Next Article in Journal
Aristotelian Diagrams for the Proportional Quantifier ‘Most’
Next Article in Special Issue
Strong and Δ-Convergence Fixed-Point Theorems Using Noor Iterations
Previous Article in Journal
Modified Gravity Description of Neutron Star in the f(R) Framework
Previous Article in Special Issue
Approximating the Moments of Generalized Gaussian Distributions via Bell’s Polynomials
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination

1
School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
2
School of Engineering, Math & Technology, Navajo Technical University, Crownpoint, NM 87313, USA
3
Department of Mathematics, The University of Jordan, Amman 11942, Jordan
*
Author to whom correspondence should be addressed.
Axioms 2023, 12(3), 235; https://doi.org/10.3390/axioms12030235
Submission received: 1 February 2023 / Revised: 21 February 2023 / Accepted: 21 February 2023 / Published: 23 February 2023

Abstract

:
In the present work, we aim to introduce and investigate a novel comprehensive subclass of normalized analytic bi-univalent functions involving Gegenbauer polynomials and the zero-truncated Poisson distribution. For functions in the aforementioned class, we find upper estimates of the second and third Taylor–Maclaurin coefficients, and then we solve the Fekete–Szegö functional problem. Moreover, by setting the values of the parameters included in our main results, we obtain several links to some of the earlier known findings.

1. Introduction

Let f be an analytic function defined on the open unit disk U = { z C : z < 1 } such that f ( 0 ) = f ( 0 ) 1 = 0 . Thus, f can be written as the following series expansion:
f ( z ) = z + n = 2 a n z n , ( z U ) .
The class of all f functions given by (1) is denoted by A and the class of all f functions in A , which are univalent, is denoted by S (for more details, see [1]; see also some of the recent studies [2,3,4]). It is well known that every f function in the class S has an inverse map f 1 given by
f 1 ( w ) = w a 2 w 2 + ( 2 a 2 2 a 3 ) w 3 ( 5 a 2 3 5 a 2 a 3 + a 4 ) w 4 + .
Given a univalent function f A . If the inverse map f 1 is also univalent, then f is called a bi-univalent function in U . Let Σ denote the class of all bi-univalent functions in U given by (1). For a characterization of the class Σ and some interesting examples of subclasses of the class Σ , see [5,6,7,8,9,10,11].
For any two analytic functions f and g in the class A , we say f ( z ) g ( z ) in U (read f is subordinate to g) if there exists an analytic function ω ( z ) , satisfying ω ( 0 ) = 0 and ω ( z ) < 1 for all z U , such that f ( z ) = g ω ( z ) for all z U . For more details, we refer the reader to [12,13,14,15].
The orthogonal polynomials play a central and important role in many applications in mathematics, physics, and engineering. The set of Gegenbauer polynomials is a general subclass of Jacobi polynomials. For fundamental definitions and some important properties, the readers are referred to [16,17,18,19], and for neoteric investigations that connect geometric function theory with the classical orthogonal polynomials, see [20,21,22,23,24,25,26,27,28,29].
Given α > 1 2 . The Gegenbauer polynomials C n α ( x ) for n = 2 , 3 , are constructed by the next recurrence relation.
C 0 α ( x ) = 1 ; C 1 α ( x ) = 2 α x ; C n α ( x ) = 1 n 2 x α + n 1 C n 1 α ( x ) 2 α + n 2 C n 2 α ( x ) .
Herein, we will use the following Gegenbauer polynomials:
C 0 α ( x ) = 1 ; C 1 α ( x ) = 2 α x ; C 2 α ( x ) = 2 α 1 + α x 2 α .
Special cases of Gegenbauer polynomials are Legendre polynomials P n ( x ) = C n 1 2 ( x ) ( α = 1 2 ) and Chebyshev polynomials of the second kind U n ( x ) = C n 1 ( x ) ( α = 1 ).
Gegenbauer polynomials can be generated by
G α ( x , z ) = 1 1 2 x z + z 2 α ,
where x [ 1 , 1 ] and z U . Note that, when x is fixed, the generating function G α is an analytic function in U , and hence, it can be written in the form of the following Taylor–Maclaurin series:
G α ( x , z ) = n = 0 C n α ( x ) z n , z U .
The zero-truncated Poisson distribution has found widespread use in modeling many real-life phenomena that deal only with positive enumeration. Let X be a discrete random variable that obeys the zero-truncated Poisson distribution. The probability density function of X can be written as
P m ( X = s ) = m s e m 1 s ! , s = 1 , 2 , 3 , ,
where m is a positive real number representing the parameter mean.
Recently, Yousef et al. [30] introduced the following power series expansion:
F ( m , z ) : = z + n = 2 m n 1 e m 1 ( n 1 ) ! z n , z U , m > 0 .
Consider the analytic function f given by (1). The problem of finding the best upper estimate of the absolute value of the coefficient functional
Δ η ( f ) = a 3 η a 2 2 = 1 6 f ( 0 ) 3 η 2 f ( 0 ) 2
is called the Fekete–Szegö problem [31]. The solution of this problem is of great interest in the geometric function theory. In the literature, there is a huge amount of results for several classes of functions that deal with the solution of the Fekete–Szegö problem (see, [32,33,34,35,36,37,38,39]).

