, G.M. On the existence of positive solution for an elliptic equation of Kirchhoff type via Moser iteration method. Bound. Value Probl. 2006, 796, 1–10. [Google Scholar] [CrossRef]
- He, X.M.; Zou, W.M. Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3. J. Differ. Equ. 2012, 2, 1813–1834. [Google Scholar] [CrossRef]
- Bebernos, J.; Lacey, A. Global existence and finite time blow-up for a class of nonlocal parabolic problems. Adv. Diff. Equ. 1997, 2, 927–953. [Google Scholar] [CrossRef]
- Carrier, G.F. On the non-linear vibration problem of the elastic string. Quart. Appl. Math. 1945, 3, 157–165. [Google Scholar] [CrossRef]
- Carrillo, J.A. On a nonlocal elliptic equation with decreasing nonlinearity arising in plasma physics and heat conduction. Nonlinear Anal. 1998, 32, 97–115. [Google Scholar] [CrossRef]
- Caglioti, E.; Lions, P.L.; Maichiori, C.; Pulvirenti, M. A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. Comm. Math. Phy. 1992, 143, 501–525. [Google Scholar] [CrossRef]
- Chabrowski, J. On bi-nonlocal problem for elliptic equations with Neumann boundary conditions. J. Anal. Math. 2018, 134, 303–334. [Google Scholar] [CrossRef]
- Corrêa, F.J.S.A.; Figueiredo, G.M. Existence and multiplicity of nontrivial solutions for a bi-nonlocal equation. Adv. Diff. Equ. 2013, 18, 587–608. [Google Scholar] [CrossRef]
- Mao, A.M.; Wang, W.Q. Signed and sign-changing solutions of bi-nonlocal fourth order elliptic problem. J. Math. Phys. 2019, 60, 051513. [Google Scholar] [CrossRef]
- Tian, G.Q.; Suo, H.M.; C, Y. An Multiple positive solutions for a bi-nonlocal Kirchhoff-Schrödinger-Poisson system with critical growth. Electron. Res. Arch. 2022, 30, 4493–4506. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Zhang, B.L.; Rǎdulescu, V.D. Existence of solutions for a bi-nonlocal fractional p-Kirchhoff type problem. Comput. Math. Appl. 2016, 71, 255–266. [Google Scholar] [CrossRef]
- Gross, E.P. Hydrodynamics of a superfluid condensate. J. Math. Phys. 1963, 4, 195–207. [Google Scholar] [CrossRef]
- Pitaevskii, L.P. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 1961, 13, 451–454. [Google Scholar]
- Bao, W.Z.; Cai, Y.Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Model. 2013, 6, 1–135. [Google Scholar] [CrossRef]
- Dalfovo, F.; Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 1999, 71, 463–512. [Google Scholar] [CrossRef]
- Guo, Y.J.; Liang, W.N.; Li, Y. Existence and uniqueness of constraint minimizers for the planar Schrödinger-Poisson system with logarithmic potentials. J. Differ. Equ. 2023, 369, 299–352. [Google Scholar] [CrossRef]
- Guo, Y.J.; Lin, C.S.; Wei, J.C. Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates. SIAM J. Math. Anal. 2017, 49, 3671–3715. [Google Scholar] [CrossRef]
- Guo, Y.J.; Seiringer, R. On the mass concentration for Bose-Einstein condensates with attactive interactions. Lett. Math. Phys. 2014, 104, 141–156. [Google Scholar] [CrossRef]
- Guo, Y.J.; Wang, Z.Q.; Zeng, X.Y.; Zhou, H.S. Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity 2018, 31, 957–979. [Google Scholar] [CrossRef]
- Guo, Y.J.; Zeng, X.Y.; Zhou, H.S. Energy estimates and symmetry breaking in attactive Bose-Einstein condensates with ring-shaped potentials. Ann. I’nst H. Poincaré Anal. Non Linéaire 2016, 33, 809–828. [Google Scholar]
- Luo, Y.; Zhu, X.C. Mass concentration behavior of Bose-Einstein condensates with attractive interactions in bounded domains. Anal. Appl. 2020, 99, 2414–2427. [Google Scholar] [CrossRef]
- Wang, Q.X.; Zhao, D. Existence and mass concentration of 2D attractive Bose-Einstein condensates with periodic potentials. J. Differ. Equ. 2017, 262, 2684–2704. [Google Scholar] [CrossRef]
