Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination
Abstract
:1. Introduction
2. The Class
3. Main Results
4. Consequences and Corollaries
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Altıntaş, O.; Irmak, H.; Owa, S.; Srivastava, H.M. Coefficient Bounds for Some Families of Starlike and Convex Functions of Complex Order. Appl. Math. Lett. 2007, 20, 1218–1222. [Google Scholar] [CrossRef] [Green Version]
- Amourah, A.A.; Yousef, F.; Al-Hawary, T.; Darus, M. On H3(p) Hankel Determinant for Certain Subclass of p-Valent Functions. Ital. J. Pure Appl. Math. 2017, 37, 611–618. [Google Scholar]
- Baksa, V.; Bandura, A.; Skaskiv, O. Growth Estimates for Analytic Vector-Valued Functions in the Unit Ball Having Bounded L-index in Joint Variables. Constr. Math. Anal. 2020, 3, 9–19. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain Subclasses of Analytic and Bi-Univalent Functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Aouf, M.K. New Subclasses of Bi-Univalent Functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Magesh, N.; Yamini, J. Coefficient Bounds for a Certain Subclass of Bi-Univalent Functions. Int. Math. Forum 2013, 8, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Porwal, S.; Darus, M. On a new subclass of bi-univalent functions. J. Egypt. Math. Soc. 2013, 21, 190–193. [Google Scholar] [CrossRef] [Green Version]
- Atshan, W.G.; Rahman, I.A.R.; Lupaş, A.A. Some Results of New Subclasses for Bi-Univalent Functions Using Quasi-Subordination. Symmetry 2021, 13, 1653. [Google Scholar] [CrossRef]
- Bulut, S. Coefficient Estimates for a Class of Analytic and Bi-univalent Functions. Novi. Sad. J. Math. 2013, 43, 59–65. [Google Scholar]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient Bounds for Certain Subclasses of Bi-univalent Function. Abstr. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Second Order Differential Inequalities in the Complex Plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations and Univalent Functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Breaz, D.; Orhan, H.; Cotîrlă, L.I.; Arıkan, H. A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator. Axioms 2023, 12, 172. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Agarwal, P.; Agarwal, R.P.; Ruzhansky, M. Special Functions and Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Doman, B. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Courier Corporation: Mineola, NY, USA, 2011. [Google Scholar]
- Ismail, M.; Ismail, M.E.; van Assche, W. Classical and Quantum Orthogonal Polynomials in One Variable; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wanas, A.K. New Families of Bi-univalent Functions Governed by Gegenbauer Polynomials. Ear. J. Math. Sci. 2021, 7, 403–427. [Google Scholar] [CrossRef]
- Frasin, B.A.; Yousef, F.; Al-Hawary, T.; Aldawish, I. Application of Generalized Bessel Functions to Classes of Analytic Functions. Afr. Mat. 2021, 32, 431–439. [Google Scholar] [CrossRef]
- Ahmad, I.; Ali Shah, S.G.; Hussain, S.; Darus, M.; Ahmad, B. Fekete-Szegö Functional for Bi-univalent Functions Related with Gegenbauer Polynomials. J. Math. 2022, 2022, 2705203. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Bulboacă, T. Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials. Axioms 2022, 11, 92. [Google Scholar] [CrossRef]
- Sakar, F.M.; Doğan, E. Problem on Coefficients of Bi-Univalent Function Class Using Chebyshev Polynomials. In Mathematical, Computational Intelligence and Engineering Approaches for Tourism, Agriculture and Healthcare; Srivastava, P., Thakur, S.S., Oros, G.I., AlJarrah, A.A., Laohakosol, V., Eds.; Lecture Notes in Networks and Systems; Springer: Singapore, 2022; Volume 214. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F.; Aldawish, I. On Subclasses of Analytic Functions Associated with Struve Functions. Nonlinear Func. Anal. Appl. 2022, 27, 99–110. [Google Scholar] [CrossRef]
- Bulut, S.; Magesh, N.; Balaji, V.K. Initial Bounds for Analytic and Bi-Univalent Functions by Means of Chebyshev Polynomials. J. Class. Anal. 2017, 11, 83–89. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. A Comprehensive Subclass of Bi-Univalent Functions Associated with Chebyshev Polynomials of the Second Kind. Bol. Soc. Mat. Mex. 2020, 26, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Gegenbauer Polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Al-Hawary, T.; Aldawish, I.; Frasin, B.A.; Alkam, O.; Yousef, F. Necessary and Sufficient Conditions for Normalized Wright Functions to be in Certain Classes of Analytic Functions. Mathematics 2022, 10, 4693. [Google Scholar] [CrossRef]
- Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboacă, T. An Avant-Garde Construction for Subclasses of Analytic Bi-Univalent Functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung űber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Das, M.K. The Fekete-Szegö Problem for a Subclass of Close-to-Convex Functions. Complex Var. Theory Appl. 2001, 44.2, 145–163. [Google Scholar] [CrossRef]
- Illafe, M.; Amourah, A.; Haji Mohd, M. Coefficient Estimates and Fekete-Szegö Functional Inequalities for a Certain Subclass of Analytic and Bi-Univalent Functions. Axioms 2022, 11, 147. [Google Scholar] [CrossRef]
- Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete-Szegö Functional Problems for Some Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator. Afr. Mat. 2019, 30, 495–503. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. The Fekete-Szegö Functional Problems for Some Subclasses of m-Fold Symmetric Bi-Univalent Functions. J. Math. Inequal. 2016, 10, 1063–1092. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Murugusundaramoorthy, G. Unified Solution of Initial Coefficients and Fekete-Szegö Problem for Subclasses of Analytic Functions Related to a Conic Region. Afr. Mat. 2022, 33, 44. [Google Scholar] [CrossRef]
- Swamy, S.R.; Sailaja, Y. On the Fekete-Szegö Coefficient Functional for Quasi-Subordination Class. Palas. J. Math. 2021, 10, 666–672. [Google Scholar]
- Seoudy, T.; Aouf, M.K. Fekete-Szegö Problem for Certain Subclass of Analytic Functions with Complex Order Defined by q-Analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar] [CrossRef]
- Mohd, M.H.; Darus, M. Fekete-Szegö problems for quasi-subordination classes. Abstr. Appl. Anal. 2012, 2022, 192956. [Google Scholar]
- Yousef, F.; Alroud, S.; Illafe, M. New Subclasses of Analytic and Bi-Univalent Functions Endowed with Coefficient Estimate Problems. Anal. Math. Phys. 2021, 11, 58. [Google Scholar] [CrossRef]
- Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
- Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Illafe, M.; Yousef, F.; Haji Mohd, M.; Supramaniam, S. Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms 2023, 12, 235. https://doi.org/10.3390/axioms12030235
Illafe M, Yousef F, Haji Mohd M, Supramaniam S. Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms. 2023; 12(3):235. https://doi.org/10.3390/axioms12030235
Chicago/Turabian StyleIllafe, Mohamed, Feras Yousef, Maisarah Haji Mohd, and Shamani Supramaniam. 2023. "Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination" Axioms 12, no. 3: 235. https://doi.org/10.3390/axioms12030235
APA StyleIllafe, M., Yousef, F., Haji Mohd, M., & Supramaniam, S. (2023). Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms, 12(3), 235. https://doi.org/10.3390/axioms12030235