2. The Class G Σ α ( x , μ , λ , δ )

The aim of this section is to introduce our new comprehensive subclass of normalized analytic bi-univalent functions. Recently, Yousef et al. [40] have introduced a comprehensive subclass M Σ β ( μ , λ , δ ) of normalized analytic bi-univalent functions, which is defined as follows.
Definition 1.
For μ , δ 0 , λ 1 and 0 β < 1 , a function f Σ given by (1) belongs to the class M Σ β ( μ , λ , δ ) if the following inequalities hold true for all z , w U .
R e ( 1 μ ) f ( z ) z λ + μ f ( z ) f ( z ) z λ 1 + δ ζ z f ( z ) > β
and
R e ( 1 μ ) g ( w ) w λ + μ g ( w ) g ( w ) w λ 1 + δ ζ w g ( w ) > β ,
where the function g ( w ) = f 1 ( w ) is defined by (2) and ζ = 2 μ + λ 2 μ + 1 .
Consider the following linear operator
Ψ m : A A
defined by
Ψ m f ( z ) : = F ( m , z ) f ( z ) = z + n = 2 m n 1 e m 1 ( n 1 ) ! a n z n , z U ,
where the character “∗” stands for the Hadamard product of two series.
In the sequel, assume f Σ given by (1), g = f 1 given by (2), G α given by (5), Ψ m defined by (7), x ( 1 2 , 1 ] , μ , δ 0 , λ 1 , and α , m > 0 .
Motivated essentially by the class in Definition 1, we aim in this work to define a novel comprehensive subclass of normalized analytic bi-univalent functions G Σ α ( x , μ , λ , δ ) governed by Gegenbauer polynomials and the zero-truncated Poisson distribution series.
Definition 2.
We say that f G Σ α ( x , μ , λ , δ ) , if the next conditions are verified.
( 1 μ ) Ψ m f ( z ) z λ + μ Ψ m f ( z ) Ψ m f ( z ) z λ 1 + δ ζ z Ψ m f ( z ) G α ( x , z )
and
( 1 μ ) Ψ m g ( w ) w λ + μ Ψ m g ( w ) Ψ m g ( w ) w λ 1 + δ ζ w Ψ m g ( w ) G α ( x , w ) ,
where ζ = 2 μ + λ 2 μ + 1 .
By setting the values of the parameters λ , μ and δ , we establish many new subclasses of the class G Σ α ( x , μ , λ , δ ) , as shown below.
Subclass 1.
We say that f 1 G Σ α ( x , μ , λ ) : = G Σ α ( x , μ , λ , 0 ) , if the next conditions are verified.
( 1 μ ) Ψ m f ( z ) z λ + μ Ψ m f ( z ) Ψ m f ( z ) z λ 1 G α ( x , z )
and
( 1 μ ) Ψ m g ( w ) w λ + μ Ψ m g ( w ) Ψ m g ( w ) w λ 1 G α ( x , w ) ,
where ζ = 2 μ + λ 2 μ + 1 .
Subclass 2.
We say that f 2 G Σ α ( x , μ , δ ) : = G Σ α ( x , μ , 1 , δ ) , if the next conditions are verified.
( 1 μ ) Ψ m f ( z ) z + μ Ψ m f ( z ) + δ z Ψ m f ( z ) G α ( x , z )
and
( 1 μ ) Ψ m g ( w ) w + μ Ψ m g ( w ) + δ w Ψ m g ( w ) G α ( x , w ) .
The above subclass was introduced and studied by Yousef et al. [30].
Subclass 3.
We say that f 3 G Σ α ( x , μ ) : = G Σ α ( x , μ , 1 , 0 ) , if the next conditions are verified.
( 1 μ ) Ψ m f ( z ) z + μ Ψ m f ( z ) G α ( x , z )
and
( 1 μ ) Ψ m g ( w ) w + μ Ψ m g ( w ) G α ( x , w ) .
The above subclass was introduced and studied by Amourah et al. [41].
Subclass 4.
We say that f 4 G Σ α ( x ) : = G Σ α ( x , 1 , 1 , 0 ) , if the next conditions are verified.
Ψ m f ( z ) G α ( x , z )
and
Ψ m g ( w ) G α ( x , w ) .
This work is concerned with finding the upper estimates of the initial Taylor–Maclaurin coefficients ( | a 2 | and | a 3 | ) and the absolute value of the coefficient functional a 3 η a 2 2 of functions belonging to the subclass G Σ α ( x , μ , λ , δ ) . To prove our results, we use the next lemma.
Lemma 1
([42], p. 172). Given ω ( z ) = n = 1 ω n z n . If for all z U we have | ω ( z ) | < 1 , then | ω 1 | 1 and | ω n | 1 | ω 1 | 2 , for n = 2 , 3 , .