- Ye, H.Y. The existence of normalized solutions for L2-critical constrained problems related to Kirchhoff equations. Z. Angew. Math. Phys. 2015, 66, 1483–1497. [Google Scholar] [CrossRef]
- Ye, H.Y. The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations. Math. Methods Appl. Sci. 2015, 38, 2663–2679. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Zhang, Y.M. Existence and uniqueness of normalized solutions for the Kirchhoff equation. Appl. Math. Lett. 2017, 74, 52–59. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zeng, X.Y. Existence and asymptotic behavior of minimizers for the Kirchhoff functional with periodic potentials. J. Math. Anal. Appl. 2022, 507, 125727. [Google Scholar] [CrossRef]
- Guo, H.L.; Zhang, Y.M.; Zhou, H.S. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Commun. Pur. Appl. Anal. 2018, 17, 1875–1897. [Google Scholar] [CrossRef]
- Li, G.B.; Ye, H.Y. On the concentration phenomenon of L2-subcritical constrained minimizers for a class of Kirchhoff equations with potentials. J. Differ. Equ. 2019, 266, 7101–7123. [Google Scholar] [CrossRef]
- Li, Y.H.; Hao, X.C.; Shi, J.P. The existence of constrained minimizers for a class of nonlinear Kirchhoff-Schrödinger equations with doubly critical exponents in dimension four. Nonlinear Anal. 2019, 186, 99–112. [Google Scholar] [CrossRef]
- Zhu, X.C.; Wang, C.J.; Xue, Y.F. Constraint minimizers of Kirchhoff-Schrödinger energy functionals with L2-subcritical perturbation. Mediterr. J. Math. 2021, 18, 224. [Google Scholar] [CrossRef]
- Hu, T.X.; Tang, C.L. Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations. Calc. Var. 2021, 60, 210. [Google Scholar] [CrossRef]
- Kwong, M.K. Uniqueness of positive solutions of Δu-u+up=0 in RN. Arch. Rational Mech. Anal. 1989, 105, 243–266. [Google Scholar] [CrossRef]
- Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry of positive solutions of nonlinear elliptic equations in Rn. Math. Anal. Appl. Part Adv. Math. Suppl. Stud. 1981, 7, 369–402. [Google Scholar]
- Weinstein, M.I. Nonlinear Schrödinger equations and sharp interpolations estimates. Comm. Math. Phys. 1983, 87, 567–576. [Google Scholar] [CrossRef]
- Li, S.; Zhu, X.C. Mass concentration and local uniqueness of ground states for L2-subcritical nonlinear Schrödinger equations. Z. Angew. Math. Phys. 2019, 70, 34. [Google Scholar] [CrossRef]
- Bartsch, T.; Wang, Z.Q. Existence and multiplicity results for some superlinear elliptic problems on RN. Comm. Partial Differ. Equ. 1995, 20, 1725–1741. [Google Scholar] [CrossRef]
- Lions, P.L. The concentration-compactness principle in the caclulus of variations. The locally compact case. II. Ann. Inst H. Poincaré. Anal. Non Linéaire 1984, 1, 223–283. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; He, C. Blow-Up Analysis of L2-Norm Solutions for an Elliptic Equation with a Varying Nonlocal Term. Axioms 2024, 13, 336. https://doi.org/10.3390/axioms13050336
Zhu X, He C. Blow-Up Analysis of L2-Norm Solutions for an Elliptic Equation with a Varying Nonlocal Term. Axioms. 2024; 13(5):336. https://doi.org/10.3390/axioms13050336
Chicago/Turabian StyleZhu, Xincai, and Chunxia He. 2024. "Blow-Up Analysis of L2-Norm Solutions for an Elliptic Equation with a Varying Nonlocal Term" Axioms 13, no. 5: 336. https://doi.org/10.3390/axioms13050336
APA StyleZhu, X., & He, C. (2024). Blow-Up Analysis of L2-Norm Solutions for an Elliptic Equation with a Varying Nonlocal Term. Axioms, 13(5), 336. https://doi.org/10.3390/axioms13050336