3. Main Results

Theorem 1.
If f G Σ α ( x , μ , λ , δ ) , then
a 2 2 α x e m 1 2 x m 2 α ( 2 μ + λ ) ( λ 1 ) + 2 α ( 2 μ + λ + 6 δ ζ ) ( e m 1 ) 2 1 + α μ + λ + 2 δ ζ 2 x 2 + μ + λ + 2 δ ζ 2 ,
and
a 3 4 α 2 x 2 e m 1 2 m 2 μ + λ + 2 δ ζ 2 + 4 α x e m 1 m 2 2 μ + λ + 6 δ ζ .
Proof. 
If f belongs to the class G Σ α ( x , μ , λ , δ ) , then Definition 2 asserts that we can find two analytic functions in U , namely ω and v, satisfy ω ( 0 ) = 0 = v ( 0 ) and for all z , w U : | ω ( z ) | < 1 , | v ( w ) | < 1 , and
( 1 μ ) Ψ m f ( z ) z λ + μ Ψ m f ( z ) Ψ m f ( z ) z λ 1 + δ ζ z Ψ m f ( z ) = G α ( x , ω ( z ) ) ,
and
( 1 μ ) Ψ m g ( w ) w λ + μ Ψ m g ( w ) Ψ m g ( w ) w λ 1 + δ ζ w Ψ m g ( w ) = G α ( x , v ( w ) ) .
From the Equalities (9) and (10), for z , w U we obtain
( 1 μ ) Ψ m f ( z ) z λ + μ Ψ m f ( z ) Ψ m f ( z ) z λ 1 + δ ζ z Ψ m f ( z ) = 1 + C 1 α ( x ) c 1 z + C 1 α ( x ) c 2 + C 2 α ( x ) c 1 2 z 2 + ,
and
( 1 μ ) Ψ m g ( w ) w λ + μ Ψ m g ( w ) Ψ m g ( w ) w λ 1 + δ ζ w Ψ m g ( w ) = 1 + C 1 α ( x ) d 1 w + C 1 α ( x ) d 2 + C 2 α ( x ) d 1 2 w 2 + ,
where
ω ( z ) = j = 1 c j z j , and v ( w ) = j = 1 d j w j .
Referring to Lemma 1, we have
| c j | 1 and | d j | 1 for all j N .
So, from Equations (11) and (12), we obtain
m μ + λ + 2 δ ζ e m 1 a 2 = C 1 α ( x ) c 1 ,
m 2 λ 1 2 μ + λ 2 e m 1 2 a 2 2 + m 2 2 μ + λ + 6 δ ζ 2 e m 1 a 3 = C 1 α ( x ) c 2 + C 2 α ( x ) c 1 2 ,
m μ + λ + 2 δ ζ e m 1 a 2 = C 1 α ( x ) d 1 ,
and
m 2 2 μ + λ 2 e m + λ 3 + 12 δ ζ e m 1 2 e m 1 2 a 2 2 m 2 2 μ + λ + 6 δ ζ 2 e m 1 a 3 = C 1 α ( x ) d 2 + C 2 α ( x ) d 1 2 .
It follows from (15) and (17) that
c 1 = d 1 ,
and
2 m 2 μ + λ + 2 δ ζ 2 e m 1 2 a 2 2 = C 1 α ( x ) 2 c 1 2 + d 1 2 .
Adding (16) and (18) yields
m 2 2 μ + λ ( λ + e m 2 ) + 6 δ ζ ( e m 1 ) e m 1 2 a 2 2 = C 1 α ( x ) c 2 + d 2 + C 2 α ( x ) c 1 2 + d 1 2 .
Substituting the value of c 1 2 + d 1 2 from (20) in the right hand side of (21), we deduce that
λ 1 + ( e m 1 ) 1 + 6 δ ζ ( 2 μ + λ ) 2 μ + λ + 2 δ ζ 2 C 2 α ( x ) ( 2 μ + λ ) C 1 α ( x ) 2 m 2 ( 2 μ + λ ) e m 1 2 a 2 2 = C 1 α ( x ) c 2 + d 2 .
Now, using (4), (14) and (22), we find that (8) holds.
Moreover, if we subtract (18) from (16), we have
m 2 2 μ + λ + 6 δ ζ e m 1 a 3 a 2 2 = C 1 α ( x ) c 2 d 2 + C 2 α ( x ) c 1 2 d 1 2 .
Then, in view of (19) and (20), the Equation (23) becomes
a 3 = e m 1 2 C 1 α ( x ) 2 2 m 2 μ + λ + 2 δ ζ 2 c 1 2 + d 1 2 + e m 1 C 1 α ( x ) m 2 2 μ + λ + 6 δ ζ c 2 d 2 .
Thus, applying (4), we conclude that
a 3 4 α 2 x 2 e m 1 2 m 2 μ + λ + 2 δ ζ 2 + 4 α x e m 1 m 2 2 μ + λ + 6 δ ζ ,
and the proof of the theorem is complete. □
The next result regards the Fekete–Szegö functional problem for functions in the class G Σ α ( x , μ , λ , δ ) .
Theorem 2.
If f G Σ α ( x , μ , λ , δ ) , then
a 3 η a 2 2 4 α x e m 1 m 2 2 μ + λ + 6 δ ζ , if η 1 M , 8 α 2 x 3 e m 1 2 1 η m 2 2 α ( 2 μ + λ ) ( λ 1 ) + ( 2 μ + λ + 6 δ ζ ) ( e m 1 ) 2 1 + α μ + λ + 2 δ ζ 2 x 2 + μ + λ + 2 δ ζ 2 , if η 1 M ,
where
M : = 1 + 2 α x 2 2 μ + λ λ 1 ( 2 ( 1 + α ) x 2 1 ) μ + λ + 2 δ ζ 2 2 α x 2 e m 1 2 μ + λ + 6 δ ζ .
Proof. 
If f lies in the class G Σ α ( x , μ , λ , δ ) , then from (22) and (23) we have
a 3 η a 2 2 = 1 η e m 1 2 C 1 α ( x ) 3 c 2 + d 2 m 2 C 1 α ( x ) 2 2 μ + λ λ 1 + 2 μ + λ + 6 δ ζ ( e m 1 ) 2 C 2 α ( x ) μ + λ + 2 δ ζ 2 + e m 1 C 1 α ( x ) m 2 2 μ + λ + 6 δ ζ c 2 d 2 = C 1 α ( x ) h ( η ) + e m 1 m 2 2 μ + λ + 6 δ ζ c 2 + h ( η ) e m 1 m 2 2 μ + λ + 6 δ ζ d 2 ,
and
h ( η ) = e m 1 2 C 1 α ( x ) 2 1 η m 2 C 1 α ( x ) 2 2 μ + λ λ 1 + 2 μ + λ + 6 δ ζ ( e m 1 ) 2 C 2 α ( x ) μ + λ + 2 δ ζ 2 ,
Then, in view of (4), we conclude that
a 3 η a 2 2 4 α x e m 1 m 2 2 μ + λ + 6 δ ζ , if 0 h ( η ) e m 1 m 2 2 μ + λ + 6 δ ζ , 4 α x h ( η ) , if h ( η ) e m 1 m 2 2 μ + λ + 6 δ ζ ,
which completes the proof of Theorem 2. □

4. Consequences and Corollaries

By referring to the Subclass 1 (considering δ = 0 ), Subclass 2 (considering λ = 1 ), Subclass 3 (considering λ = 1 and δ = 0 ), and Subclass 4 (considering λ = 1 , δ = 0 and μ = 1 ), and from Theorems 1 and 2, we deduce the next consequences, respectively.
Setting δ = 0 , we obtain the following corollary.
Corollary 1.
If f 1 G Σ α ( x , μ , λ ) , then
a 2 2 α x e m 1 2 x m 2 α ( 2 μ + λ ) ( λ 1 ) + 2 α ( 2 μ + λ ) ( e m 1 ) 2 1 + α μ + λ 2 x 2 + μ + λ 2 , a 3 4 α 2 x 2 e m 1 2 m 2 μ + λ 2 + 4 α x e m 1 m 2 2 μ + λ ,
and
a 3 η a 2 2 4 α x e m 1 m 2 2 μ + λ , if η 1 K , 8 α 2 x 3 e m 1 2 1 η m 2 2 α 2 μ + λ ( λ 1 ) + ( e m 1 ) 2 1 + α μ + λ 2 x 2 + μ + λ 2 , if η 1 K ,
where
K : = 1 + 2 α x 2 2 μ + λ λ 1 ( 2 ( 1 + α ) x 2 1 ) μ + λ 2 2 α x 2 e m 1 2 μ + λ .
Next, setting λ = 1 yields the following consequence.
Corollary 2
([30]). If f 2 G Σ α ( x , μ , δ ) , then
a 2 2 α x e m 1 2 x m 2 α 1 + 2 μ + 6 δ e m 1 2 ( 1 + α ) 1 + μ + 2 δ 2 x 2 + 1 + μ + 2 δ 2 , a 3 4 α 2 x 2 e m 1 2 m 2 1 + μ + 2 δ 2 + 4 α x e m 1 m 2 1 + 2 μ + 6 δ ,
and
a 3 η a 2 2 4 α x e m 1 m 2 1 + 2 μ + 6 δ , if η 1 L , 8 α 2 x 3 e m 1 2 1 η m 2 2 α 1 + 2 μ + 6 δ e m 1 2 ( 1 + α ) 1 + μ + 2 δ 2 x 2 + 1 + μ + 2 δ 2 , if η 1 L ,
where
L : = 1 1 + μ + 2 δ 2 2 1 + α x 2 1 2 α x 2 e m 1 1 + 2 μ + 6 δ .
Now, setting λ = 1 and δ = 0 , we have the following consequence.
Corollary 3
([41]). If f 3 G Σ α ( x , μ ) , then
a 2 2 α x e m 1 2 x m 2 α 1 + 2 μ e m 1 2 ( 1 + α ) 1 + μ 2 x 2 + 1 + μ 2 , a 3 4 α 2 x 2 e m 1 2 m 2 1 + μ 2 + 4 α x e m 1 m 2 1 + 2 μ ,
and
a 3 η a 2 2 4 α x e m 1 m 2 1 + 2 μ , if η 1 M , 8 α 2 x 3 e m 1 2 1 η m 2 2 α 1 + 2 μ e m 1 2 ( 1 + α ) ) 1 + μ 2 x 2 + 1 + μ 2 , if η 1 M ,
where
M : = 1 1 + μ 2 2 1 + α x 2 1 2 α x 2 e m 1 1 + 2 μ .
Finally, sitting λ = 1 , δ = 0 , and μ = 1 , we obtain our last consequence.
Corollary 4.
If f 4 G Σ α ( x ) , then
a 2 2 α x e m 1 2 x m 6 α e m 1 8 ( 1 + α ) x 2 + 4 , a 3 α 2 x 2 e m 1 2 m 2 + 4 α x e m 1 3 m 2 ,
and
a 3 η a 2 2 4 α x e m 1 3 m 2 , if η 1 N , 8 α 2 x 3 e m 1 2 1 η m 2 6 α e m 1 8 ( 1 + α ) x 2 + 4 , if η 1 N ,
where
N : = 1 2 2 1 + α x 2 1 3 α x 2 e m 1 .

5. Conclusions

In the current investigation, we have established a new comprehensive subclass G Σ α ( x , μ , λ , δ ) of normalized analytic bi-univalent functions that involve Gegenbauer polynomials and the zero-truncated Poisson distribution series. First, we have provided the best estimates for the first initial Taylor–Maclaurin coefficients, a 2 and a 3 , and then we solved the Fekete–Szegö inequality problem. Moreover, by setting the appropriate values of the parameters δ , λ , and μ , we obtain similar findings for the subclasses 1 G Σ α ( x , μ , λ ) , 2 G Σ α ( x , μ , δ ) , 3 G Σ α ( x , μ ) , and 4 G Σ α ( x ) .
The results presented in the present work will lead to many different results for the subclasses of Legendre polynomials G Σ 1 / 2 ( x , μ , λ , δ ) and Chebyshev polynomials of the second kind G Σ 1 ( x , μ , λ , δ ) .

Author Contributions

Conceptualization, M.I. and F.Y.; methodology, M.I.; validation, M.I., F.Y., M.H.M. and S.S.; formal analysis, F.Y.; investigation, M.I. and F.Y.; writing—original draft preparation, M.I.; writing—review and editing, M.I. and F.Y.; supervision, M.H.M. and S.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No data were used to support this study.

Acknowledgments

A part of the second author’s work was performed while he was visiting New Mexico State University. The authors would like to thank the anonymous referees for their valuable suggestions, their constructive comments have greatly enhanced the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
  2. Altıntaş, O.; Irmak, H.; Owa, S.; Srivastava, H.M. Coefficient Bounds for Some Families of Starlike and Convex Functions of Complex Order. Appl. Math. Lett. 2007, 20, 1218–1222. [Google Scholar] [CrossRef] [Green Version]
  3. Amourah, A.A.; Yousef, F.; Al-Hawary, T.; Darus, M. On H3(p) Hankel Determinant for Certain Subclass of p-Valent Functions. Ital. J. Pure Appl. Math. 2017, 37, 611–618. [Google Scholar]
  4. Baksa, V.; Bandura, A.; Skaskiv, O. Growth Estimates for Analytic Vector-Valued Functions in the Unit Ball Having Bounded L-index in Joint Variables. Constr. Math. Anal. 2020, 3, 9–19. [Google Scholar] [CrossRef]
  5. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain Subclasses of Analytic and Bi-Univalent Functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
  6. Frasin, B.A.; Aouf, M.K. New Subclasses of Bi-Univalent Functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
  7. Magesh, N.; Yamini, J. Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions. Int. Math. Forum 2013, 8, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
  8. Porwal, S.; Darus, M. On a new subclass of bi-univalent functions. J. Egypt. Math. Soc. 2013, 21, 190–193. [Google Scholar] [CrossRef] [Green Version]
  9. Atshan, W.G.; Rahman, I.A.R.; Lupaş, A.A. Some Results of New Subclasses for Bi-Univalent Functions Using Quasi-Subordination. Symmetry 2021, 13, 1653. [Google Scholar] [CrossRef]
  10. Bulut, S. Coefficient Estimates for a Class of Analytic and Bi-univalent Functions. Novi. Sad. J. Math. 2013, 43, 59–65. [Google Scholar]
  11. Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient Bounds for Certain Subclasses of Bi-univalent Function. Abstr. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef] [Green Version]
  12. Miller, S.S.; Mocanu, P.T. Second Order Differential Inequalities in the Complex Plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
  13. Miller, S.S.; Mocanu, P.T. Differential Subordinations and Univalent Functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
  14. Breaz, D.; Orhan, H.; Cotîrlă, L.I.; Arıkan, H. A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator. Axioms 2023, 12, 172. [Google Scholar] [CrossRef]
  15. Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
  16. Agarwal, P.; Agarwal, R.P.; Ruzhansky, M. Special Functions and Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
  17. Doman, B. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
  18. Chihara, T.S. An Introduction to Orthogonal Polynomials; Courier Corporation: Mineola, NY, USA, 2011. [Google Scholar]
  19. Ismail, M.; Ismail, M.E.; van Assche, W. Classical and Quantum Orthogonal Polynomials in One Variable; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
  20. Wanas, A.K. New Families of Bi-univalent Functions Governed by Gegenbauer Polynomials. Ear. J. Math. Sci. 2021, 7, 403–427. [Google Scholar] [CrossRef]
  21. Frasin, B.A.; Yousef, F.; Al-Hawary, T.; Aldawish, I. Application of Generalized Bessel Functions to Classes of Analytic Functions. Afr. Mat. 2021, 32, 431–439. [Google Scholar] [CrossRef]
  22. Ahmad, I.; Ali Shah, S.G.; Hussain, S.; Darus, M.; Ahmad, B. Fekete-Szegö Functional for Bi-univalent Functions Related with Gegenbauer Polynomials. J. Math. 2022, 2022, 2705203. [Google Scholar] [CrossRef]
  23. Murugusundaramoorthy, G.; Bulboacă, T. Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials. Axioms 2022, 11, 92. [Google Scholar] [CrossRef]
  24. Sakar, F.M.; Doğan, E. Problem on Coefficients of Bi-Univalent Function Class Using Chebyshev Polynomials. In Mathematical, Computational Intelligence and Engineering Approaches for Tourism, Agriculture and Healthcare; Srivastava, P., Thakur, S.S., Oros, G.I., AlJarrah, A.A., Laohakosol, V., Eds.; Lecture Notes in Networks and Systems; Springer: Singapore, 2022; Volume 214. [Google Scholar] [CrossRef]
  25. Frasin, B.A.; Al-Hawary, T.; Yousef, F.; Aldawish, I. On Subclasses of Analytic Functions Associated with Struve Functions. Nonlinear Func. Anal. Appl. 2022, 27, 99–110. [Google Scholar] [CrossRef]
  26. Bulut, S.; Magesh, N.; Balaji, V.K. Initial Bounds for Analytic and Bi-Univalent Functions by Means of Chebyshev Polynomials. J. Class. Anal. 2017, 11, 83–89. [Google Scholar] [CrossRef]
  27. Yousef, F.; Alroud, S.; Illafe, M. A Comprehensive Subclass of Bi-Univalent Functions Associated with Chebyshev Polynomials of the Second Kind. Bol. Soc. Mat. Mex. 2020, 26, 329–339. [Google Scholar] [CrossRef] [Green Version]
  28. Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Gegenbauer Polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
  29. Al-Hawary, T.; Aldawish, I.; Frasin, B.A.; Alkam, O.; Yousef, F. Necessary and Sufficient Conditions for Normalized Wright Functions to be in Certain Classes of Analytic Functions. Mathematics 2022, 10, 4693. [Google Scholar] [CrossRef]
  30. Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboacă, T. An Avant-Garde Construction for Subclasses of Analytic Bi-Univalent Functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
  31. Fekete, M.; Szegö, G. Eine Bemerkung űber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
  32. Srivastava, H.M.; Mishra, A.K.; Das, M.K. The Fekete-Szegö Problem for a Subclass of Close-to-Convex Functions. Complex Var. Theory Appl. 2001, 44.2, 145–163. [Google Scholar] [CrossRef]
  33. Illafe, M.; Amourah, A.; Haji Mohd, M. Coefficient Estimates and Fekete-Szegö Functional Inequalities for a Certain Subclass of Analytic and Bi-Univalent Functions. Axioms 2022, 11, 147. [Google Scholar] [CrossRef]
  34. Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete-Szegö Functional Problems for Some Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator. Afr. Mat. 2019, 30, 495–503. [Google Scholar] [CrossRef]
  35. Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. The Fekete-Szegö Functional Problems for Some Subclasses of m-Fold Symmetric Bi-Univalent Functions. J. Math. Inequal. 2016, 10, 1063–1092. [Google Scholar] [CrossRef]
  36. Karthikeyan, K.R.; Murugusundaramoorthy, G. Unified Solution of Initial Coefficients and Fekete-Szegö Problem for Subclasses of Analytic Functions Related to a Conic Region. Afr. Mat. 2022, 33, 44. [Google Scholar] [CrossRef]
  37. Swamy, S.R.; Sailaja, Y. On the Fekete-Szegö Coefficient Functional for Quasi-Subordination Class. Palas. J. Math. 2021, 10, 666–672. [Google Scholar]
  38. Seoudy, T.; Aouf, M.K. Fekete-Szegö Problem for Certain Subclass of Analytic Functions with Complex Order Defined by q-Analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar] [CrossRef]
  39. Mohd, M.H.; Darus, M. Fekete-Szegö problems for quasi-subordination classes. Abstr. Appl. Anal. 2012, 2022, 192956. [Google Scholar]
  40. Yousef, F.; Alroud, S.; Illafe, M. New Subclasses of Analytic and Bi-Univalent Functions Endowed with Coefficient Estimate Problems. Anal. Math. Phys. 2021, 11, 58. [Google Scholar] [CrossRef]
  41. Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
  42. Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Illafe, M.; Yousef, F.; Haji Mohd, M.; Supramaniam, S. Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms 2023, 12, 235. https://doi.org/10.3390/axioms12030235

AMA Style

Illafe M, Yousef F, Haji Mohd M, Supramaniam S. Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms. 2023; 12(3):235. https://doi.org/10.3390/axioms12030235

Chicago/Turabian Style

Illafe, Mohamed, Feras Yousef, Maisarah Haji Mohd, and Shamani Supramaniam. 2023. "Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination" Axioms 12, no. 3: 235. https://doi.org/10.3390/axioms12030235

APA Style

Illafe, M., Yousef, F., Haji Mohd, M., & Supramaniam, S. (2023). Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms, 12(3), 235. https://doi.org/10.3390/axioms12030235

